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Abstract
A major concern in the clinical application of cell therapy is the manufacturing cost of cell products, which mainly depends 
on quality control. The mycoplasma test, an important biological test in cell therapy, takes several weeks to detect a micro-
organism and is extremely expensive. Furthermore, the manual detection of mycoplasma from images requires high-level 
expertise. We hypothesized that a mycoplasma identification program using a convolutional neural network could reduce 
the test time and improve sensitivity. To this end, we developed a program comprising three parts (mycoplasma detection, 
prediction, and cell counting) that allows users to evaluate the sample and verify infected/non-infected cells identified by 
the program. In experiments conducted, stained DNA images of positive and negative control using mycoplasma-infected 
and non-infected Vero cells, respectively, were used as training data, and the program results were compared with those of 
conventional methods, such as manual counting based on visual observation. The minimum detectable mycoplasma contami-
nations for manual counting and the proposed program were 10 and 5 CFU (colony-forming unit), respectively, and the test 
time for manual counting was 20 times that for the proposed program. These results suggest that the proposed system can 
realize a low-cost and streamlined manufacturing process for cellular products in cell-based research and clinical applications.
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Introduction

Regenerative medicine using processed cells is a promising 
therapy for intractable diseases, and the clinical application 
of such therapy is progressing [1, 2]. In the manufacturing 
process of cell products for regenerative medicine, biological 
tests such as sterility tests, endotoxin tests, and mycoplasma 
tests ensure the safety of biological ingredients. However, 

sterility and mycoplasma tests require one to several weeks 
because they often require a culturing process before micro-
organism detection. Because of such long testing times and 
relatively low efficiencies, these tests run the risk of increas-
ing manufacturing costs such as the labor cost and additional 
costs due to delays in contamination detection, thereby mak-
ing cell products expensive and hampering their practical 
application.

The Japanese Pharmacopoeia [3], European Pharma-
copoeia [4], and US Pharmacopoeia [5] list three types of 
mycoplasma tests: culture method, indicator cell culture 
method, and nucleic acid amplification techniques (NAT). 
The culture method is highly reliable because it entails the 
direct observation of mycoplasma contamination. However, 
it is time-consuming, taking more than 4 weeks to produce 
a result. Although NAT can provide results rapidly, it does 
not distinguish between live and dead mycoplasma. There-
fore, when NAT shows a positive result, it usually needs 
to be confirmed using other test methods such as the cul-
ture method, leading to a significant increase in the total 
test time. Although the indicator cell culture method can 
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deliver a result in a shorter time, compared with the culture 
method, the examiner must be highly experienced to make a 
right call, because the mycoplasma contamination is checked 
by visual observation. In such test methods based on the 
observation of microscopic images, the accuracy of results 
may depend on the experience and expertise of observers, 
causing issues related to the evaluation of cell morphology 
in the manufacturing process of cell products and in clinical 
diagnosis using pathological images. As a solution, detection 
programs using artificial intelligence (AI) are being actively 
developed [6, 7]. AI can process a large number of images in 
a short time and may be able to detect small differences that 
cannot be discerned by the human eye. The development of 
an appropriate AI detection program is expected to reduce 
the test time and increase the accuracy of results. However, 
to the best of our knowledge, no studies using AI in myco-
plasma testing have been reported.

In this study, we hypothesized that a mycoplasma detec-
tion program incorporating a convolutional neural network 
(CNN), which is an AI technology [8, 9], could detect, count 
and evaluate infection with mycoplasma, based on stained 
DNA images. We subsequently developed such a program 
and found that it yields accurate information concerning 
mycoplasma infections in a shorter test time with higher 
sensitivity compared to conventional methods.

Methods

Mycoplasma culture

Mycoplasma hyorhinis strains (ATCC, 17,981-TTR) were 
cultured for 3 days in a medium consisting of 1.75% heart 
infusion broth (BD, Franklin Lakes, NJ), 20% heat-inac-
tivated horse serum (Thermo Fisher Scientific, Waltham, 
MA), and 10% fresh yeast extract solution (Oriental Yeast, 
Tokyo, Japan) under aerobic conditions (37 °C, 5%  CO2) and 
subsequently freeze-preserved in a medium containing 10% 
glycerol. Mycoplasma arginini strains (NBRC, 111,899) 
were cultured for 2 days in a medium consisting of 1.5% 
Bacto PPLO broth (BD), 0.002% phenol red (Wako, Tokyo, 
Japan), 0.2% l-arginine (Tokyo chemical industry, Tokyo, 
Japan), 20% horse serum (Thermo Fisher Scientific), 10% 
fresh yeast extract solution (Oriental Yeast), 0.1% l-glu-
tamine (Wako), and 0.1% 100X MEM vitamins (Thermo 
Fisher Scientific) under aerobic conditions (37 °C, 5%  CO2) 
and subsequently freeze-preserved. After the cryopreserved 
mycoplasma were thawed and cultured, the formed colonies 
were counted to determine the colony-forming unit (CFU) 
of the cryopreserved mycoplasma.

Cell culture

Vero, a cell line derived from African green monkey kid-
ney, was obtained from JCRB. The cells were maintained in 
modified Eagle’s medium (Thermo Fisher Scientific) con-
taining 10% fetal bovine serum (Biosera, Nuaillé, France).

Mycoplasma tests

Indicator cells, Vero, were seeded on a cover slip in a 6-well 
cell culture plate in Eagle’s minimum essential medium con-
taining 10% fetal bovine serum at 2 ×  104 cells/well. These 
cells were cultured at 37 ℃ and 5%  CO2 for 1 day, subse-
quently, the medium was replaced with fresh medium, fol-
lowing which a positive control or negative control (Vero 
cells culture medium) was added and cultured at 37 °C and 
5%  CO2. As the positive control, a mycoplasma suspen-
sion prepared in 5, 10, and 100 CFU [M. hyorhinis (ATCC 
17,981) and M. arginini (NBRC 111,899)] was added to the 
Vero cells. After 6 days, the culture medium was removed, 
and a methanol/acetic acid mixture (3:1) was added to each 
well and allowed to stand for 5 or 10 min. After removing 
the fixative and then completely air-drying all cover slips, 
1 μg/mL bisbenzimide fluorescent staining solution (Thermo 
Fisher Scientific) was added to each well and allowed to 
stand at room temperature for 30 min. The coverslips were 
air-dried, mounted with a glass antifade mountant (Thermo 
Fisher Scientific), and examined using fluorescence micros-
copy at a magnification factor of 400. A test result is identi-
fied as positive if there are more than 5 cells per 1000 (0.5%) 
that have minute fluorescent spots that appear to surround, 
but are outside, the cell nucleus. The criteria for positives 
follow the JP XVII general information/biotechnological 
products 2461, B. Indicator cell culture method.

Architecture of two‑part mycoplasma detection 
program

Figure 1a shows an outline of the prototype program con-
sisting of two parts. In the prediction part, regions of indi-
cator cells are detected, and individual cells are identified 
as positive or negative. U-Net [10] was used for this pur-
pose. Input data are stained DNA images, and label images 
show the contamination status of the indicator cells. Con-
taminated cells are shown in blue. Non-contaminated cells 
are shown in red. The input images and label images were 
used for training U-Net. The network outputs cell nuclei 
images with the contamination status of the indicator cells. 
The kernel size of the convolutional layer is 9 × 9 and that 
of the deconvolution layer is 3 × 3. The rectified linear unit 
is used as the activation function in both the convolutional 
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and deconvolutional layer. The output layer has two chan-
nels: one each for contaminated and non-contaminated cells. 

The number of infected and non-infected cells in the cell 
mass region is determined in the cell counting part. WRN 
(wide residual network) is used as the network in this layer 

[11]. The WRN used in this study was modified from the 
original WRN that removed dropout in skip-connection and 
batch normalization and used average pooling and flatten-
ing instead of GAP (global average pooling) to make the 
model small and fast. The WRN was used as a classification 

Fig. 1  Architecture and test 
results of the prototype two-part 
program. a In the first part, 
images showing the contamina-
tion state of the indicator cells 
are generated from stained 
DNA images. 128 × 128 pixel 
stained DNA images that were 
cut out randomly from original 
images (1392 × 1040 pixel). In 
the second part, the number 
of cells is calculated from the 
images of the cell mass region 
obtained from the output of the 
first part and the stained DNA 
images. b Counted number of 
mycoplasma-positive cells out 
of 1000 cells and the call of the 
test. Two separate datasets were 
used in the experiments. NC 
negative control, PC positive 
control

a

b
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model. WRN outputs a class that represents the number of 
cells in the input image. The input data shown in Fig. 1a and 
the ground truth were used for training as label images. We 
created these data manually.

Architecture of three‑part mycoplasma detection 
program

Figure 2a shows an outline of the program consisting of 
three parts. In this program, a mycoplasma detection part 
is added before the prediction part to visually confirm the 
result of mycoplasma detection. In this part, mycoplasma 
is detected using U-Net. The network configuration is the 
same as that of the prediction layer in the two-part program, 
and output layer has one channel. In the prediction part, the 
results of the mycoplasma detection part and stained DNA 
images are input. The network configuration is very similar 

to that of the mycoplasma detection part. The input layer has 
one channel each for the result of the mycoplasma detection 
part and the stained DNA images. The output layer has two 
channels. The cell counting part is the same as that of the 
two-part program. The input data shown in Fig. 2a and the 
ground truth were used for training as label images. We cre-
ated these data manually. 

Data collection

In the prediction part of the two-part program, 128 × 128 
pixel stained DNA images that were cut out randomly from 
original images (1392 × 1040 pixel) were input for training, 
and 96 × 96 pixel images showing the contamination status 
of the indicator cells that were cut out using the same cen-
tral coordinates of stained DNA image were used as label 
images. In the mycoplasma detection part of the three-part 

Fig. 2  Architecture and results 
of the improved three-part 
program. a In the first part, the 
results of mycoplasma detection 
are generated from the stained 
DNA images. 128 × 128 pixel 
stained DNA images that were 
cut out randomly from original 
images (1392 × 1040 pixel). In 
the second part, images show-
ing the contamination state of 
the indicator cells are generated 
from the stained DNA images 
and the output of the first 
part. 128 × 128 pixel stained 
DNA images that were cut out 
randomly from original images 
(1392 × 1040 pixel). 128 × 128 
pixel mycoplasma images were 
cut out at the same coordinates 
from results of mycoplasma 
detection part. In the third part, 
the number of cells is calculated 
from the images of the cell 
mass region obtained from the 
output of the first part and the 
stained DNA images. b Counted 
number of mycoplasma-positive 
cells out of 1000 cells and the 
call of the test. Two separate 
datasets were used in the experi-
ments. NC negative control, PC 
positive control

b

a
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program, 128 × 128 pixel stained DNA images were input, 
and 128 × 128 pixel images showing mycoplasma were used 
as label images. 128 × 128 pixel images were cut out in tiles 
from the stained DNA image for test. Output images were 
also combined in tiles. In the cell counting part, 96 × 96 
pixel images of masked indicator cells were input, and the 
number of indicator cells was used as the label. The images 
of masked indicator cells were cut out from stained DNA 
images and areas other than those containing the indica-
tor cells were masked to reject unwanted effects. The mask 
comprised binary images of indicator cells. The number of 
indicator cells was divided into four classes: ‘1’, ‘2’, ‘3’, 
and ‘above 3’.

Performance evaluation

The constructed program was evaluated using images of 
Vero cells infected with a confirmed CFU of mycoplasma. 
The test result of the program was compared with manual 
counting by visual observation in terms of the call accuracy 
and test time. Since the mycoplasma test is not a quantitative 
test, the accuracy was determined by the correctness of posi-
tive/negative call and the number of mycoplasma-positive 
cells was not compared. Manual counting was conducted by 
two experts who had mastered the mycoplasma test and one 

novice. We used the Microsoft Cognitive Toolkit (CNTK-
2.3) as a deep-learning framework, and NVIDA GeForce 
2080 Ti. The program used 100th epoch trained models.

Results

Construction of prototype program for automatic 
detection and counting of mycoplasma

Mycoplasma tests using the indicator cell culture method 
consist of the following steps: culturing indicator cells with 
the culture supernatant of cell products, staining DNA, 
counting the number of mycoplasma-positive or myco-
plasma-negative cells, and making an evaluation from the 
counted number. In this study, we developed a program for 
the automatic detection and counting of mycoplasma and 
the infection evaluation using the scheme shown in Fig. 3. 
The program was constructed using stained DNA images of 
positive control (mycoplasma-infected Vero cells) and nega-
tive control (non-infected Vero cells) as training data. To 
evaluate the program, test images were input to the program, 
and output data were verified for accuracy and compared 
with data from manual counting. Approximately 25,600,000 
cropped images obtained from 4000 original images and 

Fig. 3  Schematic diagram of the construction of the program and 
evaluation. Stained DNA images of positive control (mycoplasma-
infected Vero cells) and negative control (non-infected Vero cells) 
were used as training data. The stained DNA images were obtained 

using the indicator cell culture method. Representative images of 
positive and negative samples are shown. The red arrow indicates the 
observed mycoplasma
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6,400,000 cropped images from 1000 original images were 
used as training data for positive control and negative con-
trol, respectively. Ratio of images used for training data to 
those used for test data was 8:2.

First, a prototype program consisting of two parts—
namely, a prediction part (clarification of mycoplasma-
infected and non-infected) and cell counting part (counting 
of mycoplasma-infected and non-infected cells)—was con-
structed (Fig. 1a). When images of Vero cells infected with 
0, 5, 10, and 100 CFU mycoplasma were input to this pro-
gram as test images, the program was able to detect as little 
as 5 CFU mycoplasma contamination and detect the positive 
sample correctly (Fig. 1b). One hundred CFU is the CFU of 
positive control specified by the Japanese Pharmacopoeia 
for the culture method, and 10 CFU is the detection limit of 
other mycoplasma tests, the culture method and NAT.

Construction of improved program for automatic 
detection and counting of mycoplasma

Next, to verify the distinction between infected and non-
infected cells, which the prototype program showed, an 
improved program consisting of three parts—namely, myco-
plasma detection part, prediction part, and cell counting 
part—was constructed based on the prototype program. As 
shown in Fig. 2a, the mycoplasma detection part enabled the 
confirmation of the distinction of the cells. When images of 
Vero cells infected with 0, 5, 10, and 100 CFU mycoplasma 
were input to this program as test images, the program was 
able to detect as little as 5 CFU mycoplasma contamination 
and detect the positive sample correctly (Fig. 2b). There 
were no differences between the prototype and the improved 
program in terms of the accuracy of negative and positive 
calls of the samples. Furthermore, the accuracy of the learn-
ing process in the improved program was evaluated, and the 
results indicate that the test accuracy in each part did not 
decrease and there was no over-learning (Fig. 4). Further-
more, the mycoplasma detection part and prediction part had 
lower accuracy than the cell counting part because different 
network types were used. The improved program was used 
for further studies.

Comparison with manual counting

For comparison with the conventional method of manual 
counting by visual observation, the accuracy of call, and 
test time using test images (Vero cells infected with 0, 5, 
10, and 100 CFU mycoplasma) were compared between the 
program and manual counting by two experts. While the 
samples infected with more than 10 CFU mycoplasma were 
called as positive by both manual counting and the program, 
samples infected with 5 CFU were called as positive only 
by the program (Fig. 5). In addition, samples infected with 

0 CFU (non-infected samples) were falsely called as positive 
by manual counting, whereas the program correctly identi-
fied these as negatives. Furthermore, the total test time for 
manual counting was more than 100 min, while that of the 
program was 5 min.

As two strains of mycoplasma are used as positive con-
trol in Japanese [3], European [4], and US [5] Pharmaco-
poeia, the program and manual counting were compared 
using images of samples infected with mycoplasma hyor-
hinis or mycoplasma arginini (0, 10, and 100 CFU). In 
addition, manual counting was conducted by two skilled 
persons (expert 1 and expert 2) and one novice. In the sam-
ples infected with mycoplasma hyorhinis, the calls of both 
experts and the program were correct, whereas the novice 
falsely identified the 0 CFU sample as positive (Fig. 6a). 
The total test times for expert 1, expert 2, the novice, and 
the program were 237 min, 129 min, 138 min, and 249 s, 
respectively (Fig. 6b). On the other hand, expert 1, expert 2, 
the novice, and the program correctly identified all the sam-
ples infected with mycoplasma arginine (Fig. 6c). The total 
test times for expert 1, expert 2, the novice, and the program 
were 178 min, 119 min, 133 min, and 293 s, respectively 
(Fig. 6d).

Discussion

In this study, we constructed a mycoplasma detection 
program that detects mycoplasma, counts the number of 
mycoplasma-positive and mycoplasma-negative cells, and 
calls whether a sample is infected using AI technology. The 
program detected a mycoplasma contamination as low as 
5 CFU, which was not specified in official documents as 
being detectable by other test methods, and correctly iden-
tified mycoplasma-positive and mycoplasma-negative sam-
ples. In contrast, the minimum detectable mycoplasma con-
tamination with manual counting was 10 CFU. In addition, 
manual counting took 20 times longer to complete the test, 
compared with the program.

In the comparison of calls by two experts and one nov-
ice, although there were no significant differences in the test 
time among testers, the novice gave a false-positive call, 
indicating that proficiency affects calls. False-positive calls 
deteriorate the yield of cell products and increase product 
cost, while false-negative calls are not allowed in clinical 
cell therapy to ensure safety. Thus, call by visual observa-
tion should be avoided not only to reduce cost through the 
elimination of education and training of the tester, but also 
to ensure safety.

Deep-learning systems occasionally make decisions, 
based on criteria that cannot be understood by humans, 
and it is not possible to confirm whether the algorithm uses 
medically based feature quantities. In this study, using an 
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algorithm consisting of three parts—namely, the myco-
plasma detection part, prediction part, and cell count-
ing part—the steps from interim assessment (recogni-
tion of infected and uninfected cells) to the final call can 
be confirmed to obtain accurate results. Since the interim 
assessment is visualized using U-Net [10], infected and 

non-infected cells can be easily confirmed from the images 
halfway through the evaluation the Dice coefficient was 
used as the loss function in U-Net in the mycoplasma detec-
tion part. Although an imbalance problem tends to occur in 
images such as those used in the mycoplasma test, in which 
the ratio of negative samples to positive samples is biased, 
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of 1000 cells and the call of the 
test, along with the total test 
time
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the Dice coefficient yields better accuracy in the presence of 
imbalance problems than cross entropy, which is a popular 
loss function [11]. A WRN [12], in which the expressive 
power is enhanced by increasing the number of filters, was 
used in the cell counting part.

The techniques used in this program may also be applied 
to other tests that require visual evaluation by humans, such 
as the micronucleus test (a test for observing micronuclei 
appearing in the cytoplasm owing to a chromosomal abnor-
mality) [13] and sterility test. In the case of the sterility test, 
image analysis using AI technology may increase sensitivity 
and reduce the test period by detecting minute changes that 
cannot be evaluated by the human eye. However, for applica-
tion to other tests, it is important to prepare a considerable 
amount of appropriate training data for each test.

The present results indicate that the mycoplasma detec-
tion program using CNN, which detects and counts the num-
ber of mycoplasma from images, reduces the test time and 

increases sensitivity, suggesting that this system can effec-
tively reduce the cost of processing cellular products.

Acknowledgements This work was supported by the Japan Agency 
for Medical Research and Development. We appreciate the invalu-
able advice provided by Professor Yoji Sato. We would like to thank 
the members of our laboratory for providing technical advice and 
encouragement.

Author contributions YS conceived the study; YS and TH supervised 
the study; YS, TH, SM, HI, MS, SD, HA, KT, and SS designed the 
experiments; HI, MS, SD, HA, and AN conducted the experiments; 
and HI, MS, SD, HA, and SS analyzed the results. All the authors 
reviewed the manuscript.

Data availability The datasets used and/or analyzed during the cur-
rent study are available from the corresponding author on reasonable 
request.

a b

c d

Fig. 6  Comparison with manual counting. Counted number of mycoplasma-positive cells out of 1000 cells, the call of the test, along with the 
total test time (a), (c) and test time of individual samples (b), (d). Two mycoplasma species were used for the test



58 Journal of Artificial Organs (2022) 25:50–58

1 3

Declarations 

Conflict of interest The authors declare no conflict of interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Ryu B, et al. Allogeneic adipose-derived mesenchymal stem cell 
sheet that produces neurological improvement with angiogenesis 
and neurogenesis in a rat stroke model. J Neurosurg. 2019;1:1–14.

 2. Chien KR, Frisen J, Fritsche-Danielson R, Melton DA, Murry 
CE, Weissman IL. Regenerating the field of cardiovascular cell 
therapy. Nat Biotech. 2019;37:232–7.

 3. Pharmacopoeia Japan. Mycoplasma testing for cell substrates 
used for the production of biotechnological/biological products 
in Japanese pharmacopoeia. 17th ed. Tokyo: Ministry of Health, 
Labour and Welfare; 2016. p. 2460–4.

 4. Mycoplasma in European pharmacopoeia. 10th ed. Strasbourg, 
France: Council of Europe; 2020. p. 194–9.

 5. Mycoplasma tests in USP 42–NF 37. In: United States pharma-
copeial convention. MD: USA; 2019. p. 6402–7.

 6. Imai Y, et al. In-process evaluation of culture errors using mor-
phology-based image analysis. Regen Ther. 2018;9:15–23.

 7. Wei JW, Tafe LJ, Linnik YA, Vaickus LJ, Tomita N, Hassan-
pour S. Pathologist-level classification of histologic patterns on 
resected lung adenocarcinoma slides with deep neural networks. 
Sci Rep. 2019;9:3358.

 8. Yamashita R, Nishio M, Do RKG, Togashi K. Convolutional neu-
ral networks: an overview and application in radiology. Insights 
Imaging. 2018;9:611–29.

 9. Kusumoto D, Yuasa S. The application of convolutional neural 
network to stem cell biology. Inflamm Regen. 2019;39:14.

 10. Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks 
for biomedical image segmentation. In: Navab N, Hornegger J, 
Wells W, Frangi A, editors. Medical image computing and com-
puter-assisted intervention—MICCAI 2015. Chamonix: Springer; 
2015. p. 234–41.

 11. Milletari F, Navab N, Ahmadi SA. V-Net: fully convolutional neu-
ral networks for volumetric medical image segmentation. In: 2016 
Fourth international conference on 3D vision (3DV). New York, 
USA: IEEE; 2016. p. 565–71.

 12. Zagoruyko S, Komodakis N. Wide residual networks. In: Wilson 
RC, Hancock ER, Smith WAP (eds) Proceedings of the British 
machine vision conference (BMVC). New York, UK: BMVA 
Press; 2016;87:1–12.

 13. OECD. Test No. 474: mammalian erythrocyte micronucleus test. 
In: OECD guidelines for the testing of chemicals, Section 4. Paris, 
France: OECD Publishing. Accessed  26 Sept 2014.

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/

	Rapid and sensitive mycoplasma detection system using image-based deep learning
	Abstract
	Introduction
	Methods
	Mycoplasma culture
	Cell culture
	Mycoplasma tests
	Architecture of two-part mycoplasma detection program
	Architecture of three-part mycoplasma detection program
	Data collection
	Performance evaluation

	Results
	Construction of prototype program for automatic detection and counting of mycoplasma
	Construction of improved program for automatic detection and counting of mycoplasma
	Comparison with manual counting

	Discussion
	Acknowledgements 
	References




