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Projecting an ultra-strongly-
coupled system in a non-energy-
eigenbasis with a driven nonlinear 
resonator
Suguru Endo1*, Yuichiro Matsuzaki2, Kosuke Kakuyanagi3, Shiro Saito3, Neill Lambert1 & 
Franco Nori1,4

We explore the problem of projecting the ground-state of an ultra-strong-coupled circuit-QED system 
into a non-energy-eigenstate. As a measurement apparatus we consider a nonlinear driven resonator. 
We find that the post-measurement state of the nonlinear resonator exhibits a large correlation with 
the post-measurement state of the ultra-strongly coupled system even when the coupling between 
measurement device and system is much smaller than the energy scales of the system itself. While 
the projection is imperfect, we argue that because of the strong nonlinear response of the resonator it 
works in a practical regime where a linear measurement apparatus would fail.

A quantum measurement typically projects the quantum state of a system into an eigenstate of a measured 
observable Â. In quantum measurement theory, the measurement apparatus interacts with the target system due 
to an interaction Hamiltonian = ⊗ˆ ˆ ˆH JA BI , where B̂ denotes an operator of the apparatus and J denotes a cou-
pling strength1,2. After allowing the system and apparatus to interact for some time, they become strongly corre-
lated. A subsequent measurement on the apparatus itself implements the desired projection of the target system, 
and the readout of the apparatus is associated with the eigenvalues of the system observable Â. The relationship 
between the operator Â and the natural Hamiltonian describing the system is typically important. For example, 
to realize a quantum non-demolition (QND) measurement, a minimal condition is that the observable Â should 
commute with the target system Hamiltonian2–6.

Alternatively, as a means of control, in addition to measurement, it is interesting to consider strongly 
non-QND measurements7–9. Surprisingly, such non-energy-eigenbasis projective measurements are sometimes 
not straightforward. Ideally, if the system observable Â to be measured does not commute with the system 
Hamiltonian, Â must have matrix elements to induce transitions between the energy eigenstates. Importantly, 
however, if the coupling strength J is much smaller than the energy-level separation of the system, such transition 
matrix elements disappear under a rotating-wave approximation10 (see Appendix A for details), and we cannot 
project the system into the eigenbasis of Â; the system remains only minimally perturbed by the measurement 
apparatus, and as such stays in its energy eigenbasis.

On the other hand, in the ideal case, if the coupling between the system and apparatus is much larger than the 
system energy, one can perform a projective measurement much faster than the typical time scale of the system, 
hence realizing the desired non-energy eigenbasis measurements11–13. However, if these energy scales are compa-
rable, the dynamics, and the subsequent quantum measurement process, become much more complicated than 
the cases described above. Understanding the interaction between the apparatus and system, and their dynam-
ics, is important not only for explaining the mechanism of quantum projective measurements away from ideal 
parameter regimes, but also to achieve a higher level of control over quantum systems.

The ultra-strong coupling (USC) regime between atoms and light14,15 is especially attractive and practical 
areas in which to explore the possibility of non-energy eigenbasis measurements. This is because the ground 
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state of this system exhibits non-trivial entanglement between the atom and photons, and virtual excitations, 
which are difficult to probe with energy eigenbasis measurements alone. If one cannot dynamically control the 
coupling strength between light and matter due to experimental limitations, being able to measure and control 
the non-eigenstate structure of such systems would allow one to more carefully validate the properties of the sys-
tem, choose between competing models of the same physical phenomena16, and manipulate them for quantum 
information purposes.

In addition, when the coupling strength between light and matter becomes extremely strong (also known as 
ultra-strong coupling (USC) limit), so that it is comparable with the cavity resonance frequency, it is predicted 
that a new ground state will emerge17–35. Such a regime was recently experimentally demonstrated36–38, and has 
the potential to be realized in a large variety of devices14,15, including hybrid systems with artificial enhancement 
of coupling and collective effects39–47. Interestingly, non-eigenbasis measurements on a ground state of a system 
in the USC regime could potentially be used to induce an optical cat state, which is itself a resource for quantum 
information processing22,23.

Given such potential benefits, and open problems to be solved, this ultra-strongly-coupled system is attractive 
as an example with which to investigate the problem of non-energy eigenbasis measurements. Although there are 
several previous works studying how to detect virtual-excitations in the ground state in an ultra-strongly-coupled 
system17,19–21,25,48,49, here we focus only on how to perform non-energy eigenbasis measurements on the ground 
state of such a system. This would allow us, for example, to gain some information of the weights of the different 
components in the ground-state, as well as projecting the system into superspositions of eigenstates.

In this paper, we specifically analyze the full dynamics of an ultra-strongly coupled system interacting with a 
nonlinear measurement apparatus, in the above described situation (where the measured system observable does 
not commute with the system Hamiltonian). We evaluate the dynamics of the measurement apparatus during 
the interaction period, the back-action of the measurements on the system, and the correlations that build up 
between the system and the apparatus.

Such properties are typically studied when one tries to examine in detail a quantum measurement process50–53. 
Although there exist theoretical proposals to use a detector that continuously monitors the system12, here we con-
sider a binary-outcome measurement performed on the measurement apparatus after the measurement apparatus 
and system have been allowed to interact. Such a binary-outcome measurement is understood to induce a strong 
correlation with the system54,55.

While linear resonators are used as a standard method for quantum measurement in cavity quantum elec-
trodynamics and circuit quantum electrodynamics, in some cases a nonlinearity has been employed to improve 
qubit readout4–6,54,56,57. Due to the bifurcation effect, the state of the nonlinear resonator becomes highly sensitive 
to the state of the system, which enables one to implement a high-visibility readout.

Here, full numerical modelling and a low-energy approximation allow us to understand how a driven non-
linear resonator interacting with the ultra-strongly-coupled system operates, albeit with limited fidelity, in a 
regime where one might expect it not to work at all. This is surprising because, although the coupling between 
the nonlinear measurement device and the ultra-strongly-coupled system is weak compared to system energy 
scales, we find that, on reasonable time-scales, a strong correlation between them builds up, leading to a partial 
non-energy-eigenbasis projection of the USC system. We find that such a non-trivial strong correlation comes 
from the AC Stark effect induced by the driven nonlinear resonator.

To understand better this build up of correlations, we evaluate how quantum correlations, such as entangle-
ment and quantum discord, are generated between system and measurement device during their interaction 
period. These additional results reveal the conditions neccessary for a non-energy eigenbasis measurement to be 
realized with this system.

The remainder of this paper is organized as follows. First, we introduce the USC system and its ground state. 
Second, we discuss the nature of interaction between the nonlinear resonator and the USC system, and we intro-
duce a coarse-graining measurement of the nonlinear resonator itself. Third, we present numerical results to 
show how a strong correlation arises, even in a parameter regime where the coupling strength may be incorrectly 
considered to be negligible. A two-level approximation of the USC system allows us to understand how to gain 
information on the ground-state structure, what it means for the USC system to project onto superpositions of 
eigenstates, and the relationship between the measurement process and the AC-stark effect.

Ultra-strong Coupling Between Light and Matter
The Hamiltonian of light in a single-mode cavity ultra-strongly coupled to matter (where the matter is well 
described by a two-level system) is, in its simplest form, given by the Rabi model58

ω
σ σ ω= + + +ˆ ˆ ˆ ˆ ˆ ˆ ˆ† †H g a a a a

2
( ) ,x zRabi

q
r

where â (ˆ†a ) is an annihilation (creation) operator for the single-mode cavity/resonator, ωq (ωr) denotes the qubit 
(resonator) frequency, and g  is the coupling strength between resonator (light) and qubit (matter).

Recall that, when the matter is in the form of a superconducting flux qubit, as in the recent ultra-strong cou-
pling experiments in36–38, σ = | 〉〈 | − | 〉〈 |ˆ L L R Rz  is diagonal in the persistent-current basis of L and R of the super-
conducting flux qubit. Here, we assumed that the flux qubit is operated at the symmetric point.

Throughout this paper we assume that the qubit frequency is much smaller than the resonator frequency, 
allowing us later to use an adiabatic approximation. In this case, in the limit ω → 0q , we can approximately write 
the ground state of this system as17
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where α ω= g/ r is the ratio of the coupling strength g  and resonator energy ωr. As an example, using parameters 
close to those used in36, we plot the Q function of the reduced density matrix of | 〉g  where the atom is traced out in 
Fig. 1. The definition of the Q function for a state ρ̂ is β β ρ β= 〈 | | 〉

π
ˆQ( ) 1 , where β| 〉 is a coherent state for a complex 

number β. We plot the real part of β in the x axis while we plot the imaginary part of β in the y axis.
In this regime, it is straightforward to understand that spectroscopic measurements can excite transitions 

between eigenstates, and give information on the energy-level structure. However, it is difficult to, for example, 
probe the relative weights of the | 〉L  and | 〉R  states in the ground-state, or project the entire system into a state 
which is not in the eigenbasis, because the energy scales of the system are so large compared with the coupling 
strength between the nonlinear resonator and the flux qubit.

Using a Nonlinear Resonator As a Measurement Device
Here, as a measurement apparatus, we consider a driven nonlinear resonator whose energy depends on the state 
of the qubit. It is well understood that a nonlinear resonator can exhibit bistability50,52,59–61, which makes such 
a device sensitive to small changes in external fields. In addition, the nonlinearity induces a rapid change in 
the photon number under driving50, compared to the linear case. When used as a measurement device, the fast 
evolution and the sensitivity of the steady-state to weak fields result in a strong and fast correlation of the non-
linear resonator state with the qubit being measured, potentially giving a means to implement a rapid projective 
measurement. One should note that, typically, the state of the nonlinear resonator is itself measured by standard 
homodyne techniques58, and this measurement provides the information about the qubit state.

It is worth mentioning that there are some theoretical proposals11 to treat such a measurement device as a 
two level system when the measurement outcomes are binary. However, since such a simplification cannot easily 
quantify the strength of the correlation between the target qubit and measurement apparatus during the measure-
ment process, we now model the measurement apparatus with a proper Hamiltonian as we will describe below.

The total system, composed of the ultra-strongly-coupled light-matter system, and the nonlinear resonator 
measurement device, can be described by the Hamiltonian in the laboratory frame17,20,21,50,52,60,61

δ ω χ ω

σ

= + +
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where b̂ is the annihilation operator of the nonlinear system, δ denotes the detuning between the nonlinear reso-
nator energy and driving frequency, χ is the nonlinearity strength, f  denotes the driving strength of the nonlinear 
resonator, and ωd is the driving frequency of the nonlinear resonator. In addition, J  is the coupling between the 
qubit and the nonlinear resonator, which is not derived from the dispersive approximation to a dipole coupling, 
but is intrinsic (see Appendix B for details.). Depending on the state of the qubit, the frequency of the nonlinear 
resonator changes. We set the parameters of the system such that when the qubit is in | 〉L , the nonlinear resonator 
experiences the bifurcation effect to generate the high amplitude state. On the other hand, when the state is in | 〉R , 
the state of the nonlinear resonator stays in the low amplitude state.

Figure 1.  The Q function β ρ β π〈 | | 〉ˆ /  of the reduced density matrix ρ̂ of the cavity in the ground state | 〉G , where 
β = +X iP. Here ω π= × .2 0 299 GHzq , π= × .g 2 4 920 GHz, ω π= × .2 6 336 GHzr .
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It is possible to activate the effective interaction between the measurement apparatus and ultra-strongly cou-
pled system by starting driving the nonlinear resonator, because the vacuum state of the nonlinear resonator 
without driving makes the effective interaction negligible. In the rotating frame defined by   

ω= −ˆ ˆ ˆ†
U t i tb b( ) exp[ ]drot , and by applying the rotating-wave approximation, we have

δ χ

σ

= + +

= − − +
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In order to include the loss of photons from the nonlinear resonator, we adopt the following Lindblad master 
equation, valid when the coupling between nonlinear resonator and its environment is weak, and when the cou-
pling J between the nonlinear resonator and the qubit is weak50,52,60,61

ρ ρ κ ρ ρ ρ= − + − −ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † †d
dt

i H b b b b b b[ , ]
2

(2 ), (2)tot

where κ denotes the photon leakage rate from the nonlinear cavity. The potential losses from the ultra-strongly 
coupled system are described later.

Coarse-graining of the measurement outcome.  After the qubit and the measurement apparatus have 
been allowed to interact for some time (see Fig. 2), we need to perform a measurement on the measurement 
apparatus itself. Ideally, one could apply a projection operator = | 〉〈 |P̂ x xx  on the nonlinear resonator, where | 〉x  is 
an eigenvector of the quadrature operator = +ˆ ˆ ˆ†

x b b( )/2. However, due to imperfections in the measurement 
setup, one cannot resolve arbitrarily small differences in the state of the resonator. Normally, to describe more 
realistically the measurement process, one takes this into account by considering the integrated signal-to-noise62, 
where the noise can include contributions from vacuum fluctuations and noise in the measurement apparatus 
itself. Here, instead we employ a “coarse graining” approximation described by the following operator with 
Gaussian noise

ˆ ⟩⟨∫π σ σ
= ′ 


−

′ − 

| ′ ′|

−∞

∞
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2
exp ( )

4
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2

2

where σ is the width of the error of the measurement process, and the post-measurement state is described by 
ρ ρˆ ˆ ˆ ˆ ˆ ˆE E E E/Tr[ ]x x x x . Similar coarse graining approaches have been made in refs. 63,64. This approach allows us to 

consider the transition from small to large noise situations without being specific about the source of the noise.
Correlations between the nonlinear resonator and the qubit should occur after they have interacted for some 

time, and, for the parameter regime we use in this work, typically the nonlinear resonator state with ≥x 0 ( <x 0) 
corresponds to an outcome where the qubit was initially in its excited (ground) state. We can describe the 
post-measurement state of the ultra-strongly-coupled (USC) system as (see Appendix C for details)
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where erfc is the complementary error function and N  and N′ are normalization factors.
In the limit when σ → +∞, we obtain ∫ρ ρ ρ= ∝ 〈 | | 〉≥ < −∞

∞ˆ ˆ ˆdx x xx x0 0 . In this case, the measurement results do 
not contain any information of the post-measurement state of the qubit. On the other hand, we obtain

Figure 2.  A schematic of the measurement process. The USC system and the nonlinear resonator are allowed to 
interact for some time t, after which the resonator is projected onto two different quadratures. We then analyze 
the correlation between the conditioned USC system state and the resonator.
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∫ρ ρ∝ 〈 | | 〉≥

∞
ˆ ˆdx x x ,x 0 0

and

∫ρ ρ∝ 〈 | | 〉< −∞
ˆ ˆdx x x ,x 0

0

in the limit σ → 0, which corresponds to an ideal projective measurement that can perfectly distinguish ≥x 0 or 
<x 0.

Full Dynamics of the USC System and Nonlinear Measurement Device
Using parameters from36, we numerically65,66 solve Eq. (2), with the following measurement protocol (see Fig. 2): 
We assume the USC system is in the initial state | 〉G , and that the nonlinear measurement apparatus is in its 
uncoupled and undriven ground state. We then allow them (the USC system and the measurement apparatus) to 
interact for a time up to =t 500 ns. We then apply an instantaneous coarse-grained measurement to the meas-
urement system.

To begin, in Fig. 3, we show how the Q function of the resonator part of the USC system depends on the reso-
lution of the coarse-graining measurement. One sees that the change in the state of the USC resonator is much 
stronger when the measurement resolution is higher (corresponding to a decrease of the coarse-graining variance 
σ).

In addition, in Fig. 4 we plot the post-measurement observable L L R Rẑ ⟩⟨ ⟩⟨σ = | | − | | for the state of the qubit, 
for the different post-measurement outcomes ρ ≥x̂ 0 and ρ <x̂ 0.

For comparison, we consider both a linear resonator (χ = 0) and a nonlinear resonator (χ ≠ 0) as the meas-
urement devices. In addition, in Fig. 5, we show the average photon number inside the measurement resonator, 
for the case of a nonlinear and a linear measurement device. We can see that the number of photons at time 

=t 500 ns is almost the same. In all figures, for the nonlinear measurement resonator, when we set the 
coarse-graining value as σ = 5, the post-measurement states of the USC cavity and the qubit change significantly, 
depending on the measurement outcome, and so we observe a clear measurement backaction on the 
ultra-strongly coupled system.

The state of the qubit (Fig. 4) depends strongly on the outcome of the coarse-grained measurement in the case 
of the nonlinear resonator, indicating a clear measurement backaction on the ultra-strongly coupled system. On 
the other hand, we cannot observe the measurement backaction in the case of a linear resonator. Interestingly, 
although we set the coupling strength J as approximately 300 times smaller than the qubit energy in these exam-
ples, the nonlinear resonator can still affect the state of the system on reasonable time scales.

An ideal result would return perfect post-selection correlations, such that σ〈 〉 = −ρ ≥=
1z x 0
 and σ〈 〉 = +ρ <

1z x 0
, 

indicating the fidelity of our result is imperfect. However, a naive application of the rotating-wave approximation 
to the system and measurement device coupling term suggests that the influence of system and measurement 
apparatus on each other should be entirely negligible, and that there should be no correlation at all.

It is worth mentioning that such an approximation should also take into account the norm of the operator in 
the interaction term, which, for the driven nonlinear resonator, can be large. In our case, the number of photons 

Figure 3.  The Q function of the reduced density matrix of the resonator ultra-strongly-coupled to the qubit 
after the coarse graining-measurement. We consider in (a) a projection into <x 0 at a time =t 500 ns for 
σ = .0 5, and (b) the same projection for σ = 50. These examples confirm that, as we increase the value of σ, the 
change of the Q function induced by the measurement becomes smaller. We set =t 500 ns, 
ω π= × .2 0 299 GHzq , π= × .g 2 4 920 GHz, ω π= × .2 6 336 GHzr , κ π= × .2 2 375 MHz, 
δ π= × .2 5 698 MHz, χ π= × .2 80 735 kHz, π= × .f 2 22 792 MHz, and π= × .J 2 949 8 kHz.
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in the nonlinear resonator is around 20. Surprisingly, even if we consider the norm of the operator in the interac-
tion term (which corresponds to the number of the photons in the nonlinear resonator), the effective coupling 
strength (J  multiplied by the norm) is still approximately 15 times smaller than the qubit energy in these 
non-energy eigenbasis measurements. So we can conclude that a clear difference between the case with a finite J 
and the case without J  in our numerical simulations cannot be explained by a simple application of the rotating 
wave approximation.

In addition, a comparison to a linear measurement device for the same regime shows almost no correlation at 
all, so while the nonlinear device cannot perfectly project onto eigenstates of σz, it is capable of performing partial 
projection. In the next sections we will show that a better result can of course be reached by decreasing ωq or 
increasing J, and we will explain why the nonlinear resonator works, albeit imperfectly, in the difficult parameter 
regime when J is much smaller than ωq.

Comparison to the QND limit.  To further compare our non-energy eigenbasis measurements with an 
ideal quantum non-demolition (QND) measurement, it is instructive to look at the behavior of the Q function of 
the nonlinear resonator, as shown in Fig. 6. Here, we consider our non-energy eigenbasis measurement, quantum 
non-demoliton measurements for the limit ω = 0q  (which makes the measurement satisfy the QND condition 

=ˆ ˆH H[ , ] 0Rabi int ), and null measurements with =J 0.
We observe a clear difference between our non-energy eigenbasis measurements and measurements in the 

QND limit. In particular, the probability to obtain the high-amplitude state in the nonlinear resonator becomes 
much larger for QND measurements than that for the non-energy eigenbasis measurement case.

Figure 4.  σ〈 〉ẑ  after the coarse-graining measurements that projects the state into ρ ≥x̂ 0 or ρ <x̂ 0 depending on the 
measurement results. We plot σ〈 〉ẑ  for the nonlinear resonator (a) and for the linear resonator (b) as the 
measurement apparatus. Here, we set the coarse-graining value as σ = 5. For the other parameters, we use the 
same as those in Fig. 3.

Figure 5.  The average number of photons in the nonlinear resonator (dashed green curve) and in the linear 
resonator (blue continous curve). The parameters used are the same as those in Fig. 4.
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Also, the figures show that, roughly speaking, the probability to obtain the high-amplitude state of the res-
onator for the non-energy eigenbasis measurements lies between the case of the QND measurements and null 
measurements.

Low-energy two-level approximation.  To give an intuitive explanation for why the nonlinear resonator 
measurement apparatus can become strongly correlated with the USC system, even when the coupling between 
measurement apparatus and system is much smaller than the system energy scales, we introduce a two-level 
approximation for the USC system. (see Appendix D for details, and a careful analysis of the validity of this 
approximation). In our simulations, the initial state is | 〉G , and the interaction Hamiltonian σ̂ ˆ ˆ†

J b bz  mainly induces 
a transition from | 〉G  to the first excited state α α| 〉 = | 〉| 〉 + | 〉|− 〉E R L( )1

2
. Since the transition matrix elements 

of the interaction Hamiltonian to the other excited states are negligible, we can approximate the low-energy states 
of the ultra-strongly-coupled system as a two-level system. In this case, ĤRabi and Ĥint can be written as

ω
σ

σ

≈ ′

≈ ′

ˆ ˆ

ˆ ˆ ˆ ˆ†

H

H J b b

2

,

z

x

Rabi
eff

int

where

ω ω α= −exp[ 2 ],eff q
2

and

σ
σ

′ = | 〉〈 | − | 〉〈 |
′ = | 〉〈 | + | 〉〈 |.

ˆ
ˆ

E E G G
G E E G

z

x

In Fig. 7, we plot σ〈 ′ 〉ˆ x , corresponding to ρ ≥x̂ 0 and ρ <x̂ 0, with this two-level system approximation. To check the 
validity of this simplified model, we plot σ〈 ′ 〉ˆ x  with this model and σ〈 〉ẑ  using the full model in Fig. 7. These results 
show an excellent agreement. Also, we confirm that the behavior of the Q function of the nonlinear resonator for 
the two-level approximation (b) agrees well with the full Hamiltonian case (a), as shown in Fig. 6.

Figure 6.  The Q functions of the nonlinear resonator for several conditions: (a) Numerical simulation of the 
full Hamiltonian described in Eq. (1). (b) The two-level system approximation described by the Hamiltonian in 
Eq. (3). (c) Ideal QND measurement, which is possible in the limit ω = 0q . (d) When the nonlinear resonator 
does not couple at all with the qubit. We use the same parameters as those in Fig. 4.
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The role of the AC Stark shift to induce correlations.  With this two-level approximation, we can show 
that the large correlation between the nonlinear resonator and the ultra-strongly-coupled system originates from 
the combination of an AC Stark shift and an adiabatic transition. It is easy to see that the large number of photons 
in the nonlinear resonator induces an energy shift (AC Stark shift) of the USC two-level system. Since the photon 
number of the high-amplitude state is different from that of the low-amplitude state, the size of the AC Stark shift 
strongly depends on the state of the nonlinear resonator. As long as the timescale of the change in the nonlinear 
resonator photons is much smaller than ω1/ eff , the state of the two-level system remains in the ground state of the 
following effective Hamiltonian

σ
ω

σ= 〈 〉 ′ + ′ˆ ˆ ˆ ˆ ˆ
†

H J b b
2

, (3)H L x zeff ( )
eff

where 〈 〉ˆ ˆ†
b b H (〈 〉ˆ ˆ†

b b L) is the average photon number of the high (low) amplitude state.
When the nonlinear measurement resonator becomes a mixed state of the low- and high-amplitude states, we 

expect that the AC Stark shift (whose amplitude depends on the nonlinear resonator state) induces an adiabatic 
change of the ground state of the two-level system. This leads to a large correlation between the USC system and 
the measurement resonator. To show the validity of this interpretation, we analytically calculate the σ〈 ′ 〉ˆ z x( )  of the 
ground state of the Hamiltonian in Eq. (3) where we substitute the numerically calculated photon numbers of the 
high (low) amplitude state for 〈 〉ˆ ˆ†

b b H (〈 〉ˆ ˆ†
b b L). In Fig. 8, we compare these results with the numerical simula-

tions65,66 where the master equation with the simplified Hamiltonian is solved. We plot the result from =t 100 ns 
to =t 500 ns, because from =t 0 ns to =t 100 ns, the high amplitude state is not generated. There is a good 
agreement between these two results, leading us to conclude that the correlation between the two-level system 
and the nonlinear resonator is induced by the aforementioned adiabatic changes due to the AC Stark shift, whose 
amplitude depends on the nonlinear resonator state. For a more detailed explanation of the AC Stark shift, please 
refer to Appendix F. Also, to quantify such a correlation, in Appendix G, we discuss the evolution of the quantum 
discord, which also shows a strong correlation even when the coupling strength is much smaller than the system 
energy scale.

Moreover, we increase the ratio ωJ/ q to check how the effect of the AC Stark shift will change. In Fig. 9(a), we 
plot σ〈 ′ 〉ρ ≥

ˆ ˆx x 0
, σ〈 ′ 〉ρ <

ˆ ˆx x 0
, and the Q function at =t 500 ns where the effective energy ωeff  is 10% of what was used in 

Fig. 4. Interestingly, although we increase ωJ/ eff , the backaction of the measurement shown in Fig. 9(a) becomes 
smaller than that shown in Fig. 4, which is also attributed to the combination of an AC Stark shift and an adiabatic 
transition. From Fig. 9(a), the system converges into an eigenstate of σ′ˆ x after the interaction, regardless of the 
measurement results of the nonlinear resonator. This can be understood by considering that the AC Stark effect 
〈 〉ˆ ˆ†

J b b H(L) becomes much larger than the effective energy ωeff , so that the state of the ultra-strongly-coupled sys-
tem becomes an eigenstate of σ′ˆ x for both the high amplitude state and low amplitude state. Furthermore, it is 
worth mentioning that, from Fig. 9(b), the nonlinear resonator before the measurement almost becomes a 
high-amplitude state. For an ideal quantum projective measurements on the ground state of the ultra-strongly 
coupled system, the population in the low-amplitude state should be the same as that of the high-amplitude state, 
and so this result shows that the effective energy ωeff  is still too large to realize a full projective measurement in the 
persistent current basis.

We also consider a case when the effective energy ωeff  is 1% of that used in Fig. 4. In that case, σ〈 ′ 〉ρ <
ˆ ˆx x 0

 becomes 
much larger than σ〈 ′ 〉ρ ≥

ˆ ˆx x 0
, and this cannot be explained just by the AC Stark shift. Moreover, from Fig. 9(d), the 

population of the high-amplitude state becomes comparable with that of the low-amplitude state. Therefore, in 
this regime, a strong projection of the ground state of the ultra-strongly-coupled system in the non-energy eigen-
basis seems to be realized, which can be quantified by calculating the entanglement between the system and 
measurement apparatus, as shown in the next section.

Figure 7.  Numerical simulations of the expected values of σ′ˆ x and σ̂z after the state is projected into ρ ≥x̂ 0 or ρ <x̂ 0 
depending on the measurement results. We use the same parameters as those in Fig. 4.
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Figure 8.  Numerical results and analytical solutions of the expected values of σ′ˆ x and σ′ˆ z after the nonlinear 
resonator is projected into a high-amplitude state or a low-amplitude state. In the analytical calculations, we use 
the simplified Hamiltonian described in Eq. (3). Note that we do not show the time evolution from =t 0 ns to 

=t 100 ns, because the high-amplitude state is not generated until approximately =t 100 ns.

Figure 9.  (a,b) Dynamics of the ultra-strongly-coupled system and the nonlinear resonator when the effective 
energy ωeff  is 10 times smaller than those in Fig. 4. (a) The expected value of σ′ˆ x after the nonlinear resonator is 
projected into a high-amplitude state or a low-amplitude state. (b) The Q function of the nonlinear resonator at 
time 500 ns. (c,d) Dynamics of the ultra-strongly-coupled system and the nonlinear resonator when the 
effective energy ωeff  is 100 times smaller than those in Fig. 4. (c) The expected value of σ′ˆ x after the nonlinear 
resonator is projected into a high-amplitude state or a low-amplitude state. (d) The Q function of the nonlinear 
resonator at time 500 ns. Except for the effective energy of the ultra-strongly coupled system, we use the same 
parameters as those in Fig. 4.
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Negativity
As a criteria of entanglement, and to understand how correlations between a nonlinear resonator and a USC 
system develop, we now consider the negativity. Suppose there is a Hilbert space of two systems, ⊗HH HHA B with a 
state ρ̂AB. The definition of negativity is

ρ
ρ

=
−ˆ ˆN( ) 1

2

TA

here, ρ̂TA is the partial transpose of the state ρ̂AB taken over a subsystem A, and =ˆ ˆ ˆ†
X X XTr  is the trace 

norm67. In our case, the subsystem A corresponds to the two-level system approximation of the USC system, and 
B to the nonlinear resonator.

In Fig. 10 we plot the negativity to quantify the entanglement between the ultra-strongly-coupled system and 
the nonlinear resonator. As we increase the ratio ωJ/ q, the negativity also increases. These results show that a 
reasonably large entanglement between the ultra-strongly-coupled system and the nonlinear resonator is gener-
ated in the regime where we realize a projective measurement on the non-energy eigenbasis. However, due to the 
decoherence of the nonlinear resonator, the entanglement quickly degrades, and a classical correlation remains in 
these systems just before the measurement on the nonlinear resonator.

Conclusions
In conclusion, we investigated non-energy-eigenbasis measurements using a nonlinear resonator measurement 
apparatus, for the purpose of manipulating an ultra-strong-coupling light-matter system. Here we considered a 
specific example of a circuit QED system, but the results give us intuitive insights into how non-energy-eigenbasis 
measurements work in more general scenarios. Interestingly, we found that, even if the effective coupling 
strength with the measurement device is one order of magnitude smaller than the typical energy scale of the 
ultra-strongly-coupled system, we can still observe a strong correlation with the measurement device. While this 
correlation is imperfect, it appears in a difficult parameter regime where traditional linear measurement devices 
fail completely, and thus maybe practically useful for partial measurement and control of USC systems.

Also, we confirmed that, as one intuitively expects, by increasing the coupling strength with the measurement 
device, strong entanglement between the system and measurement device can be generated, and we can realize 
strong projective measurements on the ground state of the ultra-strongly-coupled system.

Nonlinear measurement devices are attractive for their fast and strong response to the system, but they are also 
difficult to analyze theoretically because of their nonlinear nature. Our results help illuminate the mechanism of 
how an ultra-strongly coupled system interacts with a nonlinear measurement device in a non-trivial parameter 
regime, where QND condition is not satisfied

Appendix
A. Non-energy-eigenbasis measurements.  Here we explain the reason why the non-energy eigenbasis 
measurement is difficult to realize. Naive calculations indicate that the non-energy eigenbasis measurements 
would require a violation of the rotating wave approximation, which needs a strong coupling between the system 
and apparatus. This seems to suggest that, unless the coupling between the system and measurement apparatus is 
as large as the resonant frequency of the system and measurement apparatus, it would be difficult to implement 
the non-energy basis measurements. However, our results show that this naive picture is actually wrong if we use 
the nonlinear resonator as a measurement apparatus.

We can explain these points more quantitatively as follows. Suppose the Hamiltonian which expresses the 
coupling between a qubit and a linear resonator is as follows,

Figure 10.  Entanglement between the ultra-strongly coupled system and the nonlinear resonator. We use the 
negativity as a measure of entanglement. From the top, we plot results with effective energies 
ω π= × .2 0 8952 MHzeff , ω π= × .2 8 952 MHzeff , and ω π= × .2 89 52 MHzeff . Except for the effective 
energy of the ultra-strongly coupled system, here we use the same parameters as those in Fig. 4.
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ω
σ σ ω= ′ + ′ + .ˆ ˆ ˆ ˆ ˆ ˆ ˆ† †

H J b b b b
2 z x
eff

r

In the rotating frame defined by a unitary operator  ω σ ω= − +ˆ ˆ ˆ ˆ†
U i b b texp[ ( /2 ) ]zeff r , we obtain

ω σ ω σ= + − .+
′

−
′ˆ ˆ ˆ ˆ ˆ†

H t J i t i t b b( ) (exp[ ] exp[ ] )eff eff

In the limit of a large ωeff , we can use a rotating wave approximation and we obtain

≈Ĥ t( ) 0

in the rotating frame.
More generally, we have a Hamiltonian

= + ⊗ +ˆ ˆ ˆ ˆ ˆH H JA B H ,S E

where = ∑ | 〉〈 |Ĥ E E En n n nS
(S) (S) (S)  and = ∑ | 〉〈 |Ĥ E E Em m m mE

(E) (E) (E) , (the superindex (S) denotes the system and the 
superindex (E) denotes the measurement apparatus). In a rotating frame defined by  = − +ˆ ˆ ˆU it H Hexp[ ( )]S E , we 
have

∑= | 〉〈 | ⊗ | 〉〈 |

× − − − − .
′ ′

′ ′ ′ ′

′ ′

Ĥ t J C E E E E

i E E t i E E t

( )

exp[ ( ) ( ) ]
n n m m

n n m m n n m m

n n m m

, , ,
, , ,

(S) (S) (E) (E)

(S) (S) (E) (E)

where = 〈 | | 〉〈 | | 〉′ ′ ′ ′
ˆ ˆC E A E E B En n m m n n m m, , ,

(S) (S) (E) (E) . If the system and measurement apparatus are well detuned, we 
obtain

∑≈ | 〉〈 | ⊗ | 〉〈 |Ĥ t C E E E E( ) ,
n m

n n m m n n m m
,

, , ,
(S) (S) (E) (E)

where we used the rotating wave approximation. So the terms that commute with ĤS survive. This clearly shows 
that we can measure only an observable that commutes with ĤS if the rotating wave approximation is valid. This 
also means that we need a violation of the rotating wave approximation for the non-energy eigenbasis 
measurements.

B. Derivation of the interaction Hamiltonian between the nonlinear resonator and the 
qubit.  In this work we rely on an interaction between a superconducting flux qubit coupled with a frequency 
tunable resonator. This is not a dispersive approximation to a dipolar coupling. In more detail, the flux qubit is 
described as

ε σ σ= +
Δˆ ˆ ˆH

2 2
,z xfq

where ε denotes the energy bias and Δ denotes the tunneling energy. The Pauli matrix σ̂z denotes the population 
of a persistent current basis such as σ = | 〉〈 | − | 〉〈 |ˆ L L R Rz , where | 〉L  (| 〉R ) denotes a left-sided (right-handed) per-
sistent current.

The frequency tunable resonator is described as

ω= Φˆ ˆ ˆ†
H b b( ) ,r

where ω Φ( ) denotes the frequency of the resonator. We assume that the resonator contains a SQUID structure, 
and we can tune the frequency of the resonator by changing an applied flux penetrating the SQUID structure. 
(For example, see ref. 68).

We can derive the interaction between the flux qubit and the resonator as follows. The persistent current states 
of the flux qubit induce magnetic fields due to the Biot-Savart law, and this changes the penetrating magnetic flux 
of the SQUID in the resonator. So the frequency of the resonator depends on the state of the flux qubit. Suppose 
that δΦ (−δΦ) denotes the magnetic flux from the | 〉L  (| 〉R ) state, and the resonator frequency will be approxi-
mately shifted by δΦω

Φ
d
d

 δ− Φω
Φ( )d

d
. This provides us with the following Hamiltonian.

σ= | 〉〈 | ⊗ − | 〉〈 | ⊗ = ⊗ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † †
H g L L b b g R R b b g b b,I z

where δ= Φω
Φ

g d
d

. A similar Hamiltonian has been derived in69 to represent the coupling between an NV center 
and a flux qubit. We now assume a large detuning between the flux qubit and resonator. In this case, the dipolar 
coupling is negligible.

C. Derivation of the coarse-graining measurement.  In the case where there is noise in the measure-
ment apparatus, when we have a position measurement, even if the result of the measurement apparatus is x, the 
real value is not necessarily x. To model such situations, we define a measurement operator as follows
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∫π σ σ
= ′ 


−

′ − 

| ′ ′|

−∞

∞ˆ ⟩⟨E dx x x x x1
2

exp ( )
4

,x 1/4

2

2

where σ describes the strength of the noise. Also, Êx satisfies the normalization condition

∫ = .
−∞

∞ ˆ ˆ†
E E dx Ix x

Here we consider a composite system which comprises of a system which we hope to readout (ultra-strongly 
coupled system) and its probe (nonlinear resonator). Also, the measurement result is divided into ≥x 0 and 

<x 0. When we have a measurement on a composite system ρ̂ , the post-measurement state when the result is 
≥x 0 becomes

ˆ ˆ ˆ

ˆ ˆ ˆ
⟨ ˆ ⟩ ⟩⟨

†

† ∫ ∫ ∫∫

∫

ρ

ρ σ σ
ρ

= ′′ 


−
−

−
′′ − 



| | ′′ | ′′|

∞

∞

∞

−∞

∞
′

−∞

∞ ′

′ ′

dxE E

dxE E N
dx dx dx x x x x

x x x x
Tr[ ]

1 exp ( )
4

( )
4

,

x x

x x

0

0

0

2

2

2

2

where

⟨ ˆ ⟩∫ ∫ σ
ρ= ′′ 


−

′′ − 


′′| | ′′ .
∞

−∞

∞
N dx dx x x x xexp ( )

2
Tr[ ]

0

2

2

By tracing out the probe system, we have the post-measurement state of the system ρ ≥x̂ 0 we hope to readout as

ˆ ⟨ ˆ ⟩∫ ∫ρ
σ

ρ= ′′ 


′′ − 


′′| | ′′ .≥

∞

−∞

∞

N
dx dx x x x x1 exp ( )

2x 0 0

2

2

Substituting =
σ

− ′t x x
2

, ρ ≥x̂ 0 can be rewritten as

∫ρ
σ

ρ= − | |≥ −∞

∞
ˆ ⟨ ˆ ⟩( )N

dx x x x1 erfc
2

,x 0

where xerfc( ) is a complementary error function, and is defined as

∫π
= − .

∞
x t dterfc( ) 2 exp( )

x

2

In the limit of σ → +0, we have

∫ρ ρ= 〈 | | 〉≥

∞
ˆ ˆ

N
dx x x1 ,x 0 0

which is a noiseless measurement. Also, in the limit of σ → +∞, we obtain

∫ρ ρ= 〈 | | 〉≥ −∞

∞
ˆ ˆ

N
dx x x1 ,x 0

which shows that we cannot extract any information from the system.

D. Validity of the two-level approximation.  D.1 Adiabatic approximation to the Rabi Hamiltonian.  We 
now explain the adiabatic approximation to the Rabi Hamiltonian, that has also been used in previous works17,19–21.  
We will show that, within the framework of the adiabatic approximation, the ultra-strongly coupled system can 
be treated as a two-level system. The conventional Rabi Hamiltonian can be written as

ω
σ σ ω= + + + .ˆ ˆ ˆ ˆ ˆ ˆ ˆ† †H g a a a a

2
( ) (4)x zRabi

q
r

The adiabatic approximation can be done when ω ω g( , )q r  and the Rabi Hamiltonian can be diagonalized 
using the bases

α α| 〉| 〉 = | 〉 − | 〉 | 〉| 〉 = | 〉 | 〉− +
ˆ ˆL N L D N R N R D N( ) , ( ) ,

where α ω= g/ r, | 〉L  and | 〉R  are eigenstates of σ̂z, | 〉N  is the eigenstates of ˆ ˆ†a a, and αD̂( ) is a displacement operator. 
The states α| 〉 − | 〉ˆL D N( )  and α| 〉 | 〉ˆR D N( )  are degenerate in energy and their energy is ω α= −N( )N r

2 . Then, 
considering that the term ω σ̂/2q x couples these terms, and only the transitions between the states of the same N  
are taken into account in the adiabatic approximation, the Rabi hamiltonian can be rewritten as

https://doi.org/10.1038/s41598-019-56866-1


13Scientific Reports |         (2020) 10:1751  | https://doi.org/10.1038/s41598-019-56866-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

∑
ω

ψ ψ

ω
ψ ψ

≈







 + 〈 | 〉



| 〉〈 |

+


 − 〈 | 〉



| 〉〈 |







=
− +

+ +

− +
− −

ˆ E

E

H N N

N N

2

2
,

N
N N N

N N N

Rabi
0

q

q

where

ψ| 〉 = | 〉| 〉 ± | 〉| 〉±
− +L N R N1

2
( ),N

whose eigenvalues are

ω
= ± 〈 | 〉.± − +E E N N

2N N
q

Also, it can be easily shown that

ψ σ ψ ψ σ ψ δ〈 | | 〉 = 〈 | | 〉 = .± ± ±ˆ ˆ0,N z M N z M NM

So, as long as we apply the adiabatic approximation, the transition due to the σ̂z term is between ψ| 〉+
N  and ψ| 〉−

N . 
Since the interaction between the ultra-strongly coupled system and the nonlinear resonator can be expressed as 
σ̂ ˆ ˆ†

J b bz , it is possible for us to consider that the ultra-strongly coupled system is driven only by the σ̂z operator. 
Also, if the initial state is ψ| 〉−

0  and the perturbation term is proportional only to σ̂z, the dynamics is limited to 
ψ| 〉±

0 . Therefore, as long as the adiabatic approximation is valid, we can consider our subsystem of the 
ultra-strongly coupled system as a two-level system.

D.2 Estimation of the deviation from the two-level approximation.  By calculating the deviation from the two-level 
approximation, we show a quantitative analysis of how accurate the two-level system approximation is in our 
parameter regime. We consider a fidelity between the true ground state | 〉G  (the first excited state | ⟩E ) and ψ| 〉−

0  
( ψ| 〉+

0 ). It is possible to estimate the accuracy of our two-level approximation from this fidelity, and we derive a 
condition of the fidelity to be close to unity. Now, we define

∑
ω

ψ ψ

ω
ψ ψ

=







 + 〈 | 〉



| 〉〈 |

+


 − 〈 | 〉



| 〉〈 |







=
− +

+ +

− +
− −

ˆ E

E

H N N

N N

2

2

N
N N N

N N N

0
0

q

q

and

′ = − .ˆ ˆ ˆH H HRabi 0

Here, ĤRabi is the one defined in Eq. (4). In this way, we regard Ĥ0 as the non-perturbative Hamiltonian and ′Ĥ  
the perturbative Hamiltonian. By performing a perturbative calculation up to the lowest order, we obtain

ψ| 〉 ≈ | 〉 + | 〉−

N
G G1 ( ),0

(0)

where N is a normalization factor. Then by using perturbation theory, we have

∑ ψ ψ

ψ ψ

ψ ψ

| 〉 = | 〉 + | 〉

= −
〈 | ′| 〉

−

= −
〈 | ′| 〉

−
.

+ + − −

+
+ −

+ −

−
− −

− −

ˆ

ˆ
E E

E E

G c c

c H

c H

( ),

,

N
N N N N

N
N

N

N
N

N

(0)

0

0

0

0

It can be easily shown that

ψ ψ ψ ψ ω ψ σ ψ〈 | ′| 〉 = 〈 | | 〉 = 〈 | | 〉+ − + − + −ˆ ˆ ˆH H /2 ,N N N x0 Rabi 0 q 0

and

ψ ψ ω ψ σ ψ〈 | ′| 〉 = 〈 | | 〉.− − − −ˆ ˆH /2N N x0 q 0

Then, we have
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2
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



By assuming ω ωq r, we have

ω α
ω

ω α

= − ± 〈 −| +〉

≈ −

±E N N N

N

( )
2

( ),

N r
2 q

r
2

and, we obtain

∑

∑

ψ
ω α

ω
ψ

α
ω

ψ

| 〉 ≈







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
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| 〉
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
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
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where

∑
ω

ω
α

= + .α−

=

∞
N e

N N
1 (4 )

!N

N
q
2

r
2

4

1

2

2

2

Also, we set 〈 −| +〉 ≈
ω

0 0 0
2

q .
Similarly, with regard to the first excited state, we can obtain

∑

∑

ψ
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ω
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α
ω
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
| 〉 −






| 〉

+ | 〉












.

α+ −

= ..

+

= ..

−

N
E e

N N

N N

1
2

(2 )
!

(2 )
! (6)

N

N

N

N

N

N

0
q 2

2,4, r

1,3, r

2

(Note that N in Eqs. (5) and (6) are the same.) The fidelity ψ= |〈 | 〉|−F GG 0
2 and ψ= |〈 | 〉|+F EE 0

2 are calculated 
as

 ∑
ω

ω
α

= = = 


+ 


.α−

=

∞ −

F F e
N N

1 1
4
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N

N
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Then, we define

∑
ω

ω
α α

≡ − .
=

∞
f

N N4
exp[ 4 ] (4 )

!N

N
q
2

r
2

2

1

2

2

For f 1, we have = ≈ −F F f1G E , and so we can consider f as an infidelity.
We plot  f for three regimes ω = . . .g/ 0 51, 0 78, 0 99r . Here, we fix ω π= × .2 6 336 GHzr . From Fig. 11, we can 

see that in these regimes the infidelity f is sufficiently small.
Also, we plot the numerically calculated

ˆφ σ= |〈 | | 〉|h G ,j j z
2

(j = 2, 3, 4) in Fig. 12 in the same regime, where φ| 〉2 , φ| 〉3 , φ| 〉4  are the second, third and fourth excited states, 
respectively. This shows the leakage from | 〉G  to unwanted states.

From Figs. 11 and 12, we confirm that, as long as f 1 is satisfied, transitions from | 〉G  to the unwanted states 
such as φ| 〉2 , φ| 〉3 , φ| 〉4  are small, so that the two-level approximation should be valid in this regime.

E. Losses in the ultra-strongly coupled system.  So far we did not include a full analysis of the USC 
losses because we assumed that the time scale of such losses would be much longer than the readout time. For 
completeness, here we present a brief analysis of the influence of such losses. Because including bath-induced 
transitions between all eigenstates in the full space is complex, here we restrict ourselves to the two-level approx-
imation. We justify this approximation, in our relevant parameter regime, in the previous sections.

The interaction Hamiltonian between our ultra-strongly coupled system and its environment is described by

σ= +ˆ ˆ ˆ ˆ ˆH AX B ,I z
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where = +ˆ ˆ ˆ†X a a  denotes the position operator and Â (B̂) denotes the environmental operator coupled with the 
resonator (qubit). Also, we incorporate the effect of a dephasing bath classically modeled as

σ=ˆ ˆH f t( ) ,zdep

where f t( ) is a time-dependent random variable and the ensemble average of f t( ) is zero. In this case, it is well 
know that the Born-Markov secular Lindblad master equation can be written in the form20

∑

∑

∑

ρ
ρ ρ

ρ

ρ

ρ ρ ρ ρ

= − + Γ + Γ | 〉〈 |

+ Φ | 〉〈 |

+ Γ | 〉〈 |

= − −

σ
>

≠

ˆ ˆ ˆ ˆ

ˆ

ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † †

D

D

D

D

d
dt

i H j k

j j

j k

A A A A A A A

[ , ] ( ) [ ]( )

[ ]( )

[ ]( )

[ ]( ) 1
2

(2 )

s
j k j

jk
X
jk

j
j

j k j

jk

,
dep

,
dep

z

where Ĥs is the system Hamiltonian and

Figure 11.  The infidelity f  versus qubit frequency ωq for three regimes ω = .g/ 0 51r  (red solid), ω = .g/ 0 78r  
(blue dashed), ω = .g/ 0 99r  (green dashed). Here ωq varies from π × .2 0 1 GHz to π × .2 0 5 GHz, where 
ω π= × .2 6 336 GHzr .

Figure 12.  A measure of the leakage to excited states h2(3,4) versus qubit frequency ωq. Again ωq varies from 
π × .2 0 1 GHz to π × .2 0 5 GHz. Here we set (a) ω = .g/ 0 51r , (b) ω = .g/ 0 99r , where ω π= × .2 6 336 GHzr .

https://doi.org/10.1038/s41598-019-56866-1


1 6Scientific Reports |         (2020) 10:1751  | https://doi.org/10.1038/s41598-019-56866-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

κ σ κΓ = Δ |〈 | | 〉| Γ = Δ |〈 | | 〉| .σ ˆ ˆj k j X k( ) , ( )jk
q jk z X

jk
r jk

2 2
z

Here, | 〉k  and | 〉j  are the eigenstates of the system Hamiltonian and κ ω( )q  and κ ω( )r  are the rates corresponding 
to the noise spectra of the qubit and resonator, respectively. Also,

γ σΦ = 〈 | | 〉ˆj j(0)/2j x
dep

dep

and

γ σΓ = Δ |〈 | | 〉|ˆj k( )/2 ,jk
jk xdep dep

2

where γ ω( )dep  denotes the spectral density of the qubit dephasing at frequency ω. Here, we ignore the term 
ρΓ | 〉〈 | ˆD j k[ ]( )jk

dep , as this term is negligible when we operate at the “sweet spot” of the qubit. Owing to the two-level 
approximation, we consider only the lowest first two levels | 〉G  and | 〉E , and defining γ = Γ + Γσ X1

10 10
z

, and 
γ = Φ = Φ( ) ( )2 0

dep 2
1
dep 2, we obtain

ρ ρ γ ρ γ ρ

ω
α

= − ′ + | 〉〈 | + | 〉〈 | − | 〉〈 |

′ = − | 〉〈 | − | 〉〈 |

ˆ ˆ ˆ ˆ ˆ

ˆ

D D
d
dt

i H G E E E G G

H E E G G

[ , ] [ ]( ) [ ]( ),

2
exp( 2 )( ),

1 2

q 2

where α ω= g/ r. In Fig. 13(a), we plot the expectation value of σ̂z and σ′ = | 〉〈 | + | 〉〈 |ˆ E G G Ex  without the noise in 
the ultra-strongly coupled system. The two-level approximation shows an excellent agreement with the full 
Hamiltonian model. Also, in Fig. 13(b), we plot σ̂z and σ′ˆ x including the noise in the ultra-strongly-coupled sys-
tem with parameters70 that are realized in recent experiments71. From these results, we can conclude that the noise 
in the ultra-strongly coupled system is almost negligible and does not have significance on the time scales in 
which we are interested.

F. Detailed explanation of the AC Stark shift.  We assume the regime where the time scale of the dynam-
ics of photons in the nonlinear resonator is much smaller than ω1/ eff . In this case, we can approximate the inter-
action term σ σ′ ≈ ′ 〈 〉ˆ ˆ ˆ ˆ ˆ ˆ† †

J b b J b bx x , where 〈 〉ˆ ˆ†
b b  is the expectation value of the photon number in the nonlinear 

resonator.

Figure 13.  The expectation values σ〈 〉ẑ  (using the full Hamiltonian in Eq. (1)) and σ〈 ′ 〉ˆ x  (using the approximate 
Hamiltonian in Eq. (3)) (a) without and (b) with noise in the ultra strong system, after the coarse-graining 
measurements that projects the state into ρ ≥x̂ 0 or ρ <x̂ 0, depending on the measurement results. We set the 
coarse-graining value as σ = 5. The noise rate γ γ π= = × .2 23 75 kHz1 2 . For the other parameters, we use the 
same as those in Fig. 2 in the main text.
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Therefore, the approximated two-level system can be described with the effective Hamiltonian,

ˆ ˆ ˆ ˆ ˆ
†

σ
ω

σ= 〈 〉 ′ + ′ .H J b b
2x zeff
eff

Now, as the initial state is | 〉G , and 〈 〉 ==
ˆ ˆ†
b b 0t 0 , the initial state is also the ground state of Ĥeff . Due to the 

assumption that 〈 〉ˆ ˆ†
b b  slowly changes compared with the evolution induced by ωeff , the state stays at the ground 

state of Ĥeff .
Then, the nonlinear resonator can produce the mixed state due to the bifurcation as

ρ = | 〉〈 | + | 〉〈 |ˆ p t t t p t t t( ) High( ) High( ) ( ) Low( ) Low( ) ,non High Low

where | 〉tHigh( )  and | 〉tLow( )  are the high and low amplitude states at time t. Now, the approximated two-level 
system evolves according to | 〉tHigh( )  and | 〉tLow( ) , which is a AC Stark shift. More concretely, the approximated 
two-level system birfurcates into two states: the ground states of ˆ ˆ ˆ ˆ ˆ

†
σ σ= 〈 〉 ′ + ′ωH J b b H L x zeff

High(Low)
( ) 2

eff , where 
ˆ ˆ†

〈 〉b b H L( ) is the expectation value of the photon number corresponding to the high and low amplitude states. 
Consequently, the dynamics of the composite system of the approximated two-level system and the nonlinear 
resonator can be described as

| | → | | ⊗ | |

+ | | ⊗ | |

⟩ ⟩ ⟩⟨ ⟩⟨

⟩⟨ ⟩⟨

G p t G t G t t t

p t G t G t t t

0 ( ) ( ) ( ) High( ) High( )

( ) ( ) ( ) Low( ) Low( ) ,
High

(High) (High)

Low
(Low) (Low)

where | 〉G t( )(High(Low))  is the ground state of Ĥeff  for high and low amplitude states. Considering the case that the 
number of photons in the high-amplitude states is extremely high, with the low-amplitude state having approxi-
mately zero photon, ⟩ ⟩ ⟩ ⟩G t G E( ) ( )(High) 1

2
| ≈ |− ≡ | − | , and | 〉 ≈ | 〉G t G( )(Low) .

Therefore, the post measured state corresponding to high and low amplitude states are |−〉 and | 〉G . Thus, the 
results in Fig. 4 became asymmetric. In addition, the dynamics of the birfurcation crucially depends on the 
pumping strength (also the detuning, and the strength of the nonlinearlity). In some regime, a bifurcation does 
not appear, and the dynamics described above completely changes.

G Quantum discord.  To elucidate the previous results further, we consider the quantum discord (QD), 
which is defined as follows. Two possible definitions of the mutual information of the state ρ̂AB

ρ ρ ρ ρ

ρ ρ ρ ρ

= + −

= − |

ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ

I S S S
J S S

( ) ( ) ( ) ( )
( ) ( ) ( ),

AB A B AB

A AB B B A

where ρ̂S( ) is the von Neumann entropy for a state ρ̂, ρ̂A B( ) is the reduced density operator for HA B( ), and ρ ρ|ˆ ˆS( )B A  
is the quantum generalization of the conditional entropy. In the purely classical case, one can show that these two 
definitions of the mutual information are equivalent. However, in the nonclassical case, these definitions do not 
necessarily coincide. Also, ρ̂J ( )A AB  is dependent on the measurement basis M̂ for HA. Therefore, the QD is defined 
as

^ˆ ˆ ˆ ˆ ˆˆ ˆ ˆQ ρ ρ ρ ρ ρ= − = − + |I J S S S( ) max { ( )} ( ) ( ) min ( ),AB M M AB A AB M B M{ }

where

∑ρ ρ ρ= = .|S p S M M p p M( ) ( / ), Tr( )B M
k

k k AB k k k k{ }ˆ ˆ ˆ ˆ ˆ ˆˆ

Here M̂k is a projector when the result is k, and the QD is basis independent and reflects only nonclassical 
correlations72,73. In our case, system A corresponds to the approximated two-level system and system B the non-
linear resonator. We set the measurement basis on the approximated two-level system as ϕ ϕ ϕ ϕ| 〉〈 | | 〉〈 |{ , }1 1 2 2 ,

⟩ ⟩ ⟩
⟩ ⟩ ⟩

ϕ θ θ

ϕ θ θ

| = | + |

| = | − |

φ

φ

g e e

g e e

cos( /2) sin( /2) ,

sin( /2) cos( /2) ,

i

i
1

2

θ π φ π≤ ≤ ≤ <(0 , 0 2 ), where | 〉e  and | 〉g  are the eigenstates of σ′ˆ x. Given these definitions we find the θ φ( , ) 
which realize ˆˆ ˆρ |Smin ( )M B M{ } .

We plot the QD in Fig. 14. Interestingly, in contrast to the negativity, the QD, at =t 500 ns, becomes larger as 
ωJ/ q is decreased. This can be explained in the following way: if ωJ/ q is sufficiently large, the state becomes a 

highly entangled state well approximated by the form

| 〉| 〉 − | 〉| 〉e g1
2

( Low High ),

which decays, due the measurement of the nonlinear cavity, to the mixture
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ρ = | 〉〈 | ⊗ | 〉〈 | + | 〉〈 | ⊗ | 〉〈 |ˆ e e g g1
2

( Low Low High High ),f

where | 〉High  and | 〉Low  are high and low amplitude states of the nonlinear resonator. Since | 〉e  and | 〉g  are orthog-
onal to each other, ρ̂f  is a classically correlated state without any superposition, implying the vanishing QD. On 
the other hand, when ωJ/ q is small, the dynamics can be explained by an AC Stark shift and the state can be 
expressed as

ρ = | 〉〈 | ⊗ | 〉〈 |

+ | 〉〈 | ⊗ | 〉〈 |

ˆ p G G

p G G

High High

Low Low ,
a High

(High) (High)

Low
(Low) (Low)

where pLow(High) is the probability that the nonlinear resonator is in the low (or high) amplitude state. The state 
| 〉G(High(Low))  is the ground state of Ĥeff . Here, | 〉G(High)  and | 〉G(Low)  are not always orthogonal to each other, and, as 
such, the correlation in the mixture of the two could have a non-classical nature. Hence, the QD, in the long-time 
limit, tends to have a finite value when J/ωq is small.
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