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Abstract

Alcohol-induced white matter (WM) degeneration is linked to cognitive-motor deficits and 

impairs insulin/insulin-like growth factor (IGF) and Notch networks regulating oligodendrocyte 

function. Ethanol downregulates Aspartyl-Asparaginyl-β-Hydroxylase (ASPH) which drives 

Notch. These experiments determined if alcohol-related WM degeneration was linked to inhibition 

of ASPH and Notch. Adult Long Evans rats were fed for 3, 6 or 8 weeks with liquid diets 

containing 26% ethanol (caloric) and in the last two weeks prior to each endpoint they were 

binged with 2 g/kg ethanol, 3×/week. Controls were studied in parallel. Histological sections of 

the frontal lobe and cerebellar vermis were used for image analysis. Frontal WM proteins were 

used for Western blotting and duplex ELISAs. The ethanol exposures caused progressive 

reductions in frontal and cerebellar WM. Ethanol-mediated frontal WM atrophy was associated 

with reduced expression of ASPH, Jagged 1, HES-1, and HIF-1α. These findings link ethanol-

induced WM atrophy to inhibition of ASPH expression and signaling through Notch networks, 

including HIF-1α.
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1. Introduction

Consequences of alcohol abuse and addiction are among the costliest healthcare problems in 

the world. In the United States, alcohol abuse is the third leading preventable cause of death 

(88,000/year) [1,2,3]. Furthermore, alcohol-related brain disease (ARBD) characterized by 

neurobehavioral abnormalities and cognitive deficits including impairments in executive 

function [4] can disrupt family and social relationships and progress to dementia and 

disability [5,6]. A consistent neuroanatomical substrate of ARBD including cognitive 

impairment is brain atrophy [6,7,8,9,10] with selective degeneration of white matter (WM) 

[11,12,13,14] due in part to myelin loss [8,11,15,16,17].

The severity of ARBD-associated WM atrophy correlates with maximum daily and lifetime 

alcohol exposures [8,13,18]. Although the WM atrophy can be diffuse, ARBD most 

prominently targets the corpus callosum and prefrontal, temporal, and cerebellar WM [8,19], 

corresponding with the sustained adverse effects on executive, cognitive, and motor 

functions. Ultrastructural studies of an experimental model demonstrated that WM atrophy 

following chronic heavy alcohol exposure is mediated by combined effects of 

demyelination, dysmyelination, and axonal degeneration [20]. The finding that chronic 

ethanol exposures broadly alter oligodendrocyte myelin-associated gene expression [21,22] 

suggests that the neurotoxic and degenerative effects of alcohol include oligodendrocyte 

dysfunction.

Oligodendrocytes generate and maintain central nervous system (CNS) myelin via 

differential expression and activation of enzymes needed for its biosynthesis, turnover, and 

degradation [23,24,25,26]. Oligodendrocyte survival and function, including myelin 

homeostasis, are supported by insulin and insulin-like growth factor, type 1 (IGF-1) 

signaling [27,28,29,30]. For example, in vivo overexpression of IGF-1 increases brain size, 

oligodendrocyte abundance, and myelin content [31,32], whereas depletion of IGF-1 or its 

receptor genes, or overexpression of IGF binding proteins, impairs brain growth and 

oligodendrocyte myelin maintenance and maturation [33,34]. One of the main adverse 

effects of chronic and/or binge ethanol exposures is to inhibit brain insulin and IGF-1 

signaling through pathways that regulate cell survival, gene and protein expression, growth, 

metabolism, and plasticity [35, 36,37,38,39,40,41,42,43,44,45]. Sustained inhibition of 

insulin/IGF-1 signaling alters the expression of downstream target genes and proteins that 

regulate important cellular functions. Aspartyl-asparaginyl-β-hydroxylase (ASPH; formally 

abbreviated AAH) is one such insulin/IGF-1 regulated gene that is inhibited by ethanol 

[36,46,47,48].

ASPH is an ~ 86 kD transmembrane phosphoprotein that is expressed on cell surface and 

endoplasmic reticulum membranes [49,50,51]. ASPH is physiologically cleaved into ~ 30–

34 kD N-terminal and ~ 52–54 kD C-terminal fragments. ASPH protein physically interacts 
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with Notch and Jagged [52,53] and its C-terminal catalytic domain hydroxylates β-carbons 

of Asp and Asn residues in their EGF-like domains [49,51]. Attendant activation of Notch 

pathways promotes cell motility and adhesion of immature and neoplastic cells 

[49,52,54,55]. In addition, ASPH signals through hypoxia-inducible factor 1 alpha 

(HIF-1α), driving cell motility under conditions of oxidative stress [54, 56,57].

ASPH’s roles in cell motility, adhesion, and tissue invasion have been largely characterized 

in malignant neoplastic cells, immature brains, and placenta. In contrast, little is known 

about its potential functions in mature tissues and postmitotic cells in which ASPH is 

generally expressed at low levels. However, relevant clues may be derived from a previous 

human study of cerebral autosomal dominant arteriopathy with subcortical infarcts and 

leukoencephalopathy (CADASIL) [58]. CADASIL is a predominantly cerebral WM 

degenerative disease in which the Notch 3 gene on Chromosome 19 is mutated and 

progressive loss of myelinated fibers culminates in dementia [59]. In CADASIL, WM ASPH 

expression is significantly reduced along with profound suppression of mRNAs encoding 

Notch, insulin, IGF-1 and IGF-2 receptors, mature oligodendrocyte myelin-associated genes, 

and oligodendrocyte transcription factors [58]. These observations suggest that the targeting 

of WM oligodendrocytes in CADASIL is linked to impaired expression of Notch and ASPH, 

and reduced signaling through insulin/IGF pathways. However, alcohol-induced WM 

atrophy is also associated with inhibition of insulin/IGF signaling and altered expression of 

oligodendrocyte myelin-associated genes and transcription factors. This study explores the 

potential role of impaired ASPH and Notch signaling as mediators of progressive ARBD-

associated WM atrophy.

2. Methods

2.1. Experimental model

Adult 6-week-old male Long Evans rats were fed with isocaloric liquid diets containing 0% 

or 26% (caloric) for 3, 6 or 8 weeks (n = 6–8/group). To generate a chronic+binge ethanol 

model, during the last two weeks of liquid diet feeding, the ethanol group was binged with 2 

g/kg ethanol by intraperitoneal (IP) injection on Mondays, Wednesdays, and Fridays; 

controls were treated with IP saline. Previous studies showed that the chronic+binge model 

effectively produces WM degeneration and cognitive impairment in rats [22,44]. Rats were 

sacrificed by isoflurane inhalation. Freshly harvested brains were systematically 

microdissected to obtain pretemporal coronal slices of the frontal lobes and midsagittal 

sections of cerebella. One frontal lobe and one hemicerebellum from each rat was frozen on 

dry ice and stored at −80 °C, and corresponding samples from the opposite hemispheres 

were immersion fixed in 10% neutral buffered formalin for paraffin embedding. Rats were 

housed under standardized conditions with 12 h light/dark cycles, and controlled 

temperature (70 °F–74 °F). These experiments were approved by the Institutional Animal 

Care and Use Committee (IACUC) at the Lifespan/Rhode Island Hospital and the protocols 

followed guidelines established by the National Institutes of Health.
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2.2. Histological and image analysis studies

Formalin-fixed frontal lobes and cerebella were embedded in paraffin. Histological sections 

(4 μm thick) generated 5 mm from the temporal pole for the frontal lobe and 5 mm lateral to 

the midline vermis of the cerebellum were stained with Luxol fast blue, hematoxylin, and 

eosin (LHE) and used for image analysis. ImageJ/Fiji software (NIH) was used to measure 

cross-sectional areas of frontal and cerebellar cortex and WM, and assess cellularity within 

the granule and Purkinje cell layers of the cerebellum. All slide analyses were performed 

under code.

2.3. Preparation of protein homogenates

The protein expression studies were limited to the frontal lobe because it was not feasible to 

microdissect cerebellar WM. Frontal lobe WM was homogenized in buffer containing 50 

mM Tris (pH 7.5), 150 mM NaCl, 5 mM EDTA (pH 8.0), 50 mM NaF, 0.1% Triton X-100, 

and protease (1 mM PMSF, 0.1 mM TPCK, 1 mg/mL aprotinin, 1 mg/mL pepstatin A, 0.5 

mg/mL leupeptin, 1 mM NaF, 1 mM Na4P2O7) and phosphatase (2 mM Na3VO4) inhibitors 

using a TissueLyser II (Qiagen, Germantown, MD, USA) with 5 mm stainless steel beads as 

described. Supernatants obtained after centrifuging the samples at 14,000 xg for 10 min at 

4 °C were used for Western blot analysis and duplex enzyme-linked immunosorbent assays. 

Protein concentration was measured using the Pierce bicinchoninic acid assay (Thermo 

Scientific, MA, USA).

2.4. Western blot analysis

Samples containing 40 μg protein were fractionated by sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-8% PAGE) under denaturing and reducing 

conditions along with prestained molecular weight standards. After electrophoretically 

transferring the proteins onto PVDF [55, 60], the membranes were blocked in Pierce 

Superblock (Thermo Scientific) for 30 min at room temperature with gentle agitation, and 

probed overnight (4 °C) with ASPH rabbit polyclonal antibody (1:1000) or A85G6 mouse 

monoclonal ASPH (5.80 μg/mL) in Tris-buffered saline containing 0.05% Tween-20 and 

0.5% bovine serum albumin (BSA) (TBS-T-BSA) [55]. After several washes in TBS-T, the 

membranes were incubated with HRP-conjugated anti-rabbit or anti-mouse antibody in 

TBS-T plus casein (1:10,000) for 1 h at room temperature. After thorough washing of the 

membranes (TBS-T with agitation), immunoreactivity was detected using Pierce Supersignal 

West Pico (Thermo Scientific) and film autoradiography. The membranes were then stripped 

and reprobed with antibodies to the P85 subunit of phosphoinositol-3-kinase (p85-PI3K) as a 

loading control and immunoreactivity was detected as described above. Signal intensities 

were quantified using ImageJ software.

2.5. Duplex enzyme-linked immunosorbent assays (ELISAs)

Direct binding duplex ELISAs were used to measure immunoreactivity to target proteins 

detected with horseradish peroxidase-conjugated secondary antibody and Amplex UltraRed 

soluble fluorophore (Invitrogen, Carlsbad, CA, USA) as described [35]. To adjust for 

variability in sample loading and binding to the wells, these results were normalized to large 

acidic ribosomal protein (RPLPO) (Proteintech Group Inc., Chicago, IL, USA) which was 
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biotinylated and detected with streptavidin-conjugated alkaline phosphatase and the 4-

methylumbelliferyl phosphate (4-MUP) substrate. Fluorescence intensities (Amplex Red: Ex 

565 nm/Em 595 nm; 4-MUP: Ex360/Em450) were measured in a SpectraMax M5 

(Molecular Devices, Sunnyvale, CA, USA). Antibody omission controls were included. The 

calculated target protein/RPLPO ratios were used for intergroup comparisons.

2.6. Statistics

Results were graphed using bar plots in which the means are depicted as horizontal bars, 

95% confidence interval limits correspond to the upper and lower boundaries of the boxes, 

and the range is represented by the upper and lower stems. Intergroup comparisons were 

made using one-way or two-way analysis of variance (ANOVA) with Tukey or linear trend 

post hoc tests (GraphPad Prism 6, San Diego, CA, USA). F-ratios and P-values are 

tabulated. Significant (P < .05) and trend-wise (.05 < P < .10) post hoc test differences are 

shown in the graphs.

2.7. Materials

Pharmaceutical grade ethanol was used in the in vivo experiments. The A85G6 and A85E6 

monoclonal antibodies to ASPH were generated to human recombinant protein [46] and 

purified over Protein G columns (Healthcare, Piscataway, NJ, USA). Otherwise, antibodies 

used for duplex ELISAs were purchased from Abcam (Cambridge, MA, USA). RPLPO 

antibody was from the Proteintech Group Inc. (Chicago, IL, USA). ELISA MaxiSorp 96-

well plates were purchased from Nunc (Rochester, NY, USA). Horseradish peroxidase 

(HRP)-conjugated secondary antibody and Amplex Red soluble fluorophore were purchased 

from Invitrogen (Carlsbad, CA, USA). The SpectraMax M5 microplate reader was 

purchased from Molecular Devices Corp. (Sunnyvale, CA, USA). BCA reagents were from 

Pierce Chemical Corp. (Rockford, IL, USA). All other fine chemicals were purchased from 

CalBiochem (Carlsbad, CA, USA), Pierce (Rockford, IL, USA) or Sigma (St. Louis, MO, 

USA).

3. Results

3.1. Time-dependent effects of ethanol on the frontal cortex

Standardized histological sections of frontal lobe and cerebellar vermis were used for image 

analysis to assess progressive changes in WM abundance following chronic+binge ethanol 

exposures. In the frontal cortex, cell density was measured in sections stained with Cresyl 

violet (Figure 1(a)) and percentage area occupied by WM was measured in adjacent sections 

stained with Luxol fast blue, hematoxylin, and eosin (LHE) (Figure 1(b)). Luxol fast blue 

selectively stains WM myelin blue. In control frontal lobes, the mean cortical cell density 

increased between Week 3 and Week 6, but declined to the Week 3 levels at the 8-week time 

point. In contrast, in the ethanol group, mean cortical cell density was unchanged over the 

course of the experiment. Intergroup statistical comparisons demonstrated that at the 3-week 

and 8-week time points, there were no significant effects of ethanol on neuronal density, but 

at the 6-week time point, cortical cell densities were significantly higher in the control brains 

(P = .01). The time-dependent modulation of cortical cell density in control brains could be 

attributed to increased populations of glial cells at Week 6, and expansion of the neuropil 
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with growth of synaptic terminals between Weeks 6 and 8. The muted responses in ethanol-

exposed brains could have been due to reduced dendritic arborization and synaptic growth/

plasticity, which are recognized as neurotoxic/degenerative effects of alcohol [61,62,63].

3.2. Time-dependent effects of ethanol on frontal WM

The mean percentage cross-sectional area occupied by WM in the frontal lobe progressively 

increased over time in the control group but remained static in the ethanol-exposed group 

(Figure 1(b)). One-way ANOVA with post hoc linear trend analysis of the time-dependent 

increases in relative WM cross-sectional area revealed a Slope = 2.34 and an R2 = 0.461 (P 
= .0026) for the control group. In contrast, the corresponding Slope = −0.084 and R2 = 0.001 

calculated for the ethanol group were not statistically significant. The mean relative cross-

sectional area of frontal WM was significantly greater in the control versus ethanol-exposed 

group at the 8-week time point (P = .001).

3.3. Time-dependent effects of ethanol on the cerebellar cortex

The mean total cross-sectional area of the cerebellar vermis remained relatively unchanged 

in both control and ethanol groups over the time course of the study (Figure 2(a)). In control 

cerebella, the mean percentage area occupied by the molecular layer declined over time and 

was significantly greater than in the ethanol group at the 3-week (P = .0001) but not the 6- or 

8-week time points. In contrast, ethanol exposure did not detectably modulate the mean 

percentage area occupied by the molecular layer over the course of the experiment (Figure 

2(b)). Regarding the granule cell layer, the mean percentage areas were greater in the 

ethanol group at the 3- and 6-week time points. However, at the 8-week time point, the 

trends were switched such that the mean percentage area of granule cells was significantly 

lower in the ethanol-exposed relative to control group (P = .04) (Figure 2(c)).

3.4. Time-dependent effects of ethanol on cerebellar WM

In control cerebella, WM cross-sectional area expanded over time such that its mean 

percentage area increased with age (Slope = 1.18; R2 = 0.238; P = .0027). In contrast, 

ethanol exposures produced opposite effects, resulting in progressive reductions in the mean 

percentage area of WM over time (Slope = −0.91; R2 = 0.24; P = .0028) (Figure 2(d)). 

Correspondingly, the mean relative area of cerebellar WM was significantly and strikingly 

reduced relative to control at each of the three time points. The stepwise widening of the 

intergroup differences indicates that ethanol caused progressive cerebellar WM atrophy with 

increasing duration of exposure. Conceivably, the modest elevations in the mean relative 

area of the granule cell layer vis-à-vis fixed areas of the vermis could be attributed to 

corresponding WM atrophy in the ethanol group.

3.5. Ethanol inhibition of ASPH expression in WM

Western blot analysis was used to quantify ASPH expression in microdissected frontal WM 

using rabbit polyclonal ASPH and mouse monoclonal A85G6-ASPH antibodies. The 

polyclonal antibody mainly recognized ~ 50 kD and ~ 37 kD cleavage products of either 

ASPH or Humbug [55,64,65]. Humbug is a truncated protein corresponding to the N-

terminal region of ASPH [49,50,51,66,67]. Its function is mainly related to calcium flux in 
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the ER [67] and cell adhesion [36,52]. The ~ 50 kD species was similarly expressed in both 

groups across all time points, but expression significantly declined over time (P = .008) such 

that the mean levels were 40%–50% lower at the 8-week versus the 3-week time point 

(Figures 3 and 4(a)). The ~ 37 kD ASPH species was also more abundantly expressed at the 

3-week and 6-week compared with the 8-week time point in both groups. However, the ~ 37 

kD ASPH protein was more abundantly expressed than the ~ 50 kD species, and its decline 

in levels from the 3- and 6-week to the 8-week time point was statistically significant (P = .

002) (Figures 3 and 4(b)). In addition, the mean relative expression of the ~ 37 kD ASPH 

was strikingly lower in the ethanol versus control group at the 8-week time point, although 

the difference was not statistically significant (Figures 3 and 4(b)).

With the A85G6-ASPH monoclonal antibody, which specifically binds to the C-terminal 

regions of ASPH and detects ASPH but not Humbug 46, both the ~ 140 kD phosphorylated 

form of ASPH and the ~ 86 kD native protein were detected (Figure 3). For the ~ 140 kD 

A85G6-ASPH, two-way ANOVA tests demonstrated significant exposure × time interactive 

effects (P = .01) and a trend effect for duration of ethanol exposure (P = .08). At the 3-week 

time point, the ~ 140 kD A85G6-ASPH was expressed at higher levels in the ethanol group 

(P = .005), but at the 6-week and 8-week time points, the expression levels were 

significantly (P = .007 at 6 weeks) or trend-wise (P = .08 at 8 weeks) reduced in the ethanol 

group (Figures 3 and 4(c)). For the ~ 86 kD A85G6-ASPH, two-way ANOVA tests 

demonstrated significant duration (P = .05) and exposure (P = .02) effects of ethanol. The 

highest levels of the ~ 86 kD A85G6-ASPH protein were measured at the 3-week time point 

in both groups (Figures 3 and 4(d)). In the control group, modest reductions in the mean 

level of the ~ 86 kD A85G6-ASPH occurred over time, whereas in the ethanol group, the 

expression levels were significantly reduced and lower than control at the 6- (P = .05) and 8-

week (P = .02) time points. In essence, A85G6-ASPH expression in frontal lobe WM was 

significantly inhibited by ethanol after 6 or 8 weeks of exposure. In contrast, significant 

inhibitory effects of ethanol on ASPH proteins detected with the polyclonal antibody (which 

included Humbug+ASPH) were less striking and just marginally evident at the 8-week time 

point.

3.6. Ethanol effects on ASPH, Notch, Jagged, HES-1, and HIF-1α expression in frontal lobe 
white matter

Duplex ELISAs were used to measure frontal WM immunoreactivity to A85G6-ASPH 

(Figure 5(a)), A85E6-ASPH (Humbug) (Figure 5(b)), Notch 1 (Figure 5(c)), Jagged 1 

(Figure 5(d)), hairy and enhancer of split-1 (HES-1; Figure 5(e)), and HIF-1α (Figure 5(f)), 

with results normalized to RPLPO. Corresponding with the Western blot results, A85G6-

ASPH expression was significantly reduced by ethanol at each time point. In contrast, 

A85E6-ASPH (Humbug) expression was significantly elevated in the ethanol group at the 3- 

and 6-week time points, but significantly reduced at the 8-week time point. These findings 

correspond with the Western blot results obtained with the polyclonal ASPH antibody (see 

Figure 3). Notch 1 expression was similar across all time points and was not significantly 

modulated by ethanol exposure (Figure 5(c)). In contrast, the mean levels of Jagged 1 

expression were consistently lower in ethanol-exposed samples. The intergroup differences 

were statistically significant at the 3-week and 8-week time points (Figure 5(d)). HES-1 
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expression was modulated with time (age) and ethanol exposure. At the 3-week time point, 

ethanol caused trend reductions in mean HES-1 expression, but at the 6-week time point, the 

intergroup difference was highly statistically significant, mainly due to increased levels in 

the control group. At the 8-week time point, HES-1 expression was similar in control and 

ethanol-exposed frontal WM tissue. HIF-1α expression was also inhibited by ethanol. The 

intergroup differences were statistically significant at the 3-week and 6-week time points, 

but just reached a statistical trend at the 8-week time point (Figure 5(f)). Therefore, ethanol 

inhibition of ASPH expression was associated with reduced expression of Notch pathway 

proteins (i.e., Jagged 1 and HES-1, and HIF-1α) which crosstalk through Notch signaling 

[54,57].

4. Discussion

This study examined the time-dependent effects of chronic+ binge ethanol exposures on the 

frontal lobe and cerebellar vermis of adult Long Evans male rats. The model utilized high 

levels of chronic ethanol feeding with superimposed binge administrations to simulate the 

human condition associated with alcoholic liver and brain diseases. This model produces 

significant alcohol-related liver injury with steatohepatitis [68,69] as well as deficits in 

spatial learning and memory [44,70]. The main objective in these studies was to characterize 

progressive ethanol effects in two brain regions that are reproducibly damaged in adult 

humans and experimental animals with alcohol-related neurodegeneration. The emphasis 

was on WM because although WM atrophy and degeneration are well-recognized features of 

alcoholic brain disease, their onset and rate of development have not been fully evaluated.

In control frontal cortex, the time-dependent increases in cell density between Weeks 3 and 

6 were likely due to increased glia, whereas the relative reductions between Weeks 6 and 8 

could be explained by expansion of the neuropil associated with ongoing dendritic spine 

growth [71]. The absent net response in ethanol-exposed brains could reflect combined 

effects of neuronal loss with expansion of glia between Weeks 3 and 6, and muted dendritic 

arborization between Weeks 6 and 8.

Image analysis of the cerebellar vermis demonstrated no significant intergroup differences in 

the overall cross-sectional areas. Instead, the main differences were attributable to early 

(Weeks 3 and 6) relative reductions in the molecular layer and late reductions in the granule 

cell layer in ethanol-exposed cerebella. The molecular layer contains predominantly nerve 

terminals from the granule cell layer. Therefore, the early reductions in relative area of the 

molecular layer suggest that ethanol exposure causes loss of nerve terminals destined to 

synapse on Purkinje cells which drive motor output from the cerebellum. These adverse 

effects could account for alcohol-related cerebellar dysfunction, manifested by poor 

performance on tasks such as the rotarod [40,72,73]. The relative decline in granule cells 

late in the time course (Week 8), corresponds with granule cell loss that is characteristic of 

alcohol-related cerebellar degeneration in humans and experimental models [8,37,74]. These 

findings suggest that cerebellar degeneration may be partly reversible prior to granule cell 

loss (i.e., the 8-week time point) since their preservation vis-à-vis abstinence would enable 

potential recovery and neurite regeneration.
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Image analysis demonstrated significant progressive relative increases in the cross-sectional 

area of control WM but no changes over time in the ethanol group. These data indicate 

progressive expansion of frontal lobe WM volume with increasing age in controls, and no 

net growth in ethanol-exposed brains. The inhibitory effects of ethanol on cerebellar WM 

were more striking than in the frontal lobe. While control cerebellar WM progressively 

expanded over time, it significantly declined in the ethanol-exposed group. Therefore, 

ethanol not only inhibited WM growth, it also caused atrophy in the cerebellum.

Cerebellar WM contains both afferent and efferent myelinated fibers. Their progressive 

degeneration from the earliest time points suggests that motor relay functions are 

substantially impaired even after a relatively short period of heavy alcohol abuse. Since WM 

is largely composed of myelin, impaired function of oligodendrocytes could account for 

deficits in myelin biosynthesis and maintenance or disproportionately increased myelin 

degradation vis-à-vis normal rates of biosynthesis. The greater severity of ethanol-induced 

damage to cerebellar versus frontal lobe WM suggests that oligodendrocyte susceptibility to 

injury and degeneration also vary with brain region. The findings herein indicate differential 

regional adverse effects of ethanol on WM integrity and highlight the concept that target 

vulnerability varies. Correspondingly, regional differences in oligodendrocyte vulnerability 

to injury and associated demyelination have been described in an experimental cuprizone 

exposure model [75].

Previous studies demonstrated that ethanol impairs insulin and IGF-1 signaling in neurons 

and gray matter structures in the brain, and that these responses are associated with reduced 

expression and function of insulin/IGF-1 target genes and proteins, including ASPH [36,46]. 

In addition, crosstalk between ASPH and Notch networks is disrupted following chronic 

experimental ethanol exposures [57]. Studies of ethanol’s effects on ASPH and Notch 

networks were extended to the present model to gain a better understanding of the molecular 

mechanisms of alcohol-induced progressive WM atrophy. The experimental approaches 

were driven by prior evidence that (1) insulin/IGF signaling regulates oligodendrocyte 

survival and function [27,28,29,30], (2) WM degeneration in human CADASIL has been 

linked to reduced insulin/IGF and Notch pathway signaling [58], (3) experimental chronic 

ethanol exposures lead to substantial impairments in oligodendrocyte function, myelin 

integrity, and myelin maintenance associated with inhibition of insulin/IGF signaling 

through survival and metabolic pathways [8,21, 70,76], and (4) ASPH functions via 

crosstalk with Notch networks including HIF-1α [54,57].

Western blot analyses of frontal WM demonstrated significant inhibitory effects of ethanol 

on ASPH expression, with larger effects at Week 8 compared with Week 6, corresponding 

with the progressive relative reductions in WM area. However, at the 3-week time point, the 

minimal alterations in ASPH expression correspond with the absence of detectable ethanol 

effects on WM structure. ELISA studies utilized the A85G6 and A85E6 monoclonal 

antibodies which respectively recognize ASPH-86 kD and ASPH+Humbug [46]. However, 

since Humbug is 7- to 10-fold more abundant than ASPH, combined detection of ASPH 

with Humbug can produce mixed net responses. Importantly, ASPH expression, specifically 

detected with the A85G6 antibody, was significantly inhibited at all time points. In contrast, 

ASPH+Humbug immunoreactivity was significantly elevated in the earlier time points but 
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suppressed by Week 8. These findings indicate that ethanol has profound inhibitory effects 

on WM ASPH expression, even after relatively short-term exposures, but its inhibitory 

effects on WM Humbug occur after long-term exposures.

ASPH’s function has mainly been linked to cell motility in immature neurons and a broad 

range of malignant neoplastic cell types [49,51,52,53,77,78,79,80,81,82]. Humbug has roles 

in regulating calcium flux and cell adhesion [52,67]. Although their functions in 

oligodendrocytes and myelin have not yet been determined, potential clues stem from 

independent studies showing that inhibition of ASPH causes cellular senescence [56]. 

Therefore, ethanol inhibition of ASPH may mediate WM atrophy and degeneration by 

causing senescence of oligodendrocytes, impairing their capacity to maintain myelin.

Previous studies linked ASPH’s function through Notch and Jagged [52,54,57] which have 

consensus sequences for ASPH hydroxylation [51]. To demonstrate how ethanol inhibition 

of ASPH expression impacts Notch networks in WM, we measured Notch 1, Jagged 1, 

HES-1, and HIF-1α immunoreactivity. All except for Notch were inhibited by ethanol with 

intergroup differences achieving statistical significance or a statistical trend at most time 

points. Although Notch protein was not reduced, its function could still have been impaired 

due to decreased hydroxylation, cleavage, and translocation to the nucleus. Notch signaling 

plays key roles in gliogenesis and glial differentiation [83,84], and impairments in Notch 

inhibit nerve regeneration [85]. Inhibition of the HES-1 transcription factor leads to reduced 

expression of downstream target genes including regulators of the cell cycle [86]. In 

addition, suppressing HES disrupts neurodevelopment and histogenesis, and accelerates cell 

differentiation leading to increased gliogenesis [86].

HIF-1α inhibition was most pronounced after 3 and 6 weeks of ethanol exposure, paralleling 

the HES-1 responses. Previous studies linked Notch activation to HIF-1α expression [54] 

and hypoxia [87]. Increased levels of HIF-1α have been associated with hypoxia-type 

myelin and oligodendrocyte loss in the brain [88]. Of note is that increased activation of 

PI3K/Akt is associated with increased expression of HIF-1α [89], but following ethanol 

exposure, PI3K/Akt signaling is inhibited [37,40,45], corresponding with the reduced 

HIF-1α expression measured in frontal lobe WM. In addition, there is some evidence that 

HIF-1α regulates expression of oligodendrocyte lineage gene-1 in mediating myelin repair 

following injury [90]. More recently, HIF-1α expression has been linked to oligodendrocyte 

precursor cell maturation and WM myelination, and coupling of these functions with axonal 

integrity and angiogenesis in the forebrain [91]. Therefore, the reduced HIF-1α expression 

measured in ethanol-exposed WM most likely contributed to the deficiencies in myelin and 

axonal maintenance that led to WM atrophy and degeneration.

The findings in these experimental/preclinical studies provide new clues about the 

mechanisms of alcohol-related WM degeneration. Importantly, they demonstrate that WM 

atrophy is associated with reduced expression of ASPH and Humbug, which are downstream 

targets of insulin/IGF-1 stimulation. Moreover, these studies link alcohol-related WM 

degeneration to impairments in Notch and HIF-1α signaling networks. Since previous 

studies reported very similar abnormalities in neurons and cortical structures following 

chronic or chronic+binge ethanol exposures [36, 46,57], it is likely that impairments in brain 
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insulin/IGF-1 signaling through ASPH, Notch, and HIF-1α pathways are at the core and 

mechanistically link the molecular pathogenesis of neuronal and oligodendroglial cell 

degeneration. In the cortex, the consequences of these impairments include reduced neuronal 

plasticity, whereas in WM, the adverse effects lead to loss of myelin homeostasis, increased 

myelin lipid breakdown, lipid peroxidation, oxidative stress, and ultimately impaired 

neuronal conductivity with declines in executive function. However, from the standpoint of 

therapeutics, a parsimonious approach that globally supports insulin/IGF-1 pathways in the 

human brain could potentially provide optimum neuroprotection for both neurons and 

oligodendrocytes in the context of alcohol use disorders.
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Figure 1. 
Ethanol inhibits frontal lobe white matter growth. Long Evans rats (6–8/group) were fed for 

3, 6 or 8 weeks with isocaloric liquid diets containing 0% or 26% ethanol by caloric content, 

and two weeks prior to each endpoint, they were IP binged with 2 g/kg ethanol (ethanol 

group) or saline (control group) 3×/week (N = 6–8 rats/group). Formalin-fixed, paraffin 

embedded histological sections of frontal lobe were stained with Luxol fast blue, 

hematoxylin, and eosin (LHE) and used for image analysis of (a) cortical cell density and (b) 

relative (% of total) cross-sectional area of white matter. ANOVA with post hoc Tukey tests 

identified specific intergroup differences.
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Figure 2. 
Effects of ethanol on cortical and white matter structures in the cerebellar vermis. Long 

Evans rats (6–8/group) were fed for 3, 6 or 8 weeks with isocaloric liquid diets containing 

0% or 26% ethanol by caloric content, and two weeks prior to each endpoint, they were IP 

binged with 2 g/kg ethanol (ethanol group) or saline (control group) 3×/week (N = 6–8 rats/

group). Formalin-fixed, paraffin embedded histological sections of cerebellar vermis were 

stained with LHE and used for image analysis (Image J) to determine the (a) overall cross-

sectional area, (b) relative (% of total area) cross-sectional area of the molecular layer, (c) 

relative cross-sectional area of the granule cell layer, and (d) relative cross-sectional area of 

white matter. Bar plots depict means (horizontal bars), 95% confidence interval limits (upper 

and lower boundaries of the boxes), and range (upper and lower stems). ANOVA with post 

hoc Tukey tests identified specific intergroup differences. ξ= .05 < P < .10 (statistical trend).
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Figure 3. 
Effects of different durations of ethanol exposure on ASPH expression. Long Evans male 

rats (6–8/group) were fed for 3, 6 or 8 weeks with isocaloric liquid diets containing 0% or 

26% ethanol, and two weeks prior to each endpoint, rats were IP binged with 2 g/kg ethanol 

(ethanol group) or saline (control group) 3×/week. Western blot analysis of frontal lobe 

white matter (representative samples shown) was performed with polyclonal anti-ASPH, and 

the monoclonal A85G6 antibodies to examine effects of different durations of ethanol 

exposure on ASPH protein expression. Polyclonal anti-ASPH antibody binds to the N-

terminus of ASPH. However, that antibody also detect Humbug since its amino acid 

sequences are virtually identical to those in the N-terminal region of ASPH. A85G6 binds to 

the C-terminus of ASPH which contains a catalytic domain that is not present in Humbug. 

Both antibodies can detect cleavage products of ASPH and Humbug. Each lane corresponds 

to a different frontal lobe sample. After probing for ASPH, the blots were stripped and 

reprobed with antibodies to the p85 subunit of PI3 kinase as a negative control.
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Figure 4. 
Digital quantification of Western blot signals. The average intensities of the ASPH-50 kD, 

ASPH-37 kD, A85G6-140 kD, A85G6-86 kD, and p85-PI3K bands were measured using 

Image J. Relative abundance of each protein was assessed by calculating the ratios of the 

ASPH/p85 and A85G6/p85 signals. Graphs depict mean ±SEM of all samples analyzed in 

each group. Results were analyzed by two-way ANOVA tests with post hoc Tukey tests. 

Significant differences and statistical trends are indicated over the bars.
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Figure 5. 
Duplex ELISAs were used to measure (a) ASPH using the A85G5 monoclonal antibody, (b) 

Humbug+ASPH, using the A85E6 monoclonal antibody, (c) Notch 1, (d) Jagged 1, (e) 

HES-1, and (f) HIF-1α (N = 6–8 samples/group). Immunoreactivity was normalized to 

RPLPO. Results were analyzed by two-way ANOVA (Table 1) and the post hoc Tukey test. 

Significant differences and statistical trends are displayed within the panels.
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