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Introduction
A-kinase anchor protein 12 (AKAP12) is a scaffold protein 
that interacts with several key signaling molecules, including 
protein kinase C, protein kinase A, protein phosphatase 2B, 
calmodulin, cyclins, F-actin, lipids, and Src, and is involved in 
various intracellular and extracellular processes.1 The AKAP12 
plays a crucial role in the central nervous system,2 widely 
expressed in the gray and white matter of the brain and spinal 
cord,2-4 predominantly in pericytes and endothelial cells but 
also astrocytes, oligodendrocytes, and neurons.2,5-7 In addi-
tion, AKAP12 has been reported to be involved in angiogen-
esis,8,9 and AKAP12 is essential for the formation of the 
blood-brain barrier (BBB).10 We have found that AKAP12 
expression increases in endothelial cells after ischemic stress, 
and its deficiency leads to increased endothelial permeability 
through the disruption of tight junction proteins.6 In addi-
tion, AKAP12 in pericytes regulates the secretion of several 
trophic factors to support oligodendrocyte differentiation in 

adult white matter, and its deficiency results in cognitive 
impairments.5 As AKAP12 is more abundant in the corpus 
callosum than in the cortex and its expression gradually 
decreases with age,7 AKAP12 may be involved in neurological 
diseases, such as stroke and vascular dementia. However, the 
effects of AKAP12 deficiency in the corpus callosum remain 
largely unknown. Therefore, in this study, we investigated how 
AKAP12 deficiency affects the transcriptome of the mouse 
corpus callosum using middle-aged wild-type (WT) and 
AKAP12 knockout (KO) mice, considering that aging is a 
major risk factor for neurological diseases.

Methods
Animals, Tissue Sampling, and RNA Extraction

All experimental procedures followed the National Institutes 
of Health (NIH) guidelines and were approved by the 
Massachusetts General Hospital Institutional Animal Care 
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and Use Committee. The AKAP12 KO mouse line (C57BL/6J 
background)11 was provided from the Gelman Lab at Roswell 
Park Comprehensive Cancer Center and was maintained/
expanded in the animal facility at Massachusetts General 
Hospital. All mice were housed in a specific pathogen-free 
with a 12-hour light/dark cycle and had unrestricted access to 
food and water. For genotyping, we used the forward primer  
5 ’ -CGGCTGGGTGTGGCGGACCGCTATCAG 
GACATAGCG-3’ and the reverse primer 5’-CTCAGCCTT 
TGCCAGAATAGGCACTGCCCC-3’ to detect the KO 
allele and used the forward primer 5’-CGCTGTACTAC 
TAAGGAGAGTGTTACGC-3’ and the reverse primer 5’- 
CCTC-CTGGGTCTCAGCCAGTTTCTCAGGGG-3’  
to detect the WT allele. Only male mice were used in this study 
to avoid potential confounding effects of hormonal changes 
during the estrous cycle in females, especially given our limited 
sample size. Sample sizes were determined based on our previ-
ous experience and experimental feasibility.

After euthanasia, 8-month to 10-month-old male AKAP12 
KO mice (n = 4) and WT mice (n = 3) were perfused with pre-
chilled phosphate-buffered saline (PBS) (RNase-free). 
Collecting of the corpus callosum from the brains was as 

previously described.12 All sample collection was conducted 3 
to 5 hours after the onset of the light cycle. For RNA isolation, 
we used QIAzol (QIAGEN, Venlo, The Netherlands, #79306) 
according to the manufacturer’s instructions.

RNA-sequencing and Bioinformatics Analysis

The library using the RNA samples was prepared using an 
rRNA depletion technique, and RNA-sequencing (RNA-seq) 
was performed on Illumina HiSeq4000 (paired-end; 2 × 
150 bp), carried out by Genewiz, Inc (South Plainfield, New 
Jersey). The FASTQ files were mapped with STAR (version: 
2.7.10a; mm10) and quantified using RSEM (version: 1.3.3). R 
(version 4.3.1) with packages such as DESeq2 (version 1.42.0) 
was used to detect differential expression genes (DEGs), |log-
2fold change (FC)| > 0.58, adjusted P-value (padj) < .05, mean 
base >10, using normalized counts, and transcripts per kilo-
base million (TPM) values for plotting.

Results and Discussion
Corpus callosum samples from AKAP12 KO mice and WT 
mice were collected as previously described,12 and RNA-seq 

Figure 1. Sample collection of the corpus callosum from AKAP12 KO mice: (A) Schematic representation illustrating the collection of the corpus callosum 

in wild-type (WT) and AKAP12 KO mice. The isolated RNA was processed for RNA-seq. (B) Violin plots representing the expression of oligodendrocyte 

markers (Mbp and Mobp) and cortical neuron markers (Reln for layer I, Rasgrf2 for layer II/III, Pou3f2 for layer II-V, and Foxp2 for layer IV). (C) Bar plot 

showing the Akap12 gene expression in WT and AKAP12 KO mice. Error bars indicate SEM.
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was performed (Figure 1A). We checked for oligodendrocyte 
markers (Figure 1B), and higher expression of oligodendrocyte 
markers indicated corpus callosum purity. We also confirmed 
an 82.3% decrease in Akap12 expression in AKAP12 KO mice 
(Figure 1C).

Next, we examined the effects of AKAP12 KO on gene 
expression in the corpus callosum by detecting DEGs. The 
effect of AKAP deficiency was minimal, and a total of 13 genes 
were identified as DEGs (Figure 2A to C). These DEGs, ie, 13 
downregulated genes compared with WT, were Akap12 

(log2FC = −2.38, padj = 4.8425E-19), Sgk1 (log2FC = −1.89, 
padj = 9.8321E-03), Nfkbia (log2FC = −1.25, padj = 3.2707E-
04), Hspa1a (log2FC = −1.23, padj = 2.7872E-04), Plekhf1 
(log2FC = −1.10, padj = 3.2636E-04), Arrdc2 (log2FC = −1.09, 
padj = 2.7872E-04), Gm19439 (log2FC = −1.03, padj = 3.0945E-
04), Ddit4 (log2FC = −0.93, padj = 5.9829E-05), Arl4d 
(log2FC = −0.85, padj = 9.5153E-03), Klf2 (log2FC = −0.78, 
padj = 1.1247E-02), Arid5b (log2FC = −0.77, padj = 3.2636E-
04), Fzd7 (log2FC = −0.74, padj = 1.8457E-02), and Klf15 
(log2FC = −0.69, padj = 2.2603E-02) (Figure 2B and C). The 

Figure 2. Transcriptome profiling of the corpus callosum in AKAP12 KO mice: (A) Volcano plot illustrating DEGs (a total of 13 genes) between WT and 

AKAP12 KO mice, |log2fold change (FC)| > 0.58, adjusted P-value (padj) < .05, mean base >10. (B) Bar plot showing fold changes of the DEGs in AKAP12 

KO mice compared with WT mice. (C) Bar plots (with dot plots) comparing gene expression between WT and AKAP12 KO mice (For Akap12, see Figure 

1C). Error bars indicate SEM.
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limited number of DEGs may be explained by the expression 
pattern of AKAP12 in the corpus callosum; it is expressed in 
only a small subset of cells (eg, vascular cells, some oligoden-
drocyte lineage cells), whereas most cells in this region (oligo-
dendrocytes) express very little AKAP12. This cellular 
composition, combined with our bulk RNA-seq approach, 
likely diluted cell-specific changes. Therefore, future studies 
using single-cell analysis of the corpus callosum may reveal 
more pronounced transcriptional changes and provide addi-
tional insight into cell type-specific effects of AKAP12 defi-
ciency. In addition, the small number of DEGs may indicate 
the importance of further proteomics and post-translational 
modification studies for in-depth insights. Furthermore, as 
AKAP12 expression gradually decreases with age,7 the use of 
relatively older mice in this study may have influenced our 
findings of the limited number of DEGs. Therefore, future 
studies using younger mice may help to fully understand the 
impact of AKAP12 deficiency and determine whether 
AKAP12 deficiency affects the transcriptome profile more 
strongly in younger brains. Notably, all identified DEGs were 

downregulated in AKAP12 KO mice. This trend could be 
attributed to the role of AKAP12 as a signaling scaffold pro-
tein, possibly acting as an upstream regulator of these genes. 
However, it should also be noted that AKAP12 has been sug-
gested to suppress hypoxia-inducible factor 1-alpha (HIF-1α) 
transactivation and vascular endothelial growth factor (VEGF) 
expression.2 Therefore, under hypoxic conditions, AKAP12 
deficiency may lead to upregulation of HIF-1/VEGF-related 
genes, highlighting the need for future comparative studies 
using disease-specific mouse models, such as ischemic stroke.

We further examined the identified DEGs in more detail 
using the public single-cell analysis data.13 Akap12 is predomi-
nantly expressed in vascular cells such as endothelial cells, vas-
cular smooth muscle cells (VSMCs), and pericytes (Figure 
3A), suggesting that its deficiency could cause changes in these 
cells. Indeed, when we examined the cell-specific expression of 
the identified DEGs in the public single-cell analysis data, 
genes such as Sgk1, Nfkbia, Hspa1a, Arl4d, Ddit4, and Klf2, 
were found to be highly expressed in these vascular cells (Figure 
3B). Krüppel-like factor 2 (KLF2), a transcription factor, plays 
an important role in endothelial cells.14 The KLF2 regulates 
the tightness of the BBB by upregulating tight junction pro-
teins and has been reported to be a neuroprotective factor in 
the ischemic stroke model.15 In addition, serum/glucocorti-
coid-regulated kinase 1 (SGK1) contributes to the mechanism 
of angiogenesis in endothelial cells16 and provides neuroprotec-
tion in the stroke model.17 These reports may implicate these 
genes in the increased endothelial permeability observed in 
AKAP12 deficiency.6 Notably, SGK1 is also expressed in oli-
godendrocyte lineage cells (Figure 3B) and has been reported 
to increase in the corpus callosum under acute stress.18 
Considering the cell-cell trophic coupling in the oligovascular 
niche,19 the reduction of SGK1 by AKAP12 deficiency may 
affect the interactions between OPCs and vascular cells and 
their respective roles. Indeed, Arrdc2, a gene predominantly 
expressed in oligodendrocytes (Figure 3B), was also downregu-
lated in AKAP12 KO mice (Figure 2A to C). This underscores 
the need to further investigate how AKAP12 deficiency affects 
vascular and oligodendrocyte function in the cerebral white 
matter.

In summary, this study provides an additional resource to 
study the function of AKAP12 in the corpus callosum. 
Although the transcriptome changes in the corpus callosum 
are limited in AKAP12 KO mice, our findings are somewhat 
consistent with previous reports showing white matter dys-
function in AKAP12 KO mice.5 As AKAP12 expression 
would increase after pathological conditions, such as stroke,6 
future studies are warranted to investigate the roles and mecha-
nisms of AKAP12 in neurological disorders.
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Figure 3. Cell-type distribution of Akap12 and DEGs in AKAP12 KO 

mice: (A) Classification of Akap12 using public single-cell RNA-seq 

data.13 (B) Classification of DEGs (Gm19439 was not registered in this 

database) using public single-cell RNA-seq data13 (for detailed 

explanations of cell type abbreviations used in this figure, please refer to 

Ximerakis et al.13).
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