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Cost function for low‑dimensional 
manifold topology assessment
Kamila Zdybał1,2*, Elizabeth Armstrong3, James C. Sutherland3* & Alessandro Parente1,2*

In reduced-order modeling, complex systems that exhibit high state-space dimensionality are 
described and evolved using a small number of parameters. These parameters can be obtained in a 
data-driven way, where a high-dimensional dataset is projected onto a lower-dimensional basis. A 
complex system is then restricted to states on a low-dimensional manifold where it can be efficiently 
modeled. While this approach brings computational benefits, obtaining a good quality of the manifold 
topology becomes a crucial aspect when models, such as nonlinear regression, are built on top of 
the manifold. Here, we present a quantitative metric for characterizing manifold topologies. Our 
metric pays attention to non-uniqueness and spatial gradients in physical quantities of interest, 
and can be applied to manifolds of arbitrary dimensionality. Using the metric as a cost function in 
optimization algorithms, we show that optimized low-dimensional projections can be found. We 
delineate a few applications of the cost function to datasets representing argon plasma, reacting 
flows and atmospheric pollutant dispersion. We demonstrate how the cost function can assess various 
dimensionality reduction and manifold learning techniques as well as data preprocessing strategies 
in their capacity to yield quality low-dimensional projections. We show that improved manifold 
topologies can facilitate building nonlinear regression models.

In the era of big data, numerous science and engineering disciplines use dimensionality reduction to obtain 
lower-dimensional representations of complex physical systems with many degrees of freedom1–8. Large data 
coming from system measurements or simulations is frequently the starting point of reduced-order modeling. 
These high-dimensional datasets, ubiquitous in areas such as plasma physics, chemically reacting flows, neurosci-
ence, genomics and transcriptomics, electrochemistry or atmospheric physics, often exhibit strongly attracting 
low-dimensional manifolds9–20. Describing the system evolution on those manifolds alone can thus be a viable 
modeling strategy21–24. After projecting the original variables onto a lower-dimensional basis, system dynamics 
can be tracked on a lower-dimensional manifold, embedded in the original state-space. This approach provides 
substantial reduction to the number of parameters needed to visualize, describe and predict complex systems. 
To date, linear and nonlinear dimensionality reduction techniques have been used to find lower-dimensional 
spaces to represent multivariate datasets and build reduced-order models in those spaces.

Some topological properties of low-dimensional data representations can make reduced-order modeling dif-
ficult. A particularly undesired behavior are overlapping states on a manifold which can result in non-uniqueness 
in dependent variable values. For instance, with the manifold parameters used as regressors in nonlinear regres-
sion tasks, any ambiguity in dependent variable values can hinder successful modeling. Another characteristic of 
a problematic manifold are large gradients in the dependent variable values. These can appear when observations 
on manifolds in important regions are compressed with respect to other, less important regions. If dependent 
variable values change rapidly over such compressed regions, features of small sizes are formed that can pose 
modeling difficulty25. Maintaining moderate gradients on manifolds is thus a desired characteristic.

In this paper, we are motivated by the emerging discussion on the need to characterize the quality of low-
dimensional manifolds26–30. Quantitative tools are needed in areas where researchers tune the hyper-parameters 
of dimensionality reduction or manifold learning techniques to obtain improved manifolds of particular types 
of data31–35. When manifold learning is used for efficient data visualization, good quality manifolds can help 
uncover important multivariate relationships in complex datasets such as genomics or transcriptomics data34,36–38. 
In artificial intelligence, there is a need to determine the quality of manifold representations in neural networks, 
where the recent work on predictive learning demonstrated how those representations can vary throughout the 
learning stages19. Detecting intersection between several manifolds can be of interest in learning object manifolds 
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in deep neural networks (DNNs)39. Similar need applies in domains that study real neural networks and aim 
at discovering low-dimensional trajectories in neural activity15,18,20,40–42. Finally, quality manifold topologies 
become important in fields such as fluid dynamics, plasma physics or combustion, where nonlinear regression 
is commonly integrated into the reduced-order modeling workflow43–48.

Here, we propose a manifold-informed metric that can quantitatively assess low-dimensional data parameteri-
zations. The proposed metric takes into account two factors that affect modeling in particular: feature sizes and 
multiple scales of variation in manifold topology that can convey non-uniqueness. Our metric is scalable with 
target manifold dimensionality and can work across different dimensionality reduction and manifold learning 
techniques. Moreover, dependent variables that are most relevant in modeling can be selected a priori and the 
manifold topology can be assessed for those variables specifically.

The proposed metric can further serve as a cost function in manifold optimization tasks. In this work, we 
delineate and test a few applications. Primarily, we demonstrate how the cost function can help identify appro-
priate data preprocessing to mitigate problems with ill-behaved manifolds. While in some cases insights are 
available as to which data preprocessing results in accurate modeling49–54, such decisions still have to be largely 
made through trial and error. Finally, with the many linear and nonlinear dimensionality reduction techniques 
available in the research community, we show how they can be assessed in their capacity to generate well-defined 
manifolds. Our quantitative measure can optimize hyper-parameters of a reduction technique. This can be helpful 
especially for techniques where only heuristic guidelines are available55. Often, data preprocessing and hyper-
parameter settings are ultimately tied to a given dataset. It is also unclear how (or whether) the settings will carry 
over if changes such as increasing the manifold dimensionality or extending the state-space with additional data 
are made later on56. Our approach proposed in this work thus provides a way to quantify and automate decisions 
that need to be made prior to applying a reduction technique.

Results
Cost function formulation.  We base our discussion on the observation that regions of poor manifold 
topology (such as non-uniqueness) will only affect a dependent variable if there is variation in the variable’s 
values over those regions (see Fig. 1). With this premise, our cost function is derived from variance in depend-
ent variable values happening across different length scales on a manifold. As recently proposed in Ref.30, we 
compute the normalized variance of a dependent variable, N (σ ) , for selected length scales, σ , on a manifold. We 
then analyze the derivative of N (σ ) with respect to σ , denoted as D̂(σ ) . This derivative captures the informa-
tion about how the normalized variance changes as the manifold is scanned at varying length scales given by 
σ ∈ �σmin, σmax� . The detailed mathematical description of N (σ ) and D̂(σ ) can be found in the “Methods” sec-
tion and in Ref.30. Given q manifold parameters, ηηη = [η1, η2, . . . , ηq] , the resulting normalized variance deriva-
tive, D̂(σ ) , can be computed for each dependent variable in a relevant set, φφφ = [φ1,φ2, . . . ,φm] . Figure 2a shows 
a visual example of how the normalized variance derivative assesses information content at various manifold 
length scales for one dependent variable, φ . The length scales at which peaks occur in a variable’s D̂(σ ) profile 
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Figure 1.   Illustrative demonstration of non-uniqueness introduced during low-dimensional data projection. 
Various 2D projections of a 3D synthetic dataset can be formed by looking at the dataset at various angles to the 
z-axis and collapsing all observations onto a plane of sight. We demonstrate two example projections that can 
be formed: a top-down projection and a projection resulting from looking at an angle to the z-axis. In the new 
projected coordinates, [η1, η2] , the top-down projection is unique everywhere, while the projection at an angle 
introduces regions of non-uniqueness with overlapping observations.
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indicate feature sizes. Each scale at which a dependent variable shows variation over the manifold, including 
variation due to non-uniqueness, will create its own imprint in D̂(σ ) . The largest spatial scale at which the 
dependent variable exhibits variation (the largest feature size) on a manifold is reflected in the rightmost peak 
location in the D̂(σ ) profile, and we define it as σpeak (see Fig. 2a). In the “Methods” section, we present a more 
detailed discussion of how σpeak is obtained. Any smaller feature sizes appear as additional peaks for σ < σpeak . 
The 2D projection seen in Fig. 2a exhibits severe non-uniqueness which manifests itself in variance occurring at 
very small scales, σ ≪ σpeak.

Two particularly appealing characteristics of the normalized variance derivative are taken into account for the 
design of our cost function. First, the locations of peaks in the D̂(σ ) curve convey feature sizes on manifolds. With 
an appropriate penalty with respect to the largest feature size, σpeak , we favor manifolds that maintain large feature 
sizes, as those should facilitate modeling. Second, with multiple scales of variation present on manifolds, the 
area under the D̂(σ ) curve will increase due to the additional peak(s) for σ < σpeak . The cost function proposed 
herein, L = L(ηηη,φφφ) , is computed from a penalized area under the D̂(σ ) curve(s). By integrating the penalized 
D̂(σ ) curve(s), we sum over the effects that multiple scales of variation have on the D̂(σ ) profile. A visualiza-
tion of the penalty function and its effect on the D̂(σ ) curve for the manifold introduced in Fig. 2a is shown in 
Fig. 2b. We see how the area under D̂(σ ) weighted by the penalty function is amplified at scales far from σpeak , 
therefore penalizing the variance occurring at smaller scales more heavily. Furthermore, the cost function gives 
a single number representing the parameterization “cost” for a given manifold. A larger cost indicates a worse 
manifold topology and a lower cost indicates an improved manifold topology in terms of modeling. If the cost 
is computed for m dependent variables, a norm over all Li costs can be taken to yield a single cost value for the 
entire manifold: L = ||Li|| , ∀i ∈ [1, 2, . . . ,m] . Figure 2c demonstrates costs computed for a single dependent 
variable, φ , over two different 2D projections. The first projection is the same as analyzed in Fig. 2a. The second 
projection has an improved topology and non-uniqueness is significantly reduced. The corresponding D̂(σ ) 
curve for the improved projection exhibits a single dominant peak which indicates a single scale of variation in φ 
values over the entire manifold. We report the cost, L = Lφ , for each projection, with the cost for the projection 
with non-uniqueness being greater. The mathematical description of the proposed cost function and additional 
details are provided in the “Methods” section.

There are three key advantages of our proposed cost function. First, manifolds obtained using any technique 
can be assessed. This includes any ad hoc selected manifold parameters or empirical manifolds obtained directly 
from training data using dimensionality reduction or manifold learning techniques. Second, manifolds of any 
dimensionality can be assessed. Finally, manifolds can be assessed with respect to an arbitrary set of m relevant 
dependent variables, φφφ . Dependent variables that we are most interested in accurately modeling can be selected, 
which can include any of the original state variables and any functions of them.

Cost function response to feature size and non‑uniqueness.  To demonstrate the behavior of the 
proposed cost function to an increasing feature size, we generate bivariate functions on a uniform square x–
y grid, centered around (0, 0). The dependent variable, φ , is calculated from a multivariate Gaussian normal 
distribution, φ = exp(−(x2 + y2)/(2s2)) , where the standard deviation, s, is gradually increased to imitate an 
increasing feature size. The smallest feature is selected with s = 0.05 and the largest feature with s = 0.6 . Fig-
ure 3a shows these functions corresponding to ten Gaussians with increasing s. Below each Gaussian, we plot 
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Figure 2.   The proposed cost function, L , distills information about variance in dependent variable’s values 
occurring at different length scales, σ , on a manifold. (a) Manifold is first scanned at different values of σ for any 
variation in the dependent variable’s values. Multiple scales of variation manifest themselves in multiple peaks 
seen in the constructed normalized variance derivative curve, D̂(σ ) . The location of the rightmost peak, σpeak , 
denotes the largest feature size on a manifold. Variance occurring at scales σ ≪ σpeak is a strong indicator of 
non-uniqueness. (b) The cost function, L , is computed by integrating the penalized D̂(σ ) curve. The introduced 
penalty amplifies the area under D̂(σ ) occurring at σ < σpeak and especially at σ ≪ σpeak . The contributions 
from all scales of variation are thus summed up and embedded in the cost value. (c) Assessing example 2D 
projections with the proposed cost function. The first projection exhibits non-uniqueness, with regions where 
smallest and highest values of the dependent variable, φ , overlap each other. The non-uniqueness is significantly 
reduced on the improved projection and the corresponding D̂(σ ) curve exhibits a single rise indicating a single 
feature size over the whole manifold. We show the associated costs for the two projections, with the cost for the 
projection with non-uniqueness being greater.
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the corresponding cost, L = Lφ , and we observe a decreasing trend in L with increasing feature size. This is a 
desired behavior, since larger features should facilitate modeling. A very small feature, like the one obtained 
from s = 0.05 , introduces relatively steep gradients, which can be more challenging to model. The response of 
the D̂(σ ) curves to an increasing feature size is shown in Fig. 3b. The location of σpeak gradually shifts to the 
right with increasing feature size and the area under the D̂(σ ) curves decreases. The decrease in cost with an 
increasing feature size seen in Fig. 3a is thus a result of rewarding the increasing σpeak location and the slightly 
decreasing area under the D̂(σ ) curve. The latter is the effect of a decreasing gradient of φ with increasing feature 
size, leaving less variance in φ present at scales away from σpeak.

To further test the response of the cost function to multiple feature sizes, we generate another set of func-
tions, such that the dependent variable, φ , is now computed from a superposition of sine functions with various 
frequencies. Multiple feature sizes are generated from the general formula φ =

∑n
k=1 sin(2

kx) for n = 1, 2, . . . , 5 . 
Thus, for n = 1 , the function has only one feature size. In Fig. 3c, we observe increasing cost values with each 
added feature size. The reason for this increase becomes clear once we look at the corresponding D̂(σ ) curves in 
Fig. 3d, where each new feature generates an additional rise in D̂(σ ) at length scales smaller than σpeak.

Next, we perform a similar test using functions which introduce increasing levels of non-uniqueness. The 
dependent variable, φ , is now calculated as a linear function of the independent variable, φ = x , being the x-axis. 
This results in a constant gradient along the x-axis. We introduce non-uniqueness in φ by adding overlapping 
observations whose φ values are set to zero. The number of observations added to increase the non-uniqueness 
is measured with the overlap depth, d, and is increased from no overlapping observations ( d = 0 observations) 
to a maximum number of overlapping observations ( d = 90 observations). Figure 3e presents ten such func-
tions with an increasing depth of non-uniqueness. Here, we observe an increasing trend in L as we increase the 
non-uniqueness depth. The multiple scales of variation introduced from non-uniqueness lead to an increased 
area under the D̂(σ ) curves, which is penalized by the cost function. In order to observe how severe the increase 
in area is under the D̂(σ ) curves associated with manifold non-uniqueness, Fig. 3f shows the D̂(σ ) curves 
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Figure 3.   Cost function behavior on toy functions. (a) The response of the cost function to increasing feature 
size. The dependent variable φ is generated from the bivariate Gaussian normal distribution with varying 
standard deviation, s. (b) The D̂(σ ) curves corresponding to functions with increasing feature size. The curves 
are plotted in gray-scale denoting an increasing value of s from the darkest curve ( s = 0.05 ) to the lightest 
( s = 0.6 ). (c) The response of the cost function to multiple feature sizes. The dependent variable φ is generated 
from a superposition of sine functions with varying frequencies. (d) The D̂(σ ) curves corresponding to 
functions with increasing number of feature sizes. The curves are plotted in gray-scale, such that the darkest 
curve corresponds to five different feature sizes and the lightest curve corresponds to a single feature size. (e) 
The response of the cost function to increasing non-uniqueness. The dependent variable φ is generated as a 
linear function of x with an additional set of overlapping observations for which φ = 0 . (f) The D̂(σ ) curves 
corresponding to functions with increasing non-uniqueness. The curves are plotted in gray-scale denoting an 
increasing value of the non-uniqueness depth, d, from the lightest curve ( d = 0 ) to the darkest ( d = 90 ). In all 
examples, the dependent variables, φ , have been normalized to a [0, 1] range.
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corresponding to the ten functions with non-uniqueness. The first interesting observation is that the location 
of σpeak for all D̂(σ ) curves is almost identical. This is understandable, since the size of the main feature (the 
constant gradient) stays the same. The only reason for the increased area under the D̂(σ ) curves is the appear-
ance of additional peaks at length scales σ ≪ σpeak . Only in the case d = 0 (no overlap) the D̂(σ ) curve exhibits 
a single rise. As long as any overlapping observations are introduced, an additional area shows up under the 
D̂(σ ) curve at σ ≪ σpeak . This additional area is most pronounced for the largest non-uniqueness depth, d = 90.

Finally, it is instructive to discuss the scales, σ , at which we detect overlap in Fig. 3f. The highest rise in D̂(σ ) 
linked to non-uniqueness is happening at σ ≈ 5× 10−4 for all cases d > 0 . This exact value can be linked to 
the sample density for the ten toy functions with increasing overlap depth. For a normalized manifold, where 
x ∈ [0, 1] , the distance along the x-axis between data points in the unique region is σ ≈ 10−3 . The overlapping 
observations are located in-between every other unique observation, such that the distance along the x-axis 
between any observation from the unique region and its nearest overlapping observation is of the order of 10−4 . 
Thus, as the manifold is scanned with varying length scales, σ , once σ ≈ 10−4 , the variation in a dependent 
variable values is captured between a single point from the unique region ( φ → 1 ) and a single point from the 
overlapping region ( φ = 0 ). This creates a sudden increase in the captured variance and shows up as the peak at 
σ ≈ 5 · 10−4 in the D̂(σ ) curves in Fig. 3f. A more in-depth discussion of how scales of variation can be linked 
to data density on a manifold grid can be found in Ref.30.

Assessing data preprocessing strategies.  We now turn our attention to multivariate datasets and their 
lower-dimensional projections. Each dataset considered next is represented by a matrix X ∈ R

N×Q , where N 
is the number of observations and Q is the number of state variables. Since most often N ≫ Q , Q determines 
data dimensionality. We consider three disciplines that deal with datasets that are notoriously high dimen-
sional: plasma physics, reacting flows and atmospheric physics. For example, the state-space of a reacting flow 
is described by the temperature, pressure and chemical composition. There, the high state-space dimensionality 
originates from many chemical species involved that can easily reach the order of hundreds. In this and the fol-
lowing sections, we demonstrate a few practical applications of the proposed cost function using those datasets.

Reduced-order models leverage the fact that multivariate datasets can often be successfully re-parameterized 
by a reduced set of low-dimensional parameters. To date, numerous techniques have been employed for dimen-
sionality reduction of multivariate data. Those include linear techniques such as principal component analysis 
(PCA), independent component analysis (ICA), distance metric learning (DML) or linear discriminant analysis 
(LDA) and nonlinear techniques such as kernel PCA (KPCA), Isomap57,locally linear embedding (LLE) and its 
variants58 or autoencoders59. For the purpose of data visualization, t-distributed stochastic neighbor embedding 
(t-SNE)55 and uniform manifold approximation and projection (UMAP)60 are gaining popularity in various 
research disciplines7,36–38,61–64. A short summary of dimensionality reduction and manifold learning techniques 
explored in this work can be found in the “Methods” section.

Prior to applying dimensionality reduction, training datasets are often preprocessed. The most straightfor-
ward strategy is data normalization by centering and scaling each state variable. Other preprocessing approaches 
involve data sampling to mitigate imbalance in observation density, or feature selection. The effect of data 
preprocessing alone can have a large impact on the resulting low-dimensional manifold topology constructed 
from such data53,65. To demonstrate how significant those changes can be, Fig. 4a shows 2D PCA projections 
of a dataset describing argon plasma (N = 100,700, Q=36)66,67, where the state-space is spanned by the follow-
ing variables: temperature of heavy species, Th , temperature of electrons, Te , and 34 species mass fractions that 
contain 31 electronic states of argon, two levels of ionized argon, Ar and Ar+ , and electrons. The projections are 
generated with various scaling techniques applied on the dataset (see the “Methods” section for the summary of 
all scaling techniques used in this work). In the top row of Fig. 4a, the projections are colored by Te and in the 
bottom row by the electron mass fraction, Ye . Our visual analysis shows that preprocessing can affect manifold 
topologies significantly. Various topologies are expected to perform differently in reduced-order modeling due 
to changes in feature sizes or the level of non-uniqueness.

We quantitatively assess those changes and rank the preprocessing strategies in their capacity to generate 
quality manifold topologies. In Fig. 4b, we show costs, L , for the various 2D PCA projections visualized above, 
and for comparison, for the analogous 3D PCA projections (although not visualized). Here, L is computed as 
the L 1-norm over the individual costs for the relevant dependent variables: Th , Te , Ye and YAr . Thus, in Fig. 4a, 
the projections are colored by the two target dependent variables to allow us for making a visual connection 
between how the projection topologies look like versus how the cost function assesses a given projection. We 
note that VAST scaling results in the lowest cost for 2D projections. Looking at the corresponding visualization 
in Fig. 4a, we can see that Te and Ye values change relatively smoothly across the manifold, even though the 
VAST projection introduces the “spike” region, where many data observations are compressed. For comparison, 
projections resulting from the remaining scalings introduce relatively steep gradients and overlap for a few of 
them, in some region of the projection, either for the Te or the Ye variable. Finally, we note that costs drop across 
all scaling strategies explored when the PCA projection dimensionality is increased to 3D.

We additionally explore feature selection (otherwise known as variable subset selection) as another strategy 
in the data preprocessing pipeline. Feature selection involves finding a meaningful subset, XS ∈ R

N×S , of the 
original Q state variables ( S < Q ), and using this subset in data science or machine learning algorithms, instead 
of the full set of state variables68. This time, we use a reacting flow dataset describing combustion of syngas in 
air. In Fig. 4c, we show 3D PCA projections of an 11-dimensional dataset (N = 14,550, Q = 11), where the eleven 
dimensions are spanned by temperature, T, and ten mass fractions of chemical species, denoted Yi for species i. 
The different projections seen in Fig. 4c correspond to different preprocessing applied to the original combustion 
dataset. In the upper row, the 3D projections are generated with various scaling techniques applied on the training 
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dataset (see “Methods”). The bottom row shows 3D projections resulting from different scalings combined with 
feature selection applied to the original training data. All PCA projections are colored by the temperature. For the 
purpose of this demonstration, we use a newly developed feature selection algorithm that uses the cost function 
to guide the optimal selection of the variables from the original training data65. By minimizing the cost of the 
resulting data projection, we optimize the feature selection process from the point of view of manifold topology. 
The detailed description of the feature selection algorithm can be found in the “Methods” section. In Fig. 4d 
we show costs, L , tied to the two preprocessing strategies explored: just scaling the data (circles) versus scaling 
with feature selection (triangles). Here, L is computed as the L 1-norm over the individual costs for the relevant 
dependent variables: T, YH2 , YO2 , YH2O , YOH , YCO and YCO2 . The dependent variables were selected manually as 
the most important candidates in modeling. Black markers show costs corresponding to the 3D PCA projections 
visualized in Fig. 4c. For comparison, with gray markers we show costs for analogous 2D PCA projections. Three 
of these 2D projections corresponding to scaling only are visualized in Fig. 4e—the two worst projections (largest 
L ) and the best projection (smallest L ). We note that the worst 2D projection corresponding to �−1, 1� scaling 
is severely folded over itself which is likely the reason for the high cost. The Level projection also introduces 
significant non-uniqueness, with the low-temperature regions being represented over narrow geometry on a 
manifold. The best 2D projection corresponds to VAST scaling. As seen in Fig. 4e, this projection is much more 
unique compared to �−1, 1� or Level scaling 2D projections. However, there is a visible “twist” on the VAST 2D 
projection, which is untangled when a 3D projection is considered instead. This is a possible factor for a decreased 
cost between the 2D and the 3D PCA projection. The lowest costs for 3D projections happened for VAST (for 
scaling only) and Auto (for scaling with feature selection). The corresponding visualized projections are marked 
with thicker axes in Fig. 4c. These two projections are characterized by relatively well-spaced feature sizes and 
reduced non-uniqueness. Finally, similarly as we have observed for the argon plasma data, costs drop across all 
scaling strategies when the PCA projection dimensionality is increased from 2D to 3D.
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Figure 4.   Ranking of different training data preprocessing strategies in their capacity to produce quality 
low-dimensional projections using PCA. (a) 2D PCA projections generated from an argon plasma dataset. We 
show projections resulting from various scaling applied to the original data. In the top row, the projections are 
colored by the electron temperature, Te , and in the bottom row, by the electron mass fraction, Ye . (b) The overall 
cost, L , computed as the L 1-norm over the individual costs for the selected dependent variables: temperature 
of heavy species, Th , temperature of electrons, Te , electron mass fraction, Ye , and argon mass fraction, YAr . For 
comparison, costs are shown for 2D and 3D PCA projections. (c) 3D PCA projections generated from a reacting 
flow dataset describing combustion of syngas in air. We compare projections resulting from only scaling the data 
(top row) with projections resulting from scaling combined with feature selection (bottom row). All projections 
are colored by the temperature variable. (d) The overall cost, L , computed as the L 1-norm over the individual 
costs for the selected dependent variables: temperature and six important chemical species mass fractions. We 
compare costs corresponding to only scaling the data (circles) versus scaling with feature selection (triangles). 
We also compare costs corresponding to the 3D projections visualized above (black markers) with the analogous 
costs of 2D projections (gray markers). The optimal manifold topology corresponding to the lowest L for each 
preprocessing strategy is highlighted with thicker axes in (c). (e) Visualization of 2D projections corresponding 
to three selected cases of only scaling the original data: �−1, 1� and Level scaling (corresponding to the two 
highest L ) and VAST scaling (corresponding to the lowest L).
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Our analysis from Fig. 4 reveals that appropriate data preprocessing can help in generating a better quality 
low-dimensional manifold. In particular, optimized feature selection can be beneficial as it decreases costs over 
the relevant dependent variables with respect to costs associated with only scaling the data. With the many pos-
sible data preprocessing techniques encountered in the data science community, the cost function allows for 
quantitative rankings without the need to analyze manifold topologies manually. This, in turn, can help fine-tune 
data preprocessing to a given dataset and a desired manifold dimensionality.

Detecting large gradients on manifolds.  Using the proposed cost function, manifolds can be assessed 
with respect to different relevant dependent variables separately. If there is a good coverage of regions where the 
selected variables vary over the entire manifold, problematic regions on manifolds can be detected with greater 
reliability. Figure 5a demonstrates a 3D manifold embedded in a 9-dimensional state-space of a reacting flow 
dataset describing combustion of hydrogen in air (N = 13,468, Q = 9). The topology of this manifold is curved 
such that two regions where fuel and oxidizer originate from are brought closely together. This region is better 
visualized in the zoomed-in dashed box. When the manifold is colored by the hydrogen (fuel) mass fraction in 
Fig. 5a, we see a step-change in the φ = YH2 values over the considered region. This potentially undesired behav-
ior can be detected with the cost function as it increases the area under the D̂(σ ) curve at length scales smaller 
than σpeak . The cost associated with the hydrogen mass fraction is LH2 = 1.8 . For comparison, the temperature 
variable does not experience large variation within the considered region (Fig. 5b) and the cost associated with 
temperature is lower ( LT = 1.0 ). We observe a single peak in the D̂(σ ) profile corresponding to the temperature 
variable.

Regions where opposing physical phenomena meet over small length scales on a manifold (in this case fuel 
and oxidizer streams) can prove to be difficult to model accurately. For instance, some regression models are 
known to struggle in the presence of large gradients in dependent variable values25. Such problematic regions of 
compressed observations on manifolds can be detected by analyzing costs across several dependent variables. If 
there exists an important dependent variable that varies across the problematic region (such as the YH2 variable in 
Fig. 5a), it can help discard the problematic manifold topology. We note that the choice of the relevant dependent 
variables is important in assessing whether a given manifold topology is appropriate or not from the modeling 
perspective. Some variables, such as the temperature variable alone in the example shown in Fig. 5b, might not 
be effective at exposing regions of non-uniqueness in data projections, that can affect other relevant variables. 
We also note that the dependent variables for which the cost is computed can be arbitrary and do not have to be 
selected from the set of the original state variables as we have done here. They can equally be functions of the 
state variables. In reacting flow applications, these can for instance be the production rates of chemical species, 
related to the state-space through nonlinear Arrhenius expressions.

Manifold assessment across dimensionality.  We now demonstrate how the cost function applies to 
manifolds of arbitrary dimensionality. This can be useful in determining an appropriate dimensionality for rep-
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Figure 5.   Example 3D manifold in a reacting flow dataset describing combustion of hydrogen in air. (a) The 
manifold exhibits region (marked with the red dashed box) with a step-change in hydrogen (fuel) mass fraction 
values, YH2

 . (b) For comparison, the temperature variable, T, on the same manifold does not experience large 
variation within the considered region and the cost associated with the temperature variable is lower.
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resenting the variables of interest when using a reduction technique. The demonstration is first done using an 
experimental combustion dataset known as the Sandia flame D dataset69. This dataset contains approximately N 
= 57,000 observations each for temperature and various species mass fractions (Q = 10) over six different heights 
in a methane and air piloted jet flame. The experimental dataset also presents the opportunity to demonstrate 
the cost function behavior on manifolds containing noise. Figure 6a shows an example 2D PCA projection with 
Max scaling of the Sandia flame D data colored by temperature. This manifold is less structured than those seen 
in Figs. 4 and 5 for the numerically simulated data. With noisy data, such as seen from experiment, it can be 
difficult to visually assess the quality of manifold topologies, especially in higher dimensions. The proposed cost 
function should adequately assess such topologies since the D̂(σ ) curves remain smooth even for noisy data30.

Figure 6b demonstrates how the cost function behaves with increasing dimensionality of a projection using 
PCA, up to the original dimensionality of the system. The two opaque curves correspond to the scalings that 
resulted in the highest and lowest costs for the projected experimental data. Also included is the cost for the 
original ten-dimensional manifold. For the most part, we see a decrease in the cost with increasing dimensional-
ity. Increasing the dimensionality further after four dimensions appears to have negligible effects on the feature 
sizes of the optimizing variables since the cost function flattens out. At this point, the computational cost of 
adding dimensions to a model most likely outweighs any benefit seen from slight increases in feature sizes. Any 
differences between the various scalings also become less noticeable as dimensionality increases. We also see that 
rotating the manifold along new principal component axes, even without reducing dimensionality, can slightly 
reduce the cost compared to the original manifold. This is due to variance being measured along new coordinates. 
For comparison, in Fig. 6b we also include costs with increasing dimensionality for the Sandia flame F dataset 
(transparent curves), which is another experimental case that exhibits stronger effects of flow turbulence than 
flame D. As a result, flame F experiences conditions with local flame extinction, absent in the flame D dataset. 
Thus, flame F includes many more states of methane combustion than flame D and the manifold corresponding 
to flame F covers a wider range of attainable thermo-chemical states. For instance, for a specific stoichiometric 
condition, the flame can be either in an ignited or in an extinguished state. We thus expect an increased required 
manifold dimensionality for flame F to achieve the same parameterization quality as compared to flame D. This 
is indeed the case seen in Fig. 6b, where costs are generally higher for flame F than for flame D. The proposed 
cost function could be used in this way to determine an appropriate minimum dimensionality for the projection 
of data, with the goal of facilitating modeling of the optimizing variables70,71.

Manifold assessment across various dimensionality reduction and manifold learning tech‑
niques.  We now revisit a recent PCA-based reduction of a high-fidelity dataset obtained from delayed 
detached eddy simulation in atmospheric physics46. This data simulates the Cedval A1–5 wind tunnel measure-
ments of atmospheric dispersion of a pollutant in the vicinity of a rectangular building72. The numerical data 
that we use here represents a planar slice through the computational domain, perpendicular to the downstream 
wind direction. The dataset has N = 18,540, Q = 16 and the original state-space is composed of variables com-
mon to atmospheric physics applications, such as the three velocity components, pressure, Reynolds number, or 
the turbulent viscosity, kinetic energy and dissipation rate. All parameters in the data have been averaged over a 
3.5 s period. We use an outlier detection algorithm to remove outliers from the data (see "Methods"). The aim of 
the original study46 was to predict the turbulent Schmidt number, Sct , from the PCA-derived manifold param-
eters. This demonstrates an application where regression is the end goal for obtaining a data-driven correlation 
of a physical quantity with the manifold parameters, ηηη . We thus seek such regression function f that Sct ≈ f (ηηη) . 
While in the original work PCA was used to reduce the state-space dimensionality, here we benchmark three 
additional techniques: UMAP, Isomap and t-SNE. Following a similar methodology as demonstrated in Fig. 4, 
we first searched for the best scaling option for each reduction technique. In addition, we introduce three novel 
scaling methods inspired by the variable stability (VAST) scaling49. We denote them S1, S2 and S3 (see Table 1). 
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Figure 6.   Cost function applied to PCA projections of experimental Sandia flame data. (a) A 2D projection of 
flame D using PCA with Max scaling colored by temperature. (b) The overall cost, L , computed as the L 1-norm 
over the individual costs for selected dependent variables: temperature and six important chemical species mass 
fractions when using PCA for reduction between one and ten dimensions. The figure includes curves for using 
Max and 〈0, 1〉 scalings with PCA as well as the cost for the original ten-dimensional manifold.
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S1 scaling is an extension of VAST, where the effect of non-normality is considered by multiplying the standard 
deviation by the data kurtosis. S2 and S3 are variations of S1 obtained by replacing the mean value in the coef-
ficient of variation by the maximum and the range of each variable respectively. In Fig. 7a, we compare quali-
ties of 2D projections, corresponding to the best scaling, both visually and using our cost function. We report 
costs for the φ = Sct only, since that was the modeled dependent variable. An appropriate scaling allowed us, in 

Table 1.   Data scaling techniques used in this work.

Name Scaling factor dj Center cj
None 1 0

Auto51 sj X̄j

Pareto52 √
sj X̄j

VAST49 s2j /X̄j X̄j

Range51 max(Xj)−min(Xj) X̄j

〈0, 1〉 max(Xj)−min(Xj) min(Xj)

�−1, 1� 1/2(max(Xj)−min(Xj)) 1/2(max(Xj)+min(Xj))

Level51 X̄j X̄j

Max max(Xj) X̄j

Poisson50
√
X̄j X̄j

S1 s2j k
2
j /X̄j X̄j

S2 s2j k
2
j /max(Xj) X̄j

S3 s2j k
2
j /(max(Xj)−min(Xj)) X̄j

d

ba

e

c
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Figure 7.   Relating the cost function to nonlinear regression predictions based on various low-dimensional 
projections of the atmospheric pollutant dispersion data. The relevant dependent variable is the turbulent 
Schmidt number, φ = Sct . (a) 2D data projections using PCA, UMAP, Isomap and t-SNE with the cost for 
φ = Sct reported for each projection. (b) The D̂(σ ) curves corresponding to the 2D projections. (c) Ranking 
of different data scaling techniques using the cost function (black dots) with the mean absolute errors (MAE) 
for ANN prediction of Sct across all four projection techniques (blue diamonds) using 3D data projections. 
The minimum L and the minimum MAE for each technique is marked with a shaded outline. Scalings 
that generally exhibit lowest costs (VAST, S1, S2, S3) also result in the smallest MAE. (d) Example 3D PCA 
projections resulting from applying two scaling options to the original data: S1 and Pareto scaling. For this 
dataset, S1 scaling allowed for generating a manifold where the dependent variable of interest, Sct , has a smooth 
gradient across one of the manifold dimensions. Pareto scaling, exhibiting high cost, collapses most of the data 
observations onto a planar structure. (e) The D̂(σ ) curves corresponding to the 3D PCA projections with S1 
and Pareto scaling. (f–i) Scatter plots of L versus MAE from ANN and kernel regression predictions of Sct . 
We show predictions based on 600 different 2D PCA projections (f, g), and based on 600 different 2D t-SNE 
projections (h, i) as the independent manifold parameters. We test a few selected scaling techniques applied to 
the atmospheric dispersion data; legend applies to all figures (f–i).
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many cases, to find significantly better projections. For instance, the worst 2D PCA projection is associated with 
L = 5.2 , while the best (visualized) with L = 1.2 . Figure 7b shows the D̂(σ ) curves corresponding to the 2D 
projections visualized in Fig. 7a and to φ = Sct . The D̂(σ ) curves are mostly composed of a single rise, suggest-
ing that the non-uniqueness in the 2D projections has been remedied by selecting an appropriate data scaling.

Improved manifold topologies yield more accurate regression.  Nonlinear regression can be used 
in combination with dimensionality reduction to provide mapping functions, f, between the manifold param-
eters and physical quantities of interest. Regression can help discover robust relationships between manifold 
parameters and physical quantities that can then be injected in computational models and simulations18,44,46,73. 
Techniques, such as artificial neural networks (ANNs), Gaussian process regression (GPR) or kernel regression 
are commonly used in this context.

Below, we continue the example of the atmospheric dispersion dataset and demonstrate improvements in 
nonlinear regression performance when parameters of an improved manifold topology are used as regressors. We 
first train an ANN model to predict Sct based on 3D PCA, UMAP, Isomap and t-SNE projections resulting from 
different data scaling options. The details on the ANN model used here are provided in the "Methods" section. 
The scalings ranking for these 3D projections, along with the mean absolute errors (MAE) for Sct predictions 
using ANN are reported in Fig. 7c. We note that generally, the scalings which resulted in lowest costs (VAST, 
S1, S2 and S3) across all four reduction techniques exhibit lowest MAE. The minimum L and MAE for each 
technique is marked with a shaded outline. With the exception of t-SNE, the minimum L and the minimum 
MAE happened for the same scaling option.

The reason for a good ANN performance on those four scalings can be further understood by visualizing 
example projections. In Fig. 7d, we show 3D PCA projections of the atmospheric dispersion data, correspond-
ing to the best scaling option (S1 with L = 1.3 ) and the worst scaling option (Pareto with L = 4.2 ) as per the 
ranking shown in Fig. 7c. The quality of projections changes visibly with the change of data scaling. For the S1 
scaling projection, we observe a clear gradient of Sct throughout the manifold, while for the Pareto scaling case, 
the 3D projection introduced significant scatter in Sct values, with many observations compressed onto a nearly 
planar structure in the reduced 3D space. The latter projection thus introduces significant non-uniqueness in 
Sct values and is more difficult to accurately regress over. The difference in costs for the two 3D PCA projections 
from Fig. 7d can be further understood by looking at the comparison of D̂(σ ) curves in Fig. 7e. Pareto scaling 
case creates much more variance present at smaller length scales which is consistent with our visual inspection 
of the projection.

More generally, we observe correlation between the verdict given by L and the nonlinear regression perfor-
mance. In Fig. 7f–i, we show scatter plots of L versus MAE for varying manifold topologies obtained from the 
atmospheric dispersion dataset. Here, we focus on PCA and t-SNE as the two projection techniques. Each scatter 
plot takes into account six selected scaling techniques: Auto, Pareto, VAST, 〈0, 1〉 , Level and S1. For each scaling 
technique, we generate 100 distinct 2D projections through creating random variable subsets (feature selections) 
of the full dataset, before applying PCA or t-SNE. This allows us to have sufficiently many distinct manifold 
topologies (600 for each scatter plot) for a trend to emerge in Fig. 7f–i. In addition to ANN regression, we apply 
kernel regression of Sct to observe if the correlation between L and MAE is still present for a different nonlinear 
regression technique. The details on the kernel regression model used here are provided in the “Methods” section. 
Although the trends of L vs. MAE are different between ANN and kernel regression, the correlation measured 
with Spearman coefficient is high in each case. For ANN regression we observe 96% Spearman correlation for 
2D PCA and t-SNE projections. The correlation is lower for kernel regression as compared to ANN regression, 
with 90% and 93% Spearman coefficient for PCA and t-SNE respectively. In Fig. 7f–i, manifolds corresponding 
to Level scaling are clustered in the region of high L and high MAE. This result is consistent with Fig. 7c, where 
Level scaling is seen to yield high costs and high regression errors. Conversely, the region of smallest L and 
smallest MAE in Fig. 7f–i is occupied by topologies resulting from S1 scaling, although some random subsets can 
result in poorer manifold topologies even with S1 scaling. We observe similar correlation trends for 3D PCA and 
t-SNE projections; these are shown in the Supplementary material. With the regression hyper-parameters kept 
constant throughout this exercise, the results presented in Fig. 7f–i suggest that better regression performance 
can be achieved when manifold topologies are improved. The cost function can thus be used to find optimized 
regressors for nonlinear regression techniques such as ANN or kernel regression. Other regression techniques 
are expected to be similarly affected.

Detecting overlap between classes in categorical data.  So far, we have shown examples where the 
cost was computed using continuous dependent variables. Here, we briefly explore the cost function application 
to categorical data. The dependent variable, φ , can now be formed from numerical values of the class labels. Fig-
ure 8a shows in an illustrative way the capability of the D̂(σ ) metric to detect overlap between classes on a pro-
jection. The overlap between the two clouds of points, each representing one class, is reflected in an additional 
peak seen in the D̂(σ ) profile. When the clouds become sufficiently separated in space, D̂(σ ) exhibits a single 
rise. This behavior is then translated in the cost value, with the cost for the case with overlapping classes being 
greater. Next, we generate 2D projections of the MNIST handwritten digits dataset74 using PCA and t-SNE. The 
data observations are divided into ten classes, each representing one digit. We sample the full MNIST dataset 
by selecting only 1500 random samples from each class. The projections are visualized in Fig. 8b. The PCA pro-
jection introduces significant amount of overlap between classes and the cost associated with this projection is 
L = 4.4 . The cost for a much more unique t-SNE map, with clearly separated classes, is lower, L = 1.7 . Figure 8c 
additionally shows a comparison of the D̂(σ ) curves corresponding to the 2D PCA projection and the 2D t-SNE 
map, showing that the D̂(σ ) metric detected the significant class overlap in PCA. With some amount of scattered 
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observations still present in the t-SNE map, the D̂(σ ) is not composed of a single rise as was seen in the fully 
non-overlapping classes example in Fig. 8a. This behavior in D̂(σ ) can be exploited to inform the appropriate 
hyper-parameter tuning to improve t-SNE maps. In the Supplementary material, we further demonstrate the 
potential of the cost function to guide the selection of an important hyper-parameter of t-SNE called perplexity.

Discussion
Many factors can affect the quality of low-dimensional data parameterizations and there is a need to quantitatively 
assess those factors from the reduced-order modeling perspective. We propose a cost function that reduces the 
low-dimensional manifold topology to a single number. The two topological properties that the cost function pays 
attention to are uniqueness and feature sizes in relevant dependent variable(s). There are two main strengths of 
the proposed cost function. First, the manifold topology can be optimized for any target dimensionality. Second, 
the manifold topology can be optimized with respect to any user-selected dependent variables. Only the most 
important dependent variables need to be included in the manifold topology optimization. This can become 
particularly helpful in approaches where large state-spaces are compressed to a smaller number of parameters 
and regression is used to predict a physical quantity based on the compressed representation. Optimal manifolds 
can be found specifically from the perspective of the physical quantities of interest.

We demonstrate applications on numerically generated datasets and on experimental data containing noise. 
Our cost function can have useful applications in searching for the best data preprocessing strategies. This can 
include benchmarking existing strategies with newly invented ones. Often, those settings need to be tailored to a 
specific dataset and even to the target manifold dimensionality. In addition, various dimensionality reduction and 
manifold learning techniques can be assessed from the point of view of generating quality manifolds. A possible 
application might be to optimize the hyper-parameters to result in improved manifold topologies, especially for 
techniques such as t-SNE or UMAP which are known to strongly depend on hyper-parameter settings. While 
visual inspection of low-dimensional manifolds can be helpful, our cost function is a quantitative metric that can 
aid in qualitative assessments, especially when the manifold dimensionality exceeds 3D. Good quality of manifold 
topology is crucial when nonlinear regression is employed on manifolds. We show that improved projections can 
bring modeling benefits in regression tasks. We also briefly delineate possible applications of the cost function in 
dealing with categorical data where the cost function is computed from a dependent variable containing discrete 
values (class labels). For categorical data, the numerical values for the class labels and the distances between these 
values will affect the cost. Future work can investigate further the application to categorical data, especially for 
datasets where the number of classes becomes large or where classes exhibit a meaningful hierarchical structure, 
such as genomics or transcriptomics data. Future work can also include incorporating the cost function directly 
as an objective function in dimensionality reduction.

There remain some limitations of our proposed cost function. First, the computational cost for the normal-
ized variance derivative, D̂(σ ) , becomes high for large datasets. A potential solution to this restriction is to 
sample the dataset prior to computing the cost function. The Supplementary material sheds some light on how 
the cost function might respond to data sampling. Second, the current definition of the cost function cannot 
distinguish between the multiple scales of variation on a unique manifold and the non-uniqueness alone. This is 
due to the fact that the additional peaks in D̂(σ ) will show up in both scenarios, and both will increase the area 
under the D̂(σ ) curve. In our experience, however, the raise in D̂(σ ) due to non-uniqueness usually happens 
for σ ≪ σpeak , while the raise in D̂(σ ) due to varying feature sizes on an otherwise unique manifold happens 
at length scales closer σpeak (cf. Fig. 3d,f). The work in Ref.30 demonstrates how peak locations in D̂(σ ) due to 
non-uniqueness show a sensitivity to data sampling that peak locations due to unique features do not. Future 
work can consider incorporating information such as this into the cost function to better distinguish manifolds 
with non-uniqueness from those with small features. Finally, the resulting cost for a given manifold can only be 
interpreted in relation to cost(s) for other manifold(s). Thus, the cost function can help identify the best manifold 
among a set of manifolds, but, as of yet, no objective judgment can be made for a single cost value obtained for 
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Figure 8.   Using the cost function to detect overlap between classes in categorical data. (a) Toy dataset 
composed of two clouds. The first case emulates a projection where two classes overlap, while the second case 
presents good separation between classes. The cost associated with overlapping classes is higher. (b) 2D PCA 
projection and 2D t-SNE map of the MNIST handwritten digits dataset. With a significant overlap between 
classes seen in the PCA projection, the associated cost is higher than for the t-SNE map. (c) The D̂(σ ) curves 
corresponding to the 2D PCA projection and the 2D t-SNE map of the MNIST handwritten digits dataset.
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any one manifold. The same applies to cost associated with any one dependent variable on a single manifold—it 
should be interpreted in relation to costs for other dependent variables.

Nevertheless, we believe that this is a timely contribution that can help researchers across various disciplines 
and across numerous applications where low-dimensional data projections play an important role. Although 
we focused the demonstrations in this paper to four main datasets (argon plasma, reacting flows, atmospheric 
pollutant dispersion and categorical data), the cost function proposed can have broad applications in virtually 
any domain of science. We particularly look forward to exploring other applications, for instance on biologi-
cal or medical data. We argue that further improvements in parameterization quality can be achieved in many 
areas of research if the low-dimensional parameter space is thoroughly explored and then assessed using the 
proposed cost function.

Methods
Data normalization.  Prior to applying dimensionality reduction, datasets are often normalized. This can 
be especially beneficial if the dataset is composed of variables that have very different numerical ranges. Given a 
dataset composed of Q variables, X = [X1,X2, . . . ,XQ] , we normalize each variable Xj by subtracting its center, 
cj , and dividing it by the scaling factor, dj . In a matrix form, we can write the normalized dataset, X̃ , as:

where C ∈ R
N×Q is a matrix of centers with the jth column of that matrix populated with a value cj and D ∈ R

Q×Q 
is a diagonal matrix of scales with the jth element on the diagonal equal to dj . In this work, we adopt several data 
scaling criteria collected in Table 1, where sj is the standard deviation and kj is the kurtosis of Xj . Techniques 
S1–S3 are newly introduced scaling techniques that we explore in this work. Throughout the main text, we refer to 
a particular scaling by its name as per Table 1. The name “None” is equivalent to no scaling applied to the dataset.

Outlier removal.  For the atmospheric pollutant dispersion dataset, we perform outlier detection and 
removal using the principal component classifier method53,75. Outliers are detected based on major and minor 
principal components (PCs). The observation i is classified as an outlier if the first PC classifier based on the q 
first (major) PCs:

or if the second PC classifier based on the (Q − k + 1) last (minor) PCs:

where zij is the (i, j)th element from the PCA-transformed data matrix and Lj is the jth eigenvalue from PCA. 
Major PCs are selected such that the total variance explained is 50% (this determines the number q). Minor PCs 
are selected such that the remaining variance they explain is 20% (this determines the number k). PCA is per-
formed with Auto scaling. Coefficients c1 and c2 are found such that they represent the quantile of the empirical 
distributions of the first and second PC classifier respectively. Here, we set the quantile to 98%, which allowed 
to find 509 outlying observations out of 18,540 total observations.

Dimensionality reduction.  A linear projection of a dataset onto a basis defined by A ∈ R
Q×q can be per-

formed as:

where ηηη = [η1, η2, . . . , ηq] defines the q-dimensional manifold parameters. In PCA, which is frequently used in 
this work, the basis matrix A is computed as the eigenvectors of a data covariance matrix. In the equation above, 
we assume that the dataset, X , has already been appropriately preprocessed. The summary of linear and nonlinear 
dimensionality reduction techniques explored in this work is given in Table 2. For results reproducibility, random 
seed of 100 is used in all techniques that rely on randomness.

PCA.  We use the PCA implementation from the PCAfold Python package77 developed by the authors.

LDA.  We use the LDA implementation from the scikit-learn library. For the swiss roll dataset example, all 
parameters are set to default.

DML.  We use the the DML implementation from the pyDML Python package76. For the swiss roll dataset 
example, all parameters are set to default.

MDS.  We use the MDS implementation from the scikit-learn library. For the swiss roll dataset example, all 
parameters are set to default.

(1)X̃ = (X − C)D−1,

(2)
q∑

j=1

z2ij

Lj
> c1

(3)
Q∑

j=k

z2ij

Lj
> c2,

(4)ηηη = XA,
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LLE, H‑LLE, LTSA.  We use the LLE implementation from the scikit-learn library. For the swiss roll dataset 
example, all parameters are set to default, except the number of neighbors is set to 12. This applies to LLE, H-LLE 
and LTSA.

Isomap.  We use the Isomap implementation from the scikit-learn library. For the swiss roll dataset example, 
all parameters are set to default.

t‑SNE.  We use the t-SNE implementation from the scikit-learn library. For the atmospheric pollutant disper-
sion dataset, all hyper-parameters are set to default, except the initialization which is set to PCA initialization. 
For the MNIST dataset and the swiss roll dataset example, all parameters are set to default.

UMAP.  We use the UMAP implementation from the umap-learn library60. For the atmospheric pollutant 
dispersion dataset, all hyper-parameters are set to default, except the number of neighbors is set to 12. For the 
swiss roll dataset example, all parameters are set to default.

SE.  We use the SE implementation from the scikit-learn library. For the swiss roll dataset example, all param-
eters are set to default, except the number of neighbors is set to 12.

Autoencoder.  We use the Keras Python library to set up the autoencoder for the swiss roll dataset example. 
For results reproducibility, random seed of 100 is used in TensorFlow (tf.random.set_seed(100)). The 
model architecture is 3-2-3 with hyperbolic tangent activations in all layers. The network weights are initialized 
from the Glorot uniform distribution and the biases are initially set to zeros. We use batch size of 50 and 200 
epochs. The Adam optimizer is used with the learning rate 0.001 and the loss function is the mean squared error. 
We train the autoencoder model on 80% of the data.

The proposed cost function.  The starting point for formulating our cost function is computing the nor-
malized variance proposed by Armstrong and Sutherland30. The goal is to assess the low-dimensional param-
eterization quality defined by q manifold parameters, ηηη ∈ R

N×q , obtained using any dimensionality reduction 
or manifold learning technique. For length scales on a manifold given by the parameter σ ∈ �σmin, σmax� , the 
normalized variance, N (σ ) , is computed for the ith dependent variable, φi , as:

where N is the number of observations in a dataset, φ̄i is an arithmetic average of φi , and Ki is computed as a 
weighted average of observations of φi:

where the weights, wj , are determined using a Gaussian kernel:

(5)Ni(σ ) =

∑N
k=1(φk,i −Ki(ηk , σ))

2

∑N
k=1(φk,i − φ̄i)2

,

(6)Ki(η, σ) =

∑N
j=1 wjφj,i
∑N

j=1 wj

,

Table 2.   Dimensionality reduction and manifold learning techniques used in this work. In the last column, 
we list the most important hyper-parameters of each method. The cost function can help fine-tune the hyper-
parameters to achieve quality manifold topologies.

Technique Type Most important hyper-parameters

Principal component analysis (PCA) Linear None

Linear discriminant analysis (LDA) Linear None

Distance metric learning (DML) Linear Number of neighbors, distance metric

Multidimensional scaling (MDS) Nonlinear Distance metric

Locally linear embedding (LLE)58 Nonlinear Number of neighbors

Hessian locally linear embedding (H-LLE) Nonlinear Number of neighbors

Local tangent space alignment (LTSA) Nonlinear Number of neighbors

Isomap57 Nonlinear Distance metric

t-Distributed stochastic neighbor embedding (t-SNE)55 Nonlinear Initialization, perplexity, learning rate, early exaggeration

Uniform manifold approximation and projection 
(UMAP)60 Nonlinear Initialization, number of neighbors, distance metric

Spectral embedding (SE) Nonlinear Number of neighbors

Autoencoders (AE)59 Linear/nonlinear Network architecture, activation function(s), learning rate
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In Eq. (7), the quantity ||ηj − η||22 is the squared Euclidean distance between the current location on a manifold, 
η , and any jth point on a manifold, ηj . We then construct the normalized variance derivative function as per30:

and normalize it by its maximum value:

The basis for the cost function proposed in this work is integration of the penalized normalized variance deriva-
tive function, D̂(σ ) , over length scales given by σ . For the ith dependent variable, φi , the area under the D̂i(σ ) 
curve can be computed as:

where the tilde denotes a log10-transformed quantity (e.g. σ̃ = log10 σ ). We compute the area in the log10-space 
of the length scales σ so that all scales of variation with different orders of magnitude are treated equally. We 
further introduce two penalties when computing the area: 

1.	 Penalty for peak locations relative to the rightmost peak, σpeak . This favors large feature sizes on a manifold 
over small ones.

2.	 Penalty for the area under D̂(σ ) happening at σ < σpeak , and especially for σ ≪ σpeak . This penalizes multiple 
scales of variation that might show up as additional peaks in D̂(σ ) and becomes particularly useful when 
these additional peaks can be linked to non-uniqueness.

The cost function proposed herein takes these two penalties into account and is defined for φi as:

where Pi(σ , σpeak,i) is the penalty function defined as:

The first term in Pi penalizes non-zero values in D̂i(σ ) at length scales σ < σpeak . It will especially amplify any 
area under the D̂i(σ ) curve happening for σ ≪ σpeak . By increasing the power, the user can increase the amount 
of penalty for the variance occurring at σ ≪ σpeak . The second term in Pi introduces a gentle penalty for the 
location of the rightmost peak and essentially increases or decreases the entire penalty function by a constant 
value. This second term acts to reward larger feature sizes as those should be easier to model. The parameter b is 
another hyper-parameter which controls the amount of the constant vertical shift of the entire penalty function. 
By increasing b, the user can increase the amount of penalty for the rightmost peak location, σpeak . Throughout 
this work, we use r = 1 and b = 1 . For completeness, in the next section, we illustrate the effect of setting r and 
b to values other than unity.

Python implementation of N (σ ) , D̂(σ ) and the proposed cost function, L , has been developed by the authors 
and is available in the PCAfold software package77. In practice, numeric integration of D̂(σ ) is performed using 
a composite trapezoid rule. The peak values in D̂(σ ) are computed using the scipy.find_peaks function, 
which finds all local maxima by comparing the neighborhood of all discrete values of D̂(σ ) . The value for σpeak 
is taken as the rightmost peak found by scipy.find_peaks, but the user can also select a percentage, p, of 
the value σpeak (such that the true rightmost peak becomes p(σmax − σpeak) ). Our recommended range for the 
parameter σ is �10−7; 103� , with logarithmically-spaced in-between values. For instance, throughout this work we 
typically set sigma = numpy.logspace(-7, 3, 200). Throughout this work, the manifold parameters 
ηηη are scaled to a unit box (each ηi is scaled to a [0, 1] range) before computing the cost. This is done so that the 
length scale, σ , has the same meaning in each manifold dimension.

Effect of hyper‑parameters r and b on the cost function.  The hyper-parameters r and b from Eq. (12) 
may be changed to emphasize penalties applied to non-uniqueness and/or small feature sizes when computing 
overall costs. Figure 9 illustrates the effect of setting r and b to non-unity values. In Fig. 9a–c, we utilize the toy 
functions from Fig. 3 and show how L behaves for various r and b. For clearer analysis, whenever r is varied, 
b is set to unity, and vice versa. For comparison, with the red dashed lines, we mark costs corresponding to 
r = 1 and b = 1 . In principle, increasing b increases L more severely for manifolds where a dependent variable 
exhibits small feature sizes (see Fig. 9a). Conversely, increasing r for unique manifolds does not affect the L val-
ues significantly. As can be understood from Fig. 9c, increasing r increases L more severely for manifolds with 

(7)wj = exp

(
−||ηj − η||22

σ 2

)
.

(8)Di(σ ) =
dNi(σ )

d log10(σ )
+ lim

σ→0
Ni(σ )

(9)D̂i(σ ) =
Di(σ )

max(Di(σ ))
.

(10)Ai =

∫ σ̃max,i

σ̃min,i

D̂i(σ )dσ̃ ,

(11)Li =

∫ σ̃max,i

σ̃min,i

Pi(σ , σpeak,i) · D̂i(σ )dσ̃ ,

(12)Pi(σ , σpeak,i) =
∣∣σ̃ − σ̃peak,i

∣∣r + b ·
σ̃max,i − σ̃min,i

σ̃peak,i − σ̃min,i
.



15

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14496  | https://doi.org/10.1038/s41598-022-18655-1

www.nature.com/scientificreports/

non-uniqueness. Even if non-uniqueness is present on a manifold with a fixed largest feature size, changing b 
does not affect the L values significantly. For a unique manifold with multiple feature sizes, increasing r or b can 
increase L by a similar amount (Fig. 9b). Due to the blending of multiple scales of variation in the D̂(σ ) profile 
seen in Fig. 3d, we have also applied a p = 70% shift in σpeak in Fig. 9b, as per discussion in the previous section. 
In Fig. 9a–c, the overall trend of the cost function is preserved when changing r and b.

We further test the impact of r and b on the verdict given by the cost function across various dimensionality 
reduction and manifold learning techniques. We use the classic 3D swiss roll dataset and generate various 2D 
projections. The original 3D topology of this dataset can be seen in Fig. 9d, colored by a dependent variable, 
φ . The cost corresponding to the parameterization in the original 3D space is L = 0.98 with r = 1 and b = 1 . 
Figure 9e shows twelve different 2D projections of that dataset generated with various linear and nonlinear 
techniques. The cost value, L , is reported for each projection taking r = 1 and b = 1 . Among all the reduction 
techniques selected for this demonstration, PCA and a linear autoencoder (AE) introduce the most significant 
non-uniqueness. The costs for AE and PCA projections are the highest, while SE, LDA and UMAP show the 
lowest costs. The small cost for SE, LDA or UMAP projections (comparable to the cost in the original 3D space) 
is likely due to a combination of two factors: projection uniqueness and large feature sizes created through suf-
ficient separation of distinct φ values in space. Figure 9f shows the D̂(σ ) curves for the original 3D data (red 
dashed lines) and for the 2D projections, in groups of four. The location of σpeak is shifted to the right for the SE 
and UMAP projections with respect to the original 3D data parameters. A similar observation holds for LLE, 
H-LLE, LTSA and Isomap projections. This can be due to a relatively large distance between the smallest and 
the largest φ values on these projections. In the original 3D space, the high and low values of φ are relatively 
close to each other due to manifold curvature. In Fig. 9g,h, we show the effect on the cost function evaluations 
of the various swiss roll data projections when changing the hyper-parameters r and b. In Fig. 9g, costs increase 
with increasing r only for the PCA and AE projections. This is understandable, since those are the only projec-
tions with significant levels of non-uniqueness. Increasing the hyper-parameter r thus increasingly amplifies 
the “secondary” rise seen in the D̂(σ ) profile at σ < σpeak for PCA and AE. Interestingly, this behavior with r 
can potentially be used to detect manifolds with non-uniqueness among a set of parameterizations. In Fig. 9h, 

e f2D projectionsd

a b c

g h

Figure 9.   Illustrative demonstration of the effect of changing the cost function’s hyper-parameters, r and 
b. (a–c) Costs corresponding to toy functions from Fig. 3 when setting r and b to non-unity values. (d) The 
original 3D swiss roll dataset with the cost reported for the original 3D parameterization using r = 1 and b = 1 . 
(e) 2D swiss roll dataset projections with the resulting costs using r = 1 and b = 1 . (f) Comparison of the D̂(σ ) 
curves between generated 2D swiss roll dataset projections. The D̂(σ ) curve for the original 3D parameters is 
shown with the red dashed line for reference. (g) Costs for the 3D swiss roll data parameters and its various 2D 
projections with b set fixed to unity, and with changing r. (h) Costs for the 3D swiss roll data parameters and 
its various 2D projections with r set fixed to unity, and with changing b. With the circular outlines in (g,h), we 
mark the lowest costs for any of the 2D projections which consistently happens for the SE manifold, irrespective 
of the values selected for r and b.
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increasing b increases costs for all parameterizations (3D and 2D). Costs increase more rapidly for PCA and AE 
projections than for any other explored projection (note the logarithmic scale of the vertical axis). This is also 
due to emphasizing the “secondary” rise seen in the D̂(σ ) profile when computing the penalized area, but this 
time through increasing the vertical shift of the entire penalty function. With the circled outlines in Fig. 9g,h, we 
mark the lowest cost that happened for any of the 2D projections across the explored values of r and b. Among 
the r and b values explored, the smallest cost consistently happens for the SE projection. We also note that the 
ratio between L for the worst projection (AE) and L for the best projection (SE) is generally higher when r is set 
above unity than when b is set above unity. Thus, increasing r above unity can help create clearer separations in 
L values when ranking manifolds with varying levels of non-uniqueness.

On the computational impact of evaluating the cost function.  We note that the computational 
time required to compute L for a dataset with N observations and for m dependent variables scales as O(mN2) , 
assuming the same number of discrete values of σ . The code for computing the cost function, that we provide 
in the PCAfold library, is parallelized with respect to σ , since the normalized variance computations are entirely 
independent of one another for different values of σ . Thus, our code can be readily ran on multiple CPUs, which 
we generally recommend for N > 105 . In the Supplementary material, we show the effect of data sampling on 
the cost function. We note, that while subsampling the data can ease the computational cost of L , it has an 
enhanced effect on dependent variables which exhibit variation at multiple scales (e.g. from non-uniqueness). 
A possible future implementation that could reduce the computational time of evaluating Eq. (6) is to approxi-
mate the weighted average with a sum over points within/near the currently considered length scale, σ . This 
implementation can make the computational time scale approximately as O(mN) for small σ and only scale as 
O(mN2) as σ encompasses all points on a manifold.

There is a second aspect to the question of the computational cost, that is more elusive to quantify, and that is 
the time required for the researcher to find a good manifold topology through trial and error exploration, if no 
quantitative tools were applied to guide the choice of a manifold. We argue that this second aspect can become a 
bottleneck in effective application of reduced-order models. In this regard, one may find that our cost function 
allows for “quick” assessments of projections resulting from a range of dimensionality reduction and manifold 
learning techniques, as well as a variety of data preprocessing strategies applied to the training data. Moreover, 
since L can be implemented in optimization tasks, it is likely that an optimum in manifold topologies is found 
in an automated way, compared to a trial and error approach.

L‑informed feature selection.  We developed a feature selection algorithm that iteratively eliminates state 
variables from the dataset based on minimizing the cost, L , of PCA projections65. There are three inputs to the 
algorithm: the original dataset, X ∈ R

N×Q , the target dependent variables, φφφ ∈ R
N×m , and the target manifold 

dimensionality, q. The pseudocode below shows in closer detail how the algorithm computes the optimized 
subset of the original state variables. At each iteration i, the algorithm computes PCA projections resulting from 
removing each variable, one at a time. At the end of the iteration, the variable whose removal decreased the cost 
value the most is discarded from the dataset. At the next iteration, the process repeats, but now on a dataset with 
one less variable. We only allow Q − q iterations so that we never reduce original data dimensionality below q 
requested by the user. Once all iterations have finished, the algorithm looks back at final costs from all iterations 
and returns the optimized subset, XS , corresponding to the iteration that showed the minimum cost value. Such 
subset should then generate an optimized manifold topology. The algorithm is available in the PCAfold software 
package77.

Nonlinear regression using artificial neural networks (ANNs).  In the atmospheric pollutant dis-
persion example, we use nonlinear regression using ANNs. We use the Keras Python library to set up the 
ANN regression. For results reproducibility, random seed of 100 is used in TensorFlow (tf.random.set_
seed(100)). The inputs of the network are the three manifold parameters, ηηη = [η1, η2, η3] , either from PCA, 
UMAP, Isomap or t-SNE. The output is the turbulent Schmidt number, φ = Sct . The model architecture is 2-5-
5-1 for 2D projections and 3-5-5-1 for 3D projections with sigmoid activations in all layers except the output 
layer, where we use linear activation. The network weights are initialized from the Glorot uniform distribution 
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and the biases are initially set to zeros. We use batch size of 100, validation split of 0.2 and 500 epochs. The 
Adam optimizer is used with the learning rate 0.001 and the loss function is the mean squared error. We train 
the regression model on 80% of the data and measure the MAE on the remaining 20% test data not seen by the 
ANN model. The results reported in Fig. 7 are for the 20% test data.

Nonlinear regression using kernel regression.  In the atmospheric pollutant dispersion example, we 
use kernel regression from the PCAfold software package77. We use the Nadaraya-Watson estimator with a 
Gaussian kernel with a varying bandwidth. The bandwidth is determined locally based on 50 nearest neighbors 
of the query point. We train the regression model on 80% of the data and measure the MAE on the remaining 
20% test data not seen by the kernel regression model. The results reported in Fig. 7 are for the 20% test data.

Reacting flow data generation.  The reacting flow datasets for combustion of syngas in air and hydrogen 
in air were generated using Spitfire Python package78 available at: github.com/sandialabs/Spitfire. 
The datasets were generated using a steady laminar flamelet model for a range of dissipation rates from chemical 
equilibrium to extinction and a range of mixture fractions between 0 and 1. For the syngas/air dataset, the fuel 
stream is composed of a mixture of carbon monoxide and hydrogen in 10:1 molar proportion79. The oxidizer 
stream is air. Both streams have initial temperature 300 K and pressure 101,325 Pa. For the hydrogen/air dataset, 
the fuel stream is composed of hydrogen and the oxidizer stream is air80. Both streams have initial temperature 
300 K and pressure 101,325 Pa. For both fuels, the mixture fraction grid is denser closer to the stoichiometric 
conditions.

Data availability
The datasets generated during or analyzed during the current study are available in the GitHub repository: https://​
github.​com/​kamil​azdyb​al/​cost-​funct​ion-​manif​old-​asses​sment. The atmospheric pollutant dispersion dataset46 
and the argon plasma dataset66,67 are property of Université libre de Bruxelles. The Sandia flames data69 can be 
accessed at: tnfworkshop.org/data-archives/pilotedjet/ch4-air.

Code availability
The code used during the current study is publicly available in the GitHub repository: https://​github.​com/​kamil​
azdyb​al/​cost-​funct​ion-​manif​old-​asses​sment.

Received: 2 May 2022; Accepted: 17 August 2022

References
	 1.	 Noack, B. R., Afanasiev, K., Morzyński, M., Tadmor, G. & Thiele, F. A hierarchy of low-dimensional models for the transient and 

post-transient cylinder wake. J. Fluid Mech. 497, 335–363 (2003).
	 2.	 Singer, A., Erban, R., Kevrekidis, I. G. & Coifman, R. R. Detecting intrinsic slow variables in stochastic dynamical systems by 

anisotropic diffusion maps. Proc. Natl. Acad. Sci. 106(38), 16090–16095 (2009).
	 3.	 Lusch, B., Kutz, J. N. & Brunton, S. L. Deep learning for universal linear embeddings of nonlinear dynamics. Nat. Commun. 9(1), 

1–10 (2018).
	 4.	 Raissi, M., Perdikaris, P. & Karniadakis, G. E. Physics-informed neural networks: A deep learning framework for solving forward 

and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019).
	 5.	 Mendez, M. A., Balabane, M. & Buchlin, J.-M. Multi-scale proper orthogonal decomposition of complex fluid flows. J. Fluid Mech. 

870, 988–1036 (2019).
	 6.	 Farooq, H., Saeed, A., Akhtar, I. & Bangash, Z. Neural network-based model reduction of hydrodynamics forces on an airfoil. 

Fluids 6(9), 332 (2021).
	 7.	 Willett, F. R., Avansino, D. T., Hochberg, L. R., Henderson, J. M. & Shenoy, K. V. High-performance brain-to-text communication 

via handwriting. Nature 593(7858), 249–254 (2021).
	 8.	 Martens, C. et al. Voxelwise principal component analysis of dynamic [S-methyl-11C] methionine PET data in glioma patients. 

Cancers 13(10), 2342 (2021).
	 9.	 Maas, U. & Pope, S. B. Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space. Combust. Flame 

88(3), 239–264 (1992).
	10.	 Holmes, P. J., Lumley, J. L., Berkooz, G., Mattingly, J. C. & Wittenberg, R. W. Low-dimensional models of coherent structures in 

turbulence. Phys. Rep. 287(4), 337–384 (1997).
	11.	 Lowe, R. & Tomlin, A. Low-dimensional manifolds and reduced chemical models for tropospheric chemistry simulations. Atmos. 

Environ. 34(15), 2425–2436 (2000).
	12.	 Tomlin, A. S., Whitehouse, L., Lowe, R. & Pilling, M. J. Low-dimensional manifolds in tropospheric chemical systems. Faraday 

Discuss. 120, 125–146 (2002).
	13.	 Yang, Y., Pope, S. B. & Chen, J. H. Empirical low-dimensional manifolds in composition space. Combust. Flame 160(10), 1967–1980 

(2013).
	14.	 Mendez, M. A., Scelzo, M. T. & Buchlin, J.-M. Multiscale modal analysis of an oscillating impinging gas jet. Exp. Therm. Fluid Sci. 

91, 256–276 (2018).
	15.	 Shine, J. M. et al. Human cognition involves the dynamic integration of neural activity and neuromodulatory systems. Nat. Neurosci. 

22(2), 289–296 (2019).
	16.	 Verma, A. & Engelhardt, B. E. A robust nonlinear low-dimensional manifold for single cell RNA-seq data. BMC Bioinform. 21(1), 

1–15 (2020).
	17.	 Brunton, S. L., Noack, B. R. & Koumoutsakos, P. Machine learning for fluid mechanics. Annu. Rev. Fluid Mech. 52, 477–508 (2020).
	18.	 Nieh, E. H. et al. Geometry of abstract learned knowledge in the hippocampus. Nature 595(7865), 80–84 (2021).
	19.	 Recanatesi, S. et al. Predictive learning as a network mechanism for extracting low-dimensional latent space representations. Nat. 

Commun. 12(1), 1–13 (2021).
	20.	 Iyer, K. K. et al. Focal neural perturbations reshape low-dimensional trajectories of brain activity supporting cognitive performance. 

Nat. Commun. 13(1), 1–8 (2022).

https://github.com/kamilazdybal/cost-function-manifold-assessment
https://github.com/kamilazdybal/cost-function-manifold-assessment
https://github.com/kamilazdybal/cost-function-manifold-assessment
https://github.com/kamilazdybal/cost-function-manifold-assessment


18

Vol:.(1234567890)

Scientific Reports |        (2022) 12:14496  | https://doi.org/10.1038/s41598-022-18655-1

www.nature.com/scientificreports/

	21.	 Noack, B. R. & Eckelmann, H. A low-dimensional Galerkin method for the three-dimensional flow around a circular cylinder. 
Phys. Fluids 6(1), 124–143 (1994).

	22.	 Sutherland, J. C. & Parente, A. Combustion modeling using principal component analysis. Proc. Combust. Inst. 32(1), 1563–1570 
(2009).

	23.	 Callaham, J. L., Koch, J. V., Brunton, B. W., Kutz, J. N. & Brunton, S. L. Learning dominant physical processes with data-driven 
balance models. Nat. Commun. 12(1), 1–10 (2021).

	24.	 Cenedese, M., Axås, J., Bäuerlein, B., Avila, K. & Haller, G. Data-driven modeling and prediction of non-linearizable dynamics 
via spectral submanifolds. Nat. Commun. 13, 1–13 (2022).

	25.	 Zhang, Y. et al. Large eddy simulation of spray combustion using flamelet generated manifolds combined with artificial neural 
networks. Energy AI 2, 100021 (2020).

	26.	 Lee, J. A. & Verleysen, M. Quality assessment of dimensionality reduction: Rank-based criteria. Neurocomputing 72(7–9), 1431–
1443 (2009).

	27.	 Venna, J., Peltonen, J., Nybo, K., Aidos, H., Kaski, S. Information retrieval perspective to nonlinear dimensionality reduction for 
data visualization. J. Mach. Learn. Res. 11(2) (2010).

	28.	 Zhang, P., Ren, Y. & Zhang, B. A new embedding quality assessment method for manifold learning. Neurocomputing 97, 251–266 
(2012).

	29.	 Mokbel, B., Lueks, W., Gisbrecht, A. & Hammer, B. Visualizing the quality of dimensionality reduction. Neurocomputing 112, 
109–123 (2013).

	30.	 Armstrong, E. & Sutherland, J. C. A technique for characterising feature size and quality of manifolds. Combust. Theory Modell. 
25, 1–23 (2021).

	31.	 Amir, E. D. et al. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. 
Nat. Biotechnol. 31(6), 545–552 (2013).

	32.	 Belkina, A. C. et al. Automated optimized parameters for t-distributed stochastic neighbor embedding improve visualization and 
analysis of large datasets. Nat. Commun. 10(1), 1–12 (2019).

	33.	 Moon, K. R. et al. Visualizing structure and transitions in high-dimensional biological data. Nat. Biotechnol. 37(12), 1482–1492 
(2019).

	34.	 Kobak, D. & Berens, P. The art of using t-SNE for single-cell transcriptomics. Nat. Commun. 10(1), 1–14 (2019).
	35.	 Kobak, D. & Linderman, G. C. Initialization is critical for preserving global data structure in both t-SNE and UMAP. Nat. Biotech-

nol. 39(2), 156–157 (2021).
	36.	 Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37(1), 38–44 (2019).
	37.	 Szubert, B., Cole, J. E., Monaco, C. & Drozdov, I. Structure-preserving visualisation of high dimensional single-cell datasets. Sci. 

Rep. 9(1), 1–10 (2019).
	38.	 Dorrity, M. W., Saunders, L. M., Queitsch, C., Fields, S. & Trapnell, C. Dimensionality reduction by UMAP to visualize physical 

and genetic interactions. Nat. Commun. 11(1), 1–6 (2020).
	39.	 Cohen, U., Chung, S. Y., Lee, D. D. & Sompolinsky, H. Separability and geometry of object manifolds in deep neural networks. 

Nat. Commun. 11(1), 1–13 (2020).
	40.	 Shine, J. M. et al. The low-dimensional neural architecture of cognitive complexity is related to activity in medial thalamic nuclei. 

Neuron 104(5), 849–855 (2019).
	41.	 Chaudhuri, R., Gerçek, B., Pandey, B., Peyrache, A. & Fiete, I. The intrinsic attractor manifold and population dynamics of a 

canonical cognitive circuit across waking and sleep. Nat. Neurosci. 22(9), 1512–1520 (2019).
	42.	 Ju, H. & Bassett, D. S. Dynamic representations in networked neural systems. Nat. Neurosci. 23(8), 908–917 (2020).
	43.	 Nilsson, J., Sha, F., Jordan, M. I. Regression on manifolds using kernel dimension reduction. In Proceedings of the 24th International 

Conference on Machine learning 697–704 (2007).
	44.	 Malik, M. R., Isaac, B. J., Coussement, A., Smith, P. J. & Parente, A. Principal component analysis coupled with nonlinear regression 

for chemistry reduction. Combust. Flame 187, 30–41 (2018).
	45.	 Dalakoti, D. K., Wehrfritz, A., Savard, B., Day, M. S., Bell, J. B., & Hawkes, E. R. An a priori evaluation of a principal component and 

artificial neural network based combustion model in diesel engine conditions. In Proceedings of the Combustion Institute (2020).
	46.	 Longo, R., Bellemans, A., Derudi, M. & Parente, A. A multi-fidelity framework for the estimation of the turbulent Schmidt number 

in the simulation of atmospheric dispersion. Build. Environ. 185, 107066 (2020).
	47.	 Malpica Galassi, R., Ciottoli, P. P., Valorani, M. & Im, H. G. Local combustion regime identification using machine learning. 

Combust. Theory Modell. 26, 1–17 (2021).
	48.	 Dominique, J., Van den Berghe, J., Schram, C. & Mendez, M. A. Artificial neural networks modeling of wall pressure spectra 

beneath turbulent boundary layers. Phys. Fluids 34(3), 035119 (2022).
	49.	 Keun, H. C. et al. Improved analysis of multivariate data by variable stability scaling: Application to NMR-based metabolic profil-

ing. Anal. Chim. Acta 490(1–2), 265–276 (2003).
	50.	 Keenan, M. R. & Kotula, P. G. Accounting for poisson noise in the multivariate analysis of ToF-SIMS spectrum images. Surf. 

Interface Anal. Int. J. Devoted Dev. Appl. Tech. Anal. Surf. Interfaces Thin Films 36(3), 203–212 (2004).
	51.	 van den Berg, R. A., Hoefsloot, H. C. J., Westerhuis, J. A., Smilde, A. K. & van der Werf, M. J. Centering, scaling, and transforma-

tions: Improving the biological information content of metabolomics data. BMC Genom. 7(1), 1–15 (2006).
	52.	 Noda, I. Scaling techniques to enhance two-dimensional correlation spectra. J. Mol. Struct. 883–884, 216–227 (2008) (Progress 

in two-dimensional correlation spectroscopy).
	53.	 Parente, A. & Sutherland, J. C. Principal component analysis of turbulent combustion data: Data pre-processing and manifold 

sensitivity. Combust. Flame 160(2), 340–350 (2013).
	54.	 Frénay, B., Doquire, G. & Verleysen, M. Is mutual information adequate for feature selection in regression?. Neural Netw. 48, 1–7 

(2013).
	55.	 Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11) (2008).
	56.	 Karniadakis, G. E. et al. Physics-informed machine learning. Nat. Rev. Phys. 3(6), 422–440 (2021).
	57.	 Tenenbaum, J. B., de Silva, V. & Langford, J. C. A global geometric framework for nonlinear dimensionality reduction. Science 

290(5500), 2319–2323 (2000).
	58.	 Roweis, S. T. & Saul, L. K. Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000).
	59.	 Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by back-propagating errors. Nature 323(6088), 533–536 

(1986).
	60.	 McInnes, L., Healy, J., & Melville, J. UMAP: Uniform manifold approximation and projection for dimension reduction. arXiv 

preprintarXiv:​1802.​03426 (2018).
	61.	 Wattenberg, M., Viégas, F. & Johnson, I. How to use t-SNE effectively. Distill 1, e2 (2016).
	62.	 Fooladgar, E. & Duwig, C. A new post-processing technique for analyzing high-dimensional combustion data. Combust. Flame 

191, 226–238 (2018).
	63.	 Grollemund, V. et al. Development and validation of a 1-year survival prognosis estimation model for Amyotrophic Lateral Sclerosis 

using manifold learning algorithm UMAP. Sci. Rep. 10(1), 1–12 (2020).
	64.	 Gundogdu, P., Loucera, C., Alamo-Alvarez, I., Dopazo, J. & Nepomuceno, I. Integrating pathway knowledge with deep neural 

networks to reduce the dimensionality in single-cell RNA-seq data. BioData Mining 15(1), 1–21 (2022).

http://arxiv.org/abs/1802.03426


19

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14496  | https://doi.org/10.1038/s41598-022-18655-1

www.nature.com/scientificreports/

	65.	 Zdybał, K., Sutherland, J. C., & Parente, A. Manifold-informed state vector subset for reduced-order modeling. In Proceedings of 
the Combustion Institute 39 (2022).

	66.	 Bellemans, A., Munafo, A., Magin, T. E., Degrez, G. & Parente, A. Reduction of a collisional-radiative mechanism for argon plasma 
based on principal component analysis. Phys. Plasmas 22(6), 062108 (2015).

	67.	 Bellemans, A., Magin, T., Coussement, A. & Parente, A. Reduced-order kinetic plasma models using principal component analysis: 
Model formulation and manifold sensitivity. Phys. Rev. Fluids 2(7), 073201 (2017).

	68.	 Hastie, T., Tibshirani, R., & Friedman, J. H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, vol. 2. 
(Springer, 2009).

	69.	 Barlow, R. S. & Frank, J. H. Effects of turbulence on species mass fractions in methane/air jet flames. In Symposium (International) 
on Combustion, vol. 27(1), 1087–1095 (1998).

	70.	 Ihme, M., Shunn, L. & Zhang, J. Regularization of reaction progress variable for application to flamelet-based combustion models. 
J. Comput. Phys. 231(23), 7715–7721 (2012).

	71.	 Pope, S. B. Small scales, many species and the manifold challenges of turbulent combustion. Proc. Combust. Inst. 34(1), 1–31 (2013).
	72.	 CEDVAL at Hamburg University Compilation of Experimental Data for Validation of Microscale Dispersion Models. Website 

provided by the environmental wind tunnel laboratory (EWTL) of the meteorological institute (2021).
	73.	 Duraisamy, K., Iaccarino, G. & Xiao, H. Turbulence modeling in the age of data. Annu. Rev. Fluid Mech. 51, 357–377 (2019).
	74.	 Deng, L. The MNIST database of handwritten digit images for machine learning research. IEEE Signal Process. Mag. 29(6), 141–142 

(2012).
	75.	 Shyu, M. L., Chen, S. C., Sarinnapakorn, K., & Chang, L. W. A novel anomaly detection scheme based on principal component 

classifier. Technical report, Miami Univ Coral Gables Fl Dept of Electrical and Computer Engineering (2003).
	76.	 Suárez, J. L., García, S. & Herrera, F. pyDML: A Python library for distance metric learning. J. Mach. Learn. Res. 21(96), 1–7 (2020).
	77.	 Zdybał, K., Armstrong, E., Parente, A. & Sutherland, J. C. PCAfold: Python software to generate, analyze and improve PCA-derived 

low-dimensional manifolds. SoftwareX 12, 100630 (2020).
	78.	 Hansen, M. A., Armstrong, E., Sutherland, J. C., McConnell, J., Hewson, J. C. & Knaus, R. (Spitfire, 2020).
	79.	 Hawkes, E. R., Sankaran, R., Sutherland, J. C. & Chen, J. H. Scalar mixing in direct numerical simulations of temporally evolving 

plane jet flames with skeletal CO/H2 kinetics. Proc. Combust. Inst. 31(1), 1633–1640 (2007).
	80.	 Burke, M. P., Chaos, M., Ju, Y., Dryer, F. L. & Klippenstein, S. J. Comprehensive H2/O2 kinetic model for high-pressure combus-

tion. Int. J. Chem. Kinet. 44(7), 444–474 (2012).

Acknowledgements
The authors would like to thank Miguel A. Mendez for valuable discussions. K.Z. acknowledges the support of 
F.R.S.-FNRS. E.A. acknowledges the support of Sandia National Laboratories. Sandia National Laboratories is a 
multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, 
LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National 
Nuclear Security Administration under contract DE-NA0003525. Aspects of this material are based upon work 
supported by the National Science Foundation under Grant No. 1953350. This project has received funding 
from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation 
program under grant agreement no. 714605.

Author contributions
K.Z., E.A. and J.C.S. conceptualized the initial ideas; K.Z., E.A., J.C.S., and A.P. designed the research; K.Z. and 
E.A. developed the code, performed simulations, analyzed the results and wrote the first draft of the manuscript; 
K.Z., E.A., J.C.S. and A.P. reviewed and edited the manuscript; J.C.S. and A.P. supervised the work.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​022-​18655-1.

Correspondence and requests for materials should be addressed to K.Z., J.C.S. or A.P.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

https://doi.org/10.1038/s41598-022-18655-1
https://doi.org/10.1038/s41598-022-18655-1
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Cost function for low-dimensional manifold topology assessment
	Results
	Cost function formulation. 
	Cost function response to feature size and non-uniqueness. 
	Assessing data preprocessing strategies. 
	Detecting large gradients on manifolds. 
	Manifold assessment across dimensionality. 
	Manifold assessment across various dimensionality reduction and manifold learning techniques. 
	Improved manifold topologies yield more accurate regression. 
	Detecting overlap between classes in categorical data. 

	Discussion
	Methods
	Data normalization. 
	Outlier removal. 
	Dimensionality reduction. 
	PCA. 
	LDA. 
	DML. 
	MDS. 
	LLE, H-LLE, LTSA. 
	Isomap. 
	t-SNE. 
	UMAP. 
	SE. 
	Autoencoder. 
	The proposed cost function. 
	Effect of hyper-parameters r and b on the cost function. 
	On the computational impact of evaluating the cost function. 
	-informed feature selection. 
	Nonlinear regression using artificial neural networks (ANNs). 
	Nonlinear regression using kernel regression. 
	Reacting flow data generation. 

	References
	Acknowledgements


