
Published online 30 January 2008 Nucleic Acids Research, 2008, Vol. 36, No. 4 e22
doi:10.1093/nar/gkm848

Meta-prediction of phosphorylation sites with
weighted voting and restricted grid search
parameter selection
Ji Wan1, Shuli Kang1, Chuanning Tang1, Jianhua Yan1, Yongliang Ren1, Jie Liu1,

Xiaolian Gao2, Arindam Banerjee3, Lynda B. M. Ellis4 and Tongbin Li1,*

1Department of Neuroscience, 3Department of Computer Science and Engineering and 4Department of Laboratory
Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA and 2Department of Biology and
Biochemistry, University of Houston, Houston, TX 77204, USA

Received May 15, 2007; Revised August 28, 2007; Accepted September 26, 2007

ABSTRACT

Meta-predictors make predictions by organizing
and processing the predictions produced by several
other predictors in a defined problem domain.
A proficient meta-predictor not only offers better
predicting performance than the individual predic-
tors from which it is constructed, but it also relieves
experimentally researchers from making difficult
judgments when faced with conflicting results
made by multiple prediction programs. As increas-
ing numbers of predicting programs are being
developed in a large number of fields of life
sciences, there is an urgent need for effective
meta-prediction strategies to be investigated.
We compiled four unbiased phosphorylation site
datasets, each for one of the four major serine/
threonine (S/T) protein kinase families—CDK, CK2,
PKA and PKC. Using these datasets, we examined
several meta-predicting strategies with 15 phos-
phorylation site predictors from six predicting
programs: GPS, KinasePhos, NetPhosK, PPSP,
PredPhospho and Scansite. Meta-predictors con-
structed with a generalized weighted voting meta-
predicting strategy with parameters determined by
restricted grid search possess the best perfor-
mance, exceeding that of all individual predictors
in predicting phosphorylation sites of all four
kinase families. Our results demonstrate a useful
decision-making tool for analysing the predictions
of the various S/T phosphorylation site predictors.
An implementation of these meta-predictors is
available on the web at: http://MetaPred.umn.edu/
MetaPredPS/.

INTRODUCTION

The past few years have seen a boom in the development
of prediction programs in a wide range of life science
areas. The 2006 Web Server issue of Nucleic Acids
Research (1) alone introduced nearly 150 web servers,
a considerable proportion of which are prediction servers
developed over the past 2 years. In many key problem
domains, multiple prediction programs coexist. While
each prediction program has its unique virtues and
strengths, often times none of them is perfect—every
program makes false predictions under certain circum-
stances. When these programs make conflicting predic-
tions, it is difficult for bench researchers—the users of the
programs—to arrive at sensible decisions, thus the original
intention of the programs is defeated. In several important
problem domains, efforts have been made to assess and
compare prediction programs independently (2–6). These
efforts assist users to determine which programs to ‘trust
more’ based on the types of problems they have. In this
series of studies, we take one step further on this issue: in
addition to making an independent assessment of the
predicting performance of several prediction programs in
the defined problem domains, we investigate strategies of
combining the strengths of these predictors, called element
predictors, to construct ‘meta-predictors’ whose perfor-
mance may exceed that of any element predictor. In the
previous study (7), we investigated the meta-prediction in
the domain of protein subcellular localization problem.
In the study described herein, we look at the meta-
prediction in another important problem domain: the
prediction of phosphorylation sites of four major families
of serine/threonine (or S/T) protein kinases.
Protein phosphorylation is the transfer of a phosphate

group from a high-energy phosphate donor such as ATP,
to an amino acid such as serine (S), threonine (T) or
tyrosine (Y) of a protein, mediated by a protein kinase.
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Protein phosphorylation is the most common form of
post-translational modification of proteins; it plays vital
roles in the regulation of a variety of important cellular
processes including metabolism, signal transduction
pathways, transcription, translation, cell growth and cell
differentiation. Only about 2% of the human proteome
encode protein kinases, but more than 30% of the
proteome are affected by kinase-mediated phosphoryla-
tion (8). Nearly half of human kinases have been linked
to cancers and other diseases (9).
Protein kinases are often classified into two broad

categories based on the amino acid residues on which
phosphorylation take place: S/T kinases and Y kinases.
The most common S/T kinases are found in the four
families: CDK, CK2, PKA and PKC. Kinases in these
four families are responsible for about half of the known
S/T kinase reactions taking place in eukaryotic organisms.
Because experimental identification of phosphorylation

sites is labor-intensive and costly, accurate computational
methods for predicting phosphorylation sites are very
important. A large number of such computation programs
have been developed. Some of these programs [including
NetPhos (10), DISPHOS (11) and Berry et al.’s predicting
programs (12)] are generic or non-specific predictors; i.e.
they predict whether a candidate site is a phosphorylation
site or not, but do not make predictions about which
kinases are involved. Other programs [e.g. KinasePhos
(13), Scansite (14), PHOSITE (15), PredPhospho (16),
NetPhosK (17), PREDIKIN (18), GPS (19) and
PPSP(20)] are kinase-specific prediction programs; they
make predictions about whether a candidate site is
a phosphorylation site of a certain kinase, or of a certain
family or group of kinases.
In terms of data features used, a vast majority of these

prediction programs (including NetPhos, NetPhosK,
KinasePhos, Scansite, PHOSITE, PredPhospho, GPS
and PPSP) extract and use sequence features from the
candidate phosphorylation sites [peptides typically of
length between 7 and 50 surrounding the phosphoryla-
table residues (S/T/Y)], while PREDIKIN takes advant-
age of structural data from which interactions between
residues in the substrate protein and corresponding
residues in the kinase are derived, and DISPHOS utilizes
features related to predicted disordered protein regions
and predicted secondary structures. In terms of underlying
classification methods, some programs (e.g. Scansite)
use scores calculated from position-specific score matrices
(PSSM) as basis of making predictions, others apply
clustering or segmentation methods (e.g. GPS and
PHOSITE), or train hidden Markov models (HMM)
(KinasePhos), logistic regression models (DISPHOS),
artificial neural networks (ANN) (NetPhos, NetPhosK),
support vector machines (SVM) (PredPhospho) or
Bayesian-based models (PPSP) for making predictions.
In this study, we choose several of these prediction tools

as element predictors, and explore meta-predicting strate-
gies for the phosphorylation site predicting problem for
the four major families of S/T kinases: CDK, CK2, PKA
and PKC. After compiling unbiased phosphorylation site
datasets for these kinase families, we use these datasets
to assess the predicting performance of these element

predictors. Subsequently, we look at several strategies
to develop meta-predictors for these kinase families.
We show that a generalized weighted voting strategy
with parameters determined by restricted grid search
produced meta-predictors with predicting performances
surpassing those of all element predictors for all four
kinase families. A web server implementing these meta-
predictors has been established and is accessible at the
URL http://MetaPred.umn.edu/MetaPredPS/.

MATERIALS AND METHODS

Compilation ofMetaPS06 datasets

We compiled four unbiased datasets, each corresponding
to one of the four major S/T kinase families: CDK, CK2,
PKA and PKC, for the meta-prediction of the phosphor-
ylation sites for these kinase families. These datasets are
termed the MetaPS06 datasets. The compilation of these
datasets consisted of four steps: (i) making an ‘include-all’
compilation of S/T phosphorylation sites; (ii) removing
data used in the development of element predictors
from the compilation; (iii) assigning class labels to the
phosphorylation sites in the compilation and (iv) making
four balanced datasets for the four kinase families
(Figure 1).

Step 1. Making ‘include-all’ compilation of S/T phosphor-
ylation sites. The ‘include-all’ compilation of S/T phos-
phorylation sites was assembled from three different data
sources: (i) Phospho.ELM (21), Version 5.0 (released
in May 2006) (ii) PhosphoSite (22), obtained in July
2006 and (iii) Swiss-Prot Release 51.1 (release date: 14
November 2006). The data from Phospho.ELM and
PhosphoSite include both non-specific phosphorylation
sites (for which no information is provided about the
kinases mediating the phosphorylation processes)
and kinase-specific phosphorylation sites (for which the
names of the kinases or of the kinase groups/families
are provided). Only kinase-specific phosphorylation sites
were included in the compilation. The S/T phosphoryla-
tion site data from Swiss-Prot were extracted by searching
in the ‘FT’/‘MOD_RES’ field of the annotation using
keywords ‘phosphoserine’ and ‘phosphothreonine’. Non-
specific phosphorylation sites were eliminated, as well
as sites whose annotations contain the following words:
‘by similarity’, ‘potential’, ‘probably’ or ‘partial’.

In summary, 2195, 3159 and 1145 S/T phosphorylation
sites were retrieved from these three data sources,
respectively. These data were merged, resulting in 5626
non-redundant S/T phosphorylation sites. The term
‘phosphorylation site’ used here refers to phosphorylation
by a single kinase. A ‘physical’ S/T site may be phos-
phorylated by several kinases. If so, it is considered as
several phosphorylation sites, one for each kinase.

Step 2. Removing data used in the development of element
predictors. To make unbiased datasets, all data used in
the development of any element predictors must be
excluded (7). In the original report of each element
prediction program, the data used in the development
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of the program is described. For most element prediction
programs (GPS, KinasePhos, NetPhosK, PPSP and
PredPhospho), Phospho.ELM (or its predecessor
PhosphoBase) was used as the major data source
(Table 1). The latest version of Phospho.ELM used in
the development of these programs was the release of
September 2004 (used in the development of GPS and
PPSP). In the Phospho.ELM dataset we obtained
(the May 2006 release), all entries annotated prior to
2005 are labeled with an annotation date of 31 December
2004. We removed all phosphorylation site data that
originated from, or overlapped with, any pre-2005
Phospho.ELM entries from our data.

For three element prediction programs—KinasePhos,
NetPhosK and PredPhospho—Swiss-Prot was listed as
one of the data sources. The latest version of Swiss-Prot
used was Release 45.0, 25 October 2004 (used in the
development of KinasePhos). All phosphorylation site
data originated from, or overlapped with, any Swiss-Prot
entries bearing an initial entry date prior to 25 October
2004 were eliminated from our phosphorylation site data.
Three element prediction programs—GPS, PPSP and

NetPhosK—used small numbers of phosphorylation sites
obtained through manual curation of the literature. The
curated data used in the development of GPS and PPSP
were acquired from the authors of these programs through

Step 1

Step 2 
(a) Remove sites originated from Phospho.ELM with 

annotation date < 12/31/04
(b) Remove sites originated from Swiss-Prot with 

annotation date < 10/25/05
(c) Remove curated data used in GPS and PPSP 

development
Remaining: 3,252 sites

CDK 294 CK2 229 PKA 360

2,489 sites

Phospho.ELM
5.0:

2,195 sites

PhosphoSite
July 2006
3,159 sites

Swiss-Prot
51.1

1,145 sites

“Include-all”:
5,626 sites

Merge

Step 3 Assign class labels, remove redundancies

PKC 348 Other 1,258

Non-phosphorylation sites
1,400

Step 4 Make 4 balanced datasets (with negative data)

CDK 
Positive:294
Negative:441

CK2
Positive:229
Negative:343

PKA
Positive:360
Negative:540

PKC
Positive:348
Negative:552

Figure 1. Procedure of compiling the MetaPS06 dataset.
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personal communications, and these data were eliminated
from the phosphorylation site compilation. We were
unable to obtain the manually curated data used in the
development of NetPhosK. However, considering that
this program was released comparatively early (prior to
December 2003), there is good chance that the small
number of manually curated phosphorylation sites used in
the development of this program were gathered in the
Phospho.ELM effort which took place in the following
year, and were excluded from the compilation together
with other earlier Phospho.ELM data.
Scansite is different from all other element prediction

programs in that data obtained from oriented peptide
library and phage display experiments were used in its
development. These data are completely independent of
the data compilation we made. Because no overlap exists
between these two types of data, no data exclusion was
necessary.
At the end of this step, 3252 S/T phosphorylation sites

remained in the compilation.

Step 3. Assigning class labels to phosphorylation
sites. Next, each phosphorylation site remaining in the
compilation was assigned one of five class labels—four of
which corresponding to the four kinase families: CDK,
CK2, PKA and PKC, and ‘other’, denoting all other S/T
kinase families. The class labels were assigned based on
the annotations from the original data sources, according
to a kinase name index table (available as Supplementary
Table 1). The kinase name index table was created
based primarily on KinBase (23), with a small number
of manually added entries. Following the assignment
of class labels, some redundant entries were emerged.
After these redundant entries were removed, 2489 phos-
phorylation sites remained in the compilation. They
include 294 CDK phosphorylation sites, 229 CK2
phosphorylation sites, 360 PKA phosphorylation sites,

348 PKC phosphorylation sites and 1258 phosphorylation
sites labeled with the ‘other’ class label.

Step 4. Making of four balanced datasets. The task of
phosphorylation site prediction consists of four separate
two-class classification problems, one for each of the four
major kinase families. For each of the four classification
problems, a dataset needs to be prepared that include both
‘positive data’ and ‘negative data’. A good phosphoryla-
tion site predictor should be able to differentiate true
phosphorylation sites for a given kinase family from
phosphorylation sites of other families as well as from
non-phosphorylation sites (occurrences of S/T in proteins
that are not substrates of any S/T kinases). Thus, the
‘negative data’ should include two different types of data:
the true phosphorylation sites of other kinase families, and
non-phosphorylation sites.

A collection of ‘non-phosphorylation sites’ was
compiled: from the same set of proteins where the
known phosphorylation sites reside in, 1400 occurrences
of S/T were picked for which no phosphorylation has
been reported to have taken place. This collection of
S/T sites likely includes some true phosphorylation sites
that had not yet been identified. However, in the absence
of a better method of making non-phosphorylation
sites, this way of preparing the non-phosphorylation site
data is an accepted practice in phosphorylation site
prediction (15,24).

For each of the four datasets, all phosphorylation sites
in the data compilation (prepared in previous steps) with
the corresponding class labels were included as the
‘positive set’. All phosphorylation sites bearing any
other class labels (the three other families, and ‘other’),
and the 1400-sample non-phosphorylation sites data were
lumped together. All sites in the lumped set overlapping
with any sites in the ‘positive set’ were removed, after
which, the ‘negative set’ was constructed by picking
samples at random from the lumped set. The size of the
negative set was set to be 1.5 times that of the positive set,
following the established practice in the field (16).
The final, balanced datasets for the classification of
CDK, CK2, PKA and PKC phosphorylation sites consist
of 294 positive and 441 negative samples, 229 positive
and 343 negative samples, 360 positive and 540 negative
samples and 348 positive and 552 negative samples,
respectively. These datasets are available as Supplemen-
tary Table 2.

Selection of element predictors

Because we focused on predicting phosphorylation
sites for the four major S/T kinase families—CDK,
CK2, PKA and PKC—in this study, non-specific phos-
phorylation site prediction programs, including NetPhos
and DISPHOS, were excluded. PHOSITE was excluded
because its implementation is not available. PREDIKIN
requires kinase sequences as input, thus it was also
excluded.

Six programs remained in the list of element predicting
programs included in this study. A total of 12 element

Table 1. Summary of the 15 element predictors

Element predictor Refs. URLs

GPS (19,25) http://973-proteinweb.ustc.edu.cn/gps/
gps_web/predict.php

KinasePhos_90 (13,24) http://kinasephos.mbc.nctu.edu.tw/
KinasePhos_95
KinasePhos_100
KinasePhos_bitscore

NetPhosK_0.3 (17) http://www.cbs.dtu.dk/services/
NetPhosK/

NetPhosK_0.5
NetPhosK_0.7

PPSP_highsens (20) http://bioinformatics.lcd-ustc.org/
PPSP/

PPSP_balanced
PPSP_highspec

PredPhospho (16) http://pred.ngri.re.kr/
PredPhospho.htm

Scansite_low (14) http://scansite.mit.edu/motifscan_
seq.phtml

Scansite_medium
Scansite_high

For data features and classification methods, see text.
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predictors are derived from these programs (Table 1).
Each prediction program is discussed below:

GPS (19,25). GPS uses the 7-mer peptide sequence
surrounding the center S/T position (three amino acids
on each side of S/T) as its features. It calculates a
similarity score between each pair of 7-mer sequences
in the training dataset based on the BLOSUM62
substitution matrix, and performs a clustering of the
training sequences. The prediction is made based on
the average similarity score calculated between the test
sequence and all sequences belonging to a given kinase
family.

KinasePhos (13,24). KinasePhos uses the 9-mer peptide
sequence surrounding the center S/T (four amino acids on
each side of S/T) as its features, and constructs profile
HMM for making predictions about phosphorylation
sites. Several options are provided in the prediction
program, including three given levels of specificity: 90%,
95% and 100%, and an option ‘by default HMM bit
score’. These four options are regarded as four separate
element predictors for the meta-prediction problem, and
they are termed KinasePhos_90, KinasePhos_95,
KinasePhos_100 and KinasePhos_bitscore, respectively.

NetPhosK (17). NetPhosK uses the 15-mer or 17-mer
peptide sequence surrounding the center S/T position as
features, and it trains ANN models for making prediction
about phosphorylation sites. Two options are provided in
the prediction server: ‘prediction without filtering’ and
‘prediction with ESS filtering’. We chose the ‘prediction
without filtering’ option because the ESS filtering would
take prohibitively long time to compute for the scale of
prediction task we had. Furthermore, the NetPhosK
server allows the setting of a ‘threshold’ value. Although
a wide range of threshold values are provided for selection
(between 0 and 0.95), we found that threshold values
below 0.3 lead to very low specificity (close to 0), and
threshold values above 0.7 give rise to very low sensitivity
in the prediction results. Thus we chose to use these
three threshold levels: 0.3, 0.5 and 0.7 for making predic-
tions, and they are regarded as three separate element
predictors, namely, NetPhosK_0.3, NetPhosK_0.5 and
NetPhosK_0.7, respectively, in this study.

PPSP (20). PPSP defines features using the 9-mer
peptide sequence surrounding the S/T position, and
a Bayesian-based model was constructed for making
predictions about phosphorylation sites. The PPSP pre-
diction server provides three options: high sensitivity,
balanced and high specificity. These three options are
regarded as three separate element predictors for our
purposes, and they are referred to as PPSP_highsens,
PPSP_balanced and PPSP_highspec, respectively.

PredPhospho (16). PredPhospho uses peptide sequences
of variable lengths (7-mer through 51-mers) centered on
the S/T position, as its features; it trains SVM for making
its predictions about phosphorylation sites.

Scansite (14). Scansite organizes peptide sequence
features obtained from an oriented peptide library and
phage display experiments into position-specific scoring
matrices (PSSM). For a potential phosphorylation site, the
PSSM score is calculated and the prediction is made based
on whether the score exceeds a pre-set threshold value.
Three options are provided in the Scansite prediction
program, each representing a different stringency levels:
high stringency, medium stringency and low stringency.
They are regarded as three separate element predictors for
the purposes of the meta-prediction problem, namely,
Scansite_high, Scansite_medium and Scansite_low.

Obtaining and pre-processing prediction results
of element predictors

All six online prediction servers take protein sequences
as their input. Prediction jobs were submitted to each of
the prediction servers using locally developed Perl scripts
with the specified prediction options. The prediction
result pages were parsed and processed with another set
of Perl scripts.
For every potential phosphorylation site (or every

occurrence of S/T in the protein sequence), certain
numerical scores were produced by the element prediction
programs. These scores are of different mathematical
meanings for different prediction programs. For example,
the score produced by KinasePhos is the HMM bit score,
the score produced by PPSP represents the risk difference
in the Bayesian decision model and the score produced
by Scansite is the calculated PSSM score. In addition to
the numerical score, each element prediction program also
makes a binary determination about whether a site is a
phosphorylation site for a given family of kinases. The
numerical scores produced by the prediction programs
contain richer information than the binary determination,
which might lead to improved predicting performance in
meta-predictors. However, it is difficult to compare these
scores across prediction programs due to their different
meanings. In this study, we ignored the numerical scores,
and only used the binary determinations.

Performance measures

In the protein subcellular localization prediction problem
(7), only a small fraction of samples (about 3%) are
categorized into multiple subcellular compartments.
For the phosphorylation site prediction problem, however,
a substantial proportion of phosphorylation sites (>20%)
are known to be phosphorylated by multiple kinases.
Therefore it is more proper to treat the phosphorylation
site prediction for the fourmajor S/T kinase families as four
separate two-class classification problems, than consider-
ing it as a single four-class classification problem, as was
done for the protein subcellular localization prediction
problem. For two-class classification problems, commonly
used performance measures for predictors include sensitiv-
ity, specificity, accuracy and Matthew’s correlation coeffi-
cient (MCC) (7). Sensitivity and specificity indicate the
predictor’s abilities to curb false-negative and false-positive
predictions, respectively, and these two measures need
to be examined together to obtain an overall evaluation
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of the predictor, because a predictor with very high
sensitivity but very low specificity (or vice versa) is not
very useful. Accuracy can indicate the performance of
a predictor on its own. However, the accuracy of a
predictor can vary considerably with the ratio of positive
samples and negative samples in the dataset. MCC is much
less susceptible to this problem; it is the most widely used
prediction measure for two-class prediction programs.
The area under the receiver operating characteristic

(or ROC) curve was used to measure the performance of a
predicting program or strategy for which multiple config-
urations or options are possible. For each configuration
or option, the sensitivity and specificity were evaluated,
the ROC curve [sensitivity versus (1-specificity) curve] was
plotted, and the area underneath this curve was calculated.

Combinatorial strategy

The ‘combination approach’ or ‘consensus approach’
is a simple meta-prediction strategy that has been used
in two-class classification problems in other problem
domains (5,26). In this approach, the meta-predictor
makes predictions by applying logic AND operations to
all predictions made by element predictors. In other
words, a positive prediction is made by the meta-predictor
for a particular sample only if all element predictors make
positive predictions on the same sample.

Simple voting strategies: unweighted voting, unreduced
weighted voting and reduced weighted voting

The unweighted voting, unreduced weighted voting and
reduced weighted voting strategies were described in the
previous study (7). For multi-class prediction problems
such as the protein subcellular localization prediction
problem, the prediction can be made by picking from the
multiple classes the one that gives rise to the highest score,
and no score threshold needs to be set. For two-class
prediction problems such as the phosphorylation site
prediction problem, however, there is the need to set a
score threshold. Generally, a linear voting-based two-class
classifier makes a positive prediction if the following
condition is satisfied:

XN

j¼1

Pj � wj

� �
� T, 1

where N is the number of element predictors (which is
equal to 15 for unreduced voting for the phosphorylation
site meta-predicting problem, and it will take a smaller
integer value for reduced voting schemes); wj is the weight
of the jth element predictor—for unweighted voting,
wj=1 for all js; Pj indicates the prediction made by
the jth element predictor, Pj=1 if a positive prediction
is made, and Pj=0 if otherwise; and T is the threshold
score.
For a simple majority voting, the threshold T should be

set as the half of the sum of all weights for the element
predictors. That is,

T ¼
1

2

XN

j¼1

wj: 2

Restricted grid search

In a weighted voting strategy denoted by Equation (1),
there are N+1 parameters—N weight parameters (wj)
and the threshold parameter T that need to be determined.
Our task is to select proper values for these N+1 (=16)
parameters that would result in a classier with a good
predicting performance (in terms of MCC or accuracy).

Generally, two approaches can be taken to determine
these parameter values: optimization and grid search
(or exhaustive search). A large number of optimization
algorithms are available which can be applied to find a set
of ‘optimal parameters’ that maximize the GCC or
accuracy. Properly chosen optimization algorithms can
be very efficient in run time performance. However,
optimization methods may find a local, rather than a
global, optimum. Grid search is not susceptible to the
local optimum problem, but can be very costly in running
time. Effective searching of 16 parameters (15 weight and
1 threshold parameters) is a rather challenging task.

We developed a restricted grid search scheme to select
the values of these 16 parameters. First, we decided
that the weight of any element predictors can only take
one of the following 9 values: 0, 115,

3
15,

5
15,

7
15,

9
15,

11
15,

13
15, and 1.

Second, we required that the sum of the weights of all
15 element predictors equal 1. With these two restrictions,
the number of possible weight combinations is limited
to 27, corresponding to 2 659 764 weight permutations,
as is summarized in Table 1. With Pj taking one of two
possible values: 0 and 1, the weighted sum

PN
j¼1 ½Pj � wj�

can produce a total of 16 different values (Table 2).
T could be any of these 16 values. With this scheme,
the search space for the 16 parameters was effectively
limited to a manageable size of (2 659 764� 16=
42 556 224). The grid search of the 16 parameters was
conducted on each of the four MetaPS06 datasets with
10-fold cross-validation.

RESULTS

Performance assessment of element predictors

The predicting performance of each of the 15 element
predictors was assessed using these unbiased MetaPS06
datasets. As is shown in Table 3, the element predictors
vary considerably in predicting performance. For the
four kinase families CDK, CK2, PKA and PKC, the
element predictors that offers the best predicting perfor-
mance are PredPhospho (accuracy: 0.853, MCC: 0.708),
NetPhosK_0.5 (accuracy: 0.871, MCC: 0.730),
PredPhospho (accuracy: 0.827, MCC: 0.642) and
PPSP_balanced (accuracy: 0.743, MCC: 0.477),
respectively.

Combinations of element predictors

We examined the predicting performance of all combina-
torial meta-predictors constructed with 2–6 element
predictors, and the combinatorial meta-predictors yielding
the best predicting performance are shown in Table 4.
For CDK, four combinatorial meta-predictors achieved
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slightly better predicting performance than that of the best
element predictor (PredPhospho). For PKC, two combi-
natorial meta-predictors achieved slightly better predicting
performance than that of the best element predictor
(PPSP_balanced). However, for the other two kinase
families, CK2 and PKA, the combination approach did
not produce meta-predictors with satisfactory predicting
performances.

Table 3. Predicting performance of element predictors

Element predictor Sensitivity Specificity Accuracy MCC

CDK
GPS 0.908 0.800 0.844 0.695
KinasePhos_90 0.884 0.717 0.784 0.589
KinasePhos_95 0.799 0.837 0.822 0.632
KinasePhos_100 0.571 0.923 0.782 0.542
KinasePhos_bitscore 0.912 0.685 0.776 0.588
NetPhosK_0.3 1 0 0.400 N/Aa

NetPhosK_0.5 0.639 0.748 0.705 0.387
NetPhosK_0.7 0.065 0.998 0.624 0.188
PPSP_highsens 0.983 0.075 0.438 0.128
PPSP_balanced 0.905 0.796 0.839 0.687
PPSP_highspec 0.054 0.982 0.611 0.100
PredPhospho 0.898 0.823 0.853 0.708
Scansite_low 0.667 0.884 0.797 0.571
Scansite_medium 0.405 0.971 0.744 0.479
Scansite_high 0.153 0.993 0.657 0.290

CK2
GPS 0.699 0.895 0.816 0.613
KinasePhos_90 0.581 0.904 0.774 0.523
KinasePhos_95 0.476 0.950 0.760 0.504
KinasePhos_100 0.266 0.985 0.698 0.386
KinasePhos_bitscore 0.594 0.901 0.778 0.530
NetPhosK_0.3 0.961 0.525 0.699 0.506
NetPhosK_0.5 0.755 0.948 0.871 0.730
NetPhosK_0.7 0.245 1.000 0.698 0.403
PPSP_highsens 0.930 0.227 0.509 0.208
PPSP_balanced 0.742 0.933 0.857 0.700
PPSP_highspec 0.048 1.000 0.619 0.171
PredPhospho 0.594 0.959 0.813 0.616
Scansite_low 0.576 0.983 0.820 0.640
Scansite_medium 0.380 0.997 0.750 0.512
Scansite_high 0.135 1.000 0.654 0.293

PKA
GPS 0.817 0.809 0.812 0.618
KinasePhos_90 0.722 0.843 0.794 0.569
KinasePhos_95 0.650 0.887 0.792 0.560
KinasePhos_100 0.361 0.952 0.716 0.405
KinasePhos_bitscore 0.775 0.804 0.792 0.573
NetPhosK_0.3 0.878 0.724 0.786 0.590
NetPhosK_0.5 0.694 0.874 0.802 0.583
NetPhosK_0.7 0.483 0.959 0.769 0.525
PPSP_highsens 0.967 0.231 0.526 0.270
PPSP_balanced 0.850 0.806 0.823 0.645
PPSP_highspec 0.008 0.998 0.602 0.048
PredPhospho 0.808 0.839 0.827 0.642
Scansite_low 0.644 0.917 0.808 0.596
Scansite_medium 0.422 0.981 0.758 0.515
Scansite_high 0.158 0.991 0.658 0.288

PKC
GPS 0.718 0.753 0.739 0.466
KinasePhos_90 0.649 0.789 0.733 0.441
KinasePhos_95 0.480 0.864 0.710 0.378
KinasePhos_100 0.129 0.977 0.638 0.211
KinasePhos_bitscore 0.687 0.722 0.708 0.404
NetPhosK_0.3 0.716 0.695 0.703 0.403
NetPhosK_0.5 0.491 0.841 0.701 0.358
NetPhosK_0.7 0.333 0.935 0.694 0.348
PPSP_highsens 0.954 0.274 0.546 0.289
PPSP_balanced 0.741 0.743 0.743 0.477
PPSP_highspec 0.006 1.000 0.602 0.059
PredPhospho 0.598 0.805 0.722 0.412
Scansite_low 0.411 0.866 0.684 0.315
Scansite_medium 0.170 0.946 0.636 0.189
Scansite_high 0.069 0.994 0.624 0.179

Predicting performance assessed on MetaPS06 datasets. Element
predictors having the best predicting performance are shown in italic.
aMCC is undefined.

Table 2. Weight combinations, permutations and possible weighted

sum values in the restricted grid search parameter selection scheme

Weight combinationsa Number of corresponding
weight permutations

1� 1 15

1
15 � 2þ 13

15 � 1 1365

1
15 � 1þ 3

15 � 1þ 11
15 � 1 2730

1
15 � 4þ 11

15 � 1 15 015

1
15 � 1þ 5

15 � 1þ 9
15 � 1 2730

3
15 � 2þ 9

15 � 1 1365

1
15 � 3þ 3

15 � 1þ 9
15 � 1 60 060

1
15 � 6þ 9

15 � 1 45 045

1
15 � 1þ 7

15 � 2 1365

3
15 � 1þ 5

15 � 1þ 7
15 � 1 2730

1
15 � 3þ 5

15 � 1þ 7
15 � 1 60 060

1
15 � 2þ 3

15 � 2þ 7
15 � 1 90 090

1
15 � 5þ 3

15 � 1þ 7
15 � 1 270 270

1
15 � 8þ 7

15 � 1 45 045

5
15 � 3 455

1
15 � 2þ 3

15 � 1þ 5
15 � 2 90 090

1
15 � 5þ 5

15 � 2 135 135

1
15 � 1þ 3

15 � 3þ 5
15 � 1 60 060

1
15 � 4þ 3

15 � 2þ 5
15 � 1 675 675

1
15 � 7þ 3

15 � 1þ 5
15 � 1 360 360

1
15 � 10þ 5

15 � 1 15 015

3
15 � 5 3003

1
15 � 3þ 3

15 � 4 225 225

1
15 � 6þ 3

15 � 3 420 420

1
15 � 9þ 3

15 � 2 75 075

1
15 � 12þ 3

15 � 1 1365

1
15 � 15 1

Possible weighted 0,
1

15
,
2

15
,
3

15
,
4

15
,
5

15
,
6

15
,
7

15
,
8

15
,
9

15
,

sum values
10

15
,
11

15
,
12

15
,
13

15
,
14

15
,1

aWeight combinations are denoted as the sum of each weight value
multiplied by the number of weights taking the weight value, with
weight value 0 omitted. For instance, ‘1� 1’ represents cases where one
weight takes the value 1, and the other 14 weights taking the value 0;
and ‘ 115 � 2þ 13

15 � 1’ represent cases where 2 of the 15 weights take
the value 1

15, 1 weight takes the value 13
15, and the remaining 12 weights

take the value 0. Each weight combination corresponds to one or more
weight permutations. For instance, for weight combination ‘1� 1’, the
weight value 1 can be taken by each of the 15 weights, thus it
corresponds to P15

1 ¼ 15 weight permutations. Similarly, for weight
combination ‘ 115 � 2þ 13

15 � 1’, there are P15
2 � P13

1 ¼ 1365 corresponding
weight permutations.
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Simple voting strategies: unweighted voting, unreduced
weighted voting and reduced weighted voting

We used the unweighted voting, unreduced weighted
voting and reduced weighted voting strategies in
constructing meta-predictors for the phosphorylation site
problem. Unlike a multi-class prediction problem, a score
threshold needs to be set for two-class phosphorylation
site prediction problems. This score threshold is set as the
half of the sum of all weights for the element predictors
(see Materials and Methods).
As shown in Table 5, the prediction performance

of no unweighted voting meta-predictor exceeded that of
the best element predictors. For the CDK and PKA kinase
families, unreduced weighted voting meta-predictors
(using the accuracy values of the element predictors as
the weights) achieved slightly improved prediction over
than that of the best element predictors. For the CK2 and
PKC kinase families, none of the unreduced weighted
meta-predictors produced satisfactory predicting perfor-
mance. For the CDK, PKA and PKC kinase families, the
best reduced weighted voting meta-predictors improved
accuracy between 1.0% and 3.1%, and MCC between
1.8% and 4.4%, compared to those of the best element
predictors. However, for the CK2 kinase family, no
reduced weighted voting meta-predictor offered a satisfac-
tory predicting performance (Table 5).

Weighted voting with restricted grid search
parameter selection

The weighted voting strategy with the weights set by
the MCC or accuracy values of the element predictors did
not render meta-predictors with satisfactory predicting
performance for all four kinase families. We thus explored
the more general form of the weighted voting strategy,
with the weights of element predictors determined from
the data.

A grid search, with carefully devised restricted search
space, allows the search to be executed in a manageable
amount of time (Table 2 and Materials and Methods).
The grid search of the 16 parameters was conducted on
each of the four MetaPS06 datasets with 10-fold cross-
validation. As is shown in Table 6, for all four kinase
families, the weighted voting meta-predictors obtained
by grid search parameter selection exhibits outstanding
predicting performance which not only exceeds that of
the best element predictors, but also surpasses that of
any combinatorial or reduced voting meta-predictors
constructed described above. The meta-predictors
achieved an increase in accuracy of between 1.1% and
4.3%, and an increase in MCC of between 2.2% and 8.1%
compared to the best element predictor for each kinase
family. For the CK2, PKA and PKC kinase families, the
meta-predictors demonstrated significantly higher MCC

Table 4. Predicting performance of combinatorial meta-predictors

Number of element
predictors in combination

Element predictors included in best combinatorial meta-predictor Accuracy MCC

CDK
2 GPS, PredPhospho 0.859 0.717 (0.36)�

3 GPS, NetPhosK_0.3, PredPhospho 0.859 0.717 (0.36)�

4 GPS, NetPhosK_0.3, PPSP_highsens, PredPhospho 0.859 0.716 (0.38)�

5 GPS, KinasePhos_bitscore, NetPhosK_0.3, PPSP_highsens, PredPhospho 0.856 0.708 (0.50)�

6 GPS, KinasePhos_bitscore, NetPhosK_0.3, PPSP_highsens, PredPhospho, Scansite_low 0.799 0.575
Best element predictor (PredPhospho) 0.853 0.708

CK2
2 NetPhosK_0.3, PPSP_balanced 0.857 0.700
3 GPS, NetPhosK_0.3, PPSP_balanced 0.832 0.652
4 GPS, NetPhosK_0.3, PPSP_highsens, Scansite_low 0.808 0.621
5 GPS, KinasePhos_90, NetPhosK_0.3, PPSP_highsens, Scansite_low 0.778 0.565
6 GPS, KinasePhos_90, NetPhosK_0.3, PPSP_highsens, PredPhospho, Scansite_low 0.748 0.508

Best element predictor (NetPhosK_0.5) 0.871 0.730

PKA
2 NetPhosK_0.3, PredPhospho 0.827 0.638
3 GPS, NetPhosK_0.3, PPSP_highsens 0.82 0.625
4 GPS, NetPhosK_0.3, PPSP_highsens, PredPhospho 0.819 0.619
5 GPS, KinasePhos_bitscore, NetPhosK_0.3, PPSP_highsens, PredPhospho 0.81 0.599
6 GPS, KinasePhos_bitscore, NetPhosK_0.3, PPSP_highsens, PredPhospho, Scansite_low 0.784 0.555

Best element predictor (PredPhospho) 0.827 0.642

PKC
2 NetPhosK_0.3, PPSP_balanced 0.76 0.489 (0.37)�

3 GPS, NetPhosK_0.3, PPSP_balanced 0.757 0.485 (0.41)�

4 GPS, KinasePhos_bitscore, NetPhosK_0.3, PPSP_highsens, 0.739 0.448
5 GPS, KinasePhos_bitscore, NetPhosK_0.3, PPSP_highsens, PredPhospho 0.717 0.405
6 GPS, KinasePhos_bitscore, NetPhosK_0.3, PPSP_highsens, PredPhospho, Scansite_low 0.676 0.319

Best element predictor (PPSP_balanced) 0.741 0.477

Predicting performance assessed on MetaPS06 datasets. For each l (2� l� 6), the composition and predicting performance of the best meta-
predictors composed of l element predictors are shown, together with the predicting performance of the best element predictor. Meta-predictors
having predicting performance exceeding that of the best element predictor are shown in italic.
�P-values in Fisher’s Z-transformation test (compared with the MCC of the best element predictor) are shown in parentheses.
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values than that of the best of the element predictors
(P< 0.05, Fisher’s Z-transformation test, see Table 6).
Moreover, an ROC-based comparison indicated that the
meta-predictors had higher ROC areas than those of any
element predicting programs for all four kinase families
(Table 7). The minimal and maximal improvements in
accuracy and MCC (across the four kinase families)
achieved by the meta-predictors over the best predictor for
each element predicting program are presented separately
in Table 8.

The parameters selected in the four final weighted
voting meta-predictors are shown in Table 9. For each
of the four meta-predictors, at least eight non-zero
weight parameters were selected. At least one non-zero
weights were used for all but two element predictors
(NetPhosK_0.7 and PPSP_highspec) in the four final
meta-predictors, indicating that the good performance
achieved by these meta-predictors was due to their ability
to harness the combined strengths of multiple element
predictors.

A web server implementing the four final meta-
predictors was established and is accessible at http://
MetaPred.umn.edu/MetaPredPS/.

DISCUSSION

Combination and reduced voting strategies

We found that a weighted voting strategy with parameters
selected by a grid search scheme produced satisfactory
meta-predictors whose performance exceeds that of all
element predictors for all four kinase families. In contrast,
the combination strategy and the reduced weighted voting
strategy (with weights set by the accuracy or MCC of
the element predictors) failed to yield meta-predictors
with satisfactory predicting performance for at least one

Table 5. Predicting performance of unweighted voting, best unreduced

weighted voting and best reduced weighted voting meta-predictors

Predictor Accuracy MCC

CDK
Best element predictor

(PredPhospho)
0.853 0.708

Unweighted voting Meta-predictor 0.853 0.699
Best unreduced weighted voting

Meta-predictor
0.857 0.711 (0.45)�

Best reduced weighted voting
Meta-predictor

0.863 0.726 (0.24)�

CK2
Best element predictor

(NetPhosK_0.5)
0.871 0.730

Unweighted voting Meta-predictor 0.809 0.617
Best unreduced weighted voting

Meta-predictor
0.844 0.675

Best reduced weighted voting
Meta-predictor

0.867 0.722

PKA
Best element predictor

(PredPhospho)
0.827 0.642

Unweighted voting Meta-predictor 0.820 0.620
Best unreduced weighted voting

Meta-predictor
0.837 0.669 (0.16)�

Best reduced weighted voting
Meta-predictor

0.839 0.675 (0.11)�

PKC
Best element predictor

(PPSP_balanced)
0.741 0.477

Unweighted voting Meta-predictor 0.733 0.433
Best unreduced weighted voting

Meta-predictor
0.744 0.500

Best reduced weighted voting
Meta-predictor

0.772 0.521 (0.11)�

Predicting performance assessed on MetaPS06 datasets. Meta-
predictors having predicting performance exceeding that of the best
element predictor are shown in italic.
�P-values in Fisher’s Z-transformation test (compared with the MCC of
the best element predictor) are shown in parentheses.

Table 7. Areas under the ROC curves for the six element predicting

programs and the weighted voting meta-predictor with restricted grid

search

CDK CK2 PKA PKC

GPS 0.8761 0.8130 0.8446 0.7574
KinasePhos 0.8713 0.7508 0.8234 0.7440
NetPhosK 0.7767 0.9307 0.8749 0.7581
PPSP 0.8721 0.8767 0.8860 0.7994
PredPhospho 0.8670 0.7791 0.8537 0.7149
Scansite 0.7584 0.7734 0.7656 0.6397

Max of the
six category

GPS
0.8761

NetPhosK
0.9307

PKA
0.8896

PPSP
0.7994

Meta-predictor
(weighted voting
with restricted
grid search)

0.8956 0.9313 0.8946 0.8247

Table 8. Minimal and maximal improvements in accuracy and MCC

achieved by the weighted voting meta-predictor with restricted grid

search over the best predictor of each element predicting program

Minimal
improvement
in accuracy

Maximal
improvement
in accuracy

Minimal
improvement
in MCC

Maximal
improvement
in MCC

GPS 0.020 0.077 0.035 0.166
KinasePhos 0.042 0.115 0.098 0.249
NetPhosK 0.022 0.159 0.049 0.343
PPSP 0.025 0.041 0.043 0.081
PredPhospho 0.011 0.080 0.022 0.163
Scansite 0.042 0.100 0.103 0.243

Minimal and maximal improvements in accuracy and MCC were
calculated across the four datasets for CDK, CK2, PKA and PKC
kinase families.

Table 6. Predicting performance of weighted voting meta-predictors

with restricted grid search of parameters

Sensitivity Specificity Accuracy MCC

CDK 0.912 0.832 0.864 0.730 (0.19)�

CK2 0.878 0.904 0.893 0.779 (0.027)�

PKA 0.883 0.828 0.850 0.699 (0.014)�

PKC 0.773 0.791 0.784 0.558 (0.011)�

Predicting performance assessed on MetaPS06 datasets.
�P-values in Fisher’s Z-transformation test (compared with the MCC of
the best element predictor) are shown in parentheses.
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of the kinase families. The combination strategy has been
successfully applied in making two-class predictions in
other problem domains, including the predictions of
secreted proteins (5) and transmembrane proteins (26).
By applying a logic AND operation to the predictions
made by the element predictors, this strategy, in essence,
attempts to achieve improved specificity at the cost of
reduced sensitivity. This strategy is expected to work
effectively for cases where element predictors have
relatively high sensitivity but lower specificity values.
The reduced weighted voting strategy (with weights set
by the accuracy or MCC of the element predictors) has
produced good meta-predictors in the protein subcellular
localization prediction problem (7), but this strategy fails
to yield meta-predictors with expected performance in the
prediction of phosphorylation sites for the CK2 kinase
family. The exact reason for this failure is not clear,
although stronger correlation among the element pre-
dictors may play a role. Multiple element predictors from
a single prediction program are expected to be more highly
correlated than those from different programs. In the
protein subcellular localization prediction problem, only
one of the eight prediction programs provided multiple
element predictors. In the phosphorylation site prediction
problem, however, four of the six prediction programs
did so.

A general weighted voting strategy

Weighted voting with weight parameters selected by grid
search is a more general form of the weighted voting
strategy. It does not assume that element predictors with
better performance will contribute more to the perfor-
mance of the meta-predictors. Rather, the weights of
all element predictors are determined directly from the
data through exhaustive search. This flexible approach not
only results in meta-predictors with better predicting
performance than combinatorial meta-predictors and
reduced voting meta-predictors in the phosphorylation
site prediction problem, but it is also expected to work
effectively for a wide range of other problem domains.
Grid search of large numbers of parameters (16 in this
particular case) is very costly in running time. The key to
this weighted voting scheme is the ability to restrict the
search space to a manageable size without compromising
the effectiveness of the search. If an unrestricted grid
search is conducted with 16 parameters, each of which is
searched in four steps (that is, each parameter is allowed
to take four possible values), the total number of

parameter permutations is 416� 42 billion. A grid search
of this scale would take about 14 months to complete
with a computer equipped with an Intel Core 2 DUO
processor. With the carefully devised restricted
search scheme developed in this study, the grid search of
the 16 parameters—15 of which were searched in 9 steps,
and the 16th in 16 steps) was completed in only about 10 h
for each of the four kinase families.

Limitation of voting-based strategies

A limitation imposed by voting-based meta-prediction
strategies is that they require the output produced by
different element predictors (which is taken as input of the
element predictors) to be compatible with one another.
We are working on decision tree- and SVM-based meta-
prediction strategies to overcome this problem. It is hoped
that these new strategies, which can take advantage of
more versatile output of element predictors, will lead
to more effective meta-predictors applicable in a wider
range of problem domains.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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