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Abstract

Protein-protein interactions are the cornerstone of numerous biological processes. Although

an increasing number of protein complex structures have been determined using experi-

mental methods, relatively fewer studies have been performed to determine the assembly

order of complexes. In addition to the insights into the molecular mechanisms of biological

function provided by the structure of a complex, knowing the assembly order is important for

understanding the process of complex formation. Assembly order is also practically useful

for constructing subcomplexes as a step toward solving the entire complex experimentally,

designing artificial protein complexes, and developing drugs that interrupt a critical step in

the complex assembly. There are several experimental methods for determining the assem-

bly order of complexes; however, these techniques are resource-intensive. Here, we pres-

ent a computational method that predicts the assembly order of protein complexes by

building the complex structure. The method, named Path-LzerD, uses a multimeric protein

docking algorithm that assembles a protein complex structure from individual subunit struc-

tures and predicts assembly order by observing the simulated assembly process of the com-

plex. Benchmarked on a dataset of complexes with experimental evidence of assembly

order, Path-LZerD was successful in predicting the assembly pathway for the majority of the

cases. Moreover, when compared with a simple approach that infers the assembly path

from the buried surface area of subunits in the native complex, Path-LZerD has the strong

advantage that it can be used for cases where the complex structure is not known. The path

prediction accuracy decreased when starting from unbound monomers, particularly for

larger complexes of five or more subunits, for which only a part of the assembly path was

correctly identified. As the first method of its kind, Path-LZerD opens a new area of computa-

tional protein structure modeling and will be an indispensable approach for studying protein

complexes.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005937 January 12, 2018 1 / 30

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Peterson LX, Togawa Y, Esquivel-

Rodriguez J, Terashi G, Christoffer C, Roy A, et al.

(2018) Modeling the assembly order of multimeric

heteroprotein complexes. PLoS Comput Biol 14(1):

e1005937. https://doi.org/10.1371/journal.

pcbi.1005937

Editor: Patrick Aloy, Institute for Research in

Biomedicine, SPAIN

Received: June 1, 2017

Accepted: December 19, 2017

Published: January 12, 2018

Copyright: This is an open access article, free of all

copyright, and may be freely reproduced,

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose.

The work is made available under the Creative

Commons CC0 public domain dedication.

Data Availability Statement: Data are within the

paper and its Supporting Information files. The

Path-LZerD script is available for download at

http://www.kiharalab.org/proteindocking/pathlzerd.

php. Path-LZerD uses both Multi-LZerD and LZerD,

which are available for download at http://www.

kiharalab.org/proteindocking/.

Funding: This work was supported by National

Institutes of Health https://www.nih.gov/:

R01GM097528, R01GM123055 and National

Science Foundation http://www.nsf.gov/:

https://doi.org/10.1371/journal.pcbi.1005937
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005937&domain=pdf&date_stamp=2018-01-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005937&domain=pdf&date_stamp=2018-01-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005937&domain=pdf&date_stamp=2018-01-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005937&domain=pdf&date_stamp=2018-01-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005937&domain=pdf&date_stamp=2018-01-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005937&domain=pdf&date_stamp=2018-01-25
https://doi.org/10.1371/journal.pcbi.1005937
https://doi.org/10.1371/journal.pcbi.1005937
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
http://www.kiharalab.org/proteindocking/pathlzerd.php
http://www.kiharalab.org/proteindocking/pathlzerd.php
http://www.kiharalab.org/proteindocking/
http://www.kiharalab.org/proteindocking/
https://www.nih.gov/
http://www.nsf.gov/


Author summary

Protein-protein interactions, particularly those involving multiple proteins, are the cor-

nerstone of numerous biological processes. Although an increasing number of multi-

chain protein complex structures have been determined, fewer studies have been per-

formed to determine the assembly order of complexes. Knowing the assembly order of a

complex provides insights into the process of complex formation. Assembly order is also

practically useful for reconstructing and determining the structure of a subcomplex of a

large protein complex. It also has important applications including designing artificial

protein complexes and drugs that prevent the assembly of protein complexes. We present

a computational method, Path-LZerD, which predicts the assembly order of a protein

complex by simulating its assembly process. This is the first method of this kind. A strong

advantage of Path-LZerD is that the assembly order can be predicted even when the over-

all complex structure is not known. Path-LZerD opens a new area of computational pro-

tein structure modeling and will be an indispensable approach for studying protein

complexes.

Introduction

Many biological processes involve protein complexes with multiple subunits. Insights into the

molecular mechanisms of the functions of these multimeric complexes can be gleaned from

their quaternary structures, which are determined by experimental methods including X-ray

crystallography [1], nuclear magnetic resonance (NMR) [2, 3], small-angle X-ray scattering

(SAXS) [4], and electron microscopy [5]. Computational methods have been also used for

modeling protein complexes [6–10].

Although an increasing number of protein complex structures have been revealed, there

has been relatively less work conducted to elucidate the mechanisms of protein complex

assembly: in particular, the assembly order of protein complexes. Tompa and Rose [11] dis-

cussed in the context of interactions of the whole proteome that the assembly of the interac-

tome has an enormous number of combinations, which makes random exploration

unrealistic, analogous to the Levinthal paradox [12]. They concluded that there must be hierar-

chical assembly pathways that make the correct formation of individual complexes possible.

Ordered pathways allow efficient assembly and may reduce the possibility of forming incorrect

topology. Many protein complexes have evolved to assemble in a defined order as shown in

gene fusion events [13, 14] or conserved gene orders [15]. Some complexes are required to fol-

low an ordered assembly pathway for realizing their biological functions. For example, in ATP

synthase, the proton channel forms as the last step which avoids the negative consequences of

futile proton transport [16]. Thus, the order of subunit assembly can offer critical clues to the

function and evolution of a multimeric complex.

From a practical standpoint, knowledge of assembly order is helpful for in vitro reconstitu-

tion of multimeric protein complexes. When solving the entire complex is difficult, knowledge

of the assembly order can allow reconstruction of a subcomplex which may be easier to solve.

Assembly order needs to be taken into account when designing artificial protein complexes

[17]. In addition, designing drugs that target protein-protein interactions is of increasing

interest [18], and knowledge of the assembly order is indispensable for creating and evaluating

drugs that prevent a critical step in a protein complex assembly pathway [19].

The assembly order of a multimeric complex can be experimentally determined by recon-

structing stable intermediates of two or more subunits [20], which are detected, for example,
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by gel electrophoresis [21, 22] or co-immunoprecipitation [23]. Real-time mass spectrometry

can identify stable subcomplexes that appear in the assembly time course [24, 25]. Deletion

mutants were constructed to examine if deletions affect complex assembly [26]. Pulse-chase

monitored by quantitative mass spectrometry (PC/QMS) was applied to investigate assembly

pathways for the 30s ribosomal subunit, which detects an assembly order by measuring the

ratio of labeled and unlabeled proteins that are added later in the time course [27]. Recently,

single-particle electron microscopy was used to determine subcomplex structures stained at

different time points of assembly in combination with mass spectrometry [28, 29]. Alterna-

tively, assuming that assembly and disassembly proceed via the same pathway in opposite

directions, electrospray ionization mass spectrometry (ESI-MS) can be used to determine dis-

assembly pathways [30].

Previous works by Teichmann and her colleagues used the buried surface area (BSA) of

each subunit to predict the complex assembly order [13, 14]. BSA is the difference between the

solvent-accessible surface area (SASA) of a subunit in the complex and in the isolated state.

From thermodynamics principles, the assembly order of a multimeric protein complex is

determined probabilistically by the population sizes of various subcomplexes that appear dur-

ing the assembly process, where the population size of each subcomplex is determined by its

binding free energy. BSA was used in their works as a rough approximation of binding free

energy, where large buried surface area corresponds to lower (more favorable) binding free

energy and thus earlier assembly. The BSA method agreed with experimentally determined

assembly order in thirteen out of sixteen (81.3%) homomeric protein complexes [13] and

seven out of nine (77.8%) heteromeric cases [14]. However, the BSA method has two primary

limitations. BSA has been found to have only moderate correlation to binding free energy [31,

32]. More fundamentally, the BSA method requires a complete protein complex structure;

thus, it cannot be applied to cases where all subunits of the complex have been solved sepa-

rately but a complete structure is not available.

In this work, we used a multiple protein docking method, Multi-LZerD [33], developed in

our group, which can simulate the assembly process of protein complexes to predict the dock-

ing order of protein complexes [34]. Multi-LZerD builds structure models of a multimeric pro-

tein complex from the structures of its individual subunits. The complex structure model is

assembled by combining pairwise docking models of subunits, which are predicted by a pair-

wise protein docking program, LZerD [35, 36]. Complex models are refined in many genera-

tions of a genetic algorithm, which finally produces about 200 models. The entire Multi-

LZerD algorithm of producing multimeric complex structure models somewhat mimics the

actual complex assembly procedure; in fact, it was found that the assembly order of complexes

can be well predicted by analyzing the assembly pathways of models produced and refined in

the Multi-LZerD model building process. The key observation that led to the path prediction

is that the binding energy of pairwise docking models assembled to construct a complex indi-

cates the docking order. The method to predict complex assembly order with Multi-LZerD is

called Path-LZerD.

A strong advantage of Path-LZerD is that, unlike the BSA method, the assembly order can

be predicted even when the complex structure is not determined yet, because with Path-LZerD

the assembly order of a multimeric complex is predicted by simulating the assembly process of

the complex. The binding free energy of subunits was estimated using knowledge-based statis-

tical contact potentials, which can evaluate the energy more accurately than simply consider-

ing BSA and are successful in protein-protein docking [37]. Interestingly, in many cases the

assembly order was correctly predicted even when the predicted structure models from Multi-

LZerD were not entirely correct. Using 21 protein complexes with between three and seven

subunits, the complex structure and/or topology was well predicted in nine cases and the
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assembly order was correctly predicted for ten cases. When homology models or unbound

structures were used for building complex structures, the assembly order was similarly well

predicted for small complexes of 3 and 4 subunits; however, the predictions deteriorated for

larger complexes. The ability to predict assembly order from the structures of the subunits can

offer additional insights into the biological function of multimeric protein complexes.

Materials and methods

We will first describe the dataset of multimeric protein complexes used to evaluate Path-

LZerD. Then, we will briefly introduce the Multi-LZerD multiple protein docking program,

which is the core of the assembly order prediction. The scoring functions used are also

explained. Then, we explain how assembly orders were predicted using Path-LZerD and the

rationale behind the strategy.

Dataset

The dataset of multimeric protein complexes includes 21 complexes of 3-7 chains, which have

evidence of their complex assembly order (Table 1). The set was manually collected from liter-

ature and from the Protein Data Bank (PDB) [38]. The assembly pathway of each protein com-

plex is listed in Table 1. For example, the assembly order of BG> BGP for 1a0r indicates that

chain B and G form a subcomplex first, to which chain P docks to construct the complex. A

chain ID with superscript prime (0) or a number, for example, B0 or B4, indicates that it has the

same sequence as chain B. The evidence for assembly pathways is classified into four categories

Table 1. List of multimeric complexes used for prediction.

N PDB Name Pathway(s) Evidence

3 1a0r Transducin βγ dimer bound to phosducin BG> BGP E,B

1ikn I-κ-B α/NF-κ-B complex AC> ACD E,B,M

1vcb ElonginBC bound to VHL AB> ABC E,B,M

2aze Rb C-terminal bound to E2F1-DP1 AB> ABC E,B

4 1es7 Complex between BMP-2 and 2 BMP receptors AA0> AA0B> AA0BB0 S

1gpq IVY complex with its target HEWL AA0> AA0C> AA0CC0 B,S

2e9x Human GINS core complex BD> ABD> ABCD E

1kf6 Fumarate reductase CD> BCD> ABCD E,M

2bq1 Ribonucleotide reductase EE0+II0> EE0II0 E,B,S

2qsp Bovine hemoglobin at pH 5.7 AB> AB+A0B0> AA0BB0 E,M

3fh6 Maltose transporter AA0> AA0F or AA0> AA0G or AA0+FG> AA0FG E,M

5 1hez Antibody-antigen complex AB> AB+A0B0> AB+A0B0E> AA0BB0E B,S

1w88 Pyruvate dehydrogenase E1 bound to a subunit of E2 AA0BB0> AA0BB0I B

6 1du3 TRAIL-SDR5 DD0> DD0D0 0> ADD0D0 0> AA0DD0D0 0> AA0A0 0DD0D0 0 B,S

1rlb Retinol binding protein bound to transthyretin AA0> AA0+A0 0A0 0 0> AA0A0 0A0 0 0> AA0A0 0A0 0 0E> AA0A0 0A0 0 0EE0 B,S

1s5b Cholera holotoxin with an A-subunit B1B2> B1B2B3> AB1B2B3> AB1B2B3B4> AB1B2B3B4B5† E,M

3vyt HypCDE complex CD+C0D0+EE0> CD+C0D0EE0> CC0DD0EE0† E,M

4hi0 UreF/UreH/UreG complex FH+F0H0+GG0> FF0HH0+GG0> FF0GG0HH0† E,M

4igc Bacterial RNA polymerase AA0> AA0C> AA0C+DE> AA0CDE> AA0CDEX E,M

7 3uku Arp2/3 CG+DF> ACDFG> ABCDEFG E,M

4gwp Mediator head module ABD> ABCDG+EF> ABCDEFG E,M

N: Number of chains. PDB: PDB ID of bound complex structure. Pathways marked with dagger (†) use letters corresponding to protein names; others use PDB chain

IDs. Evidence types: E: experimental evidence; B: biological inference; S: structural inference; M: model of assembly.

https://doi.org/10.1371/journal.pcbi.1005937.t001
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shown in the last column of the table: experimental evidence (E), biological inference (B),

structural inference (S), and model of assembly (M). “Experimental evidence” includes co-

immunoprecipitation of subcomplexes and ESI-MS. “Biological inference” indicates that the

order of the assembly can be reasonably inferred from the function of each subunit. For exam-

ple, if the complex is between a protein dimer and its inhibitor, the dimer is expected to form

first and the inhibitor to bind later. Another type of evidence, “structural inference,” is from

structural information of a complex, which indicates that features of the structure, such as

which chains are in contact, restrict the possible assembly orders. “Model of assembly” indi-

cates that the assembly pathway has been proposed in a publication. A detailed explanation of

the evidence for the assembly order of each complex is provided in S1 Appendix. The assembly

order prediction was performed for bound and unbound/computationally modeled cases of

this set of proteins.

Multi-LZerD

The assembly pathway prediction by Path-LZerD uses the Multi-LZerD [33] algorithm at the

core of its protocol. Multi-LZerD predicts the structure of a multimeric protein complex from

the structures of the subunits of the complex (Fig 1). In the first step, all pairwise combinations

of subunits are docked using a pairwise protein docking method, LZerD [6, 35, 39, 40]. LZerD

represents protein surface shape using 3D Zernike descriptors (3DZD) [39, 41, 42], which are

based on a mathematical series expansion of a 3D function (in this case, protein surface

shape). The 3DZD are a soft representation of the surface shape, conferring tolerance to the

conformational changes associated with binding. Typically, over 100,000 docking models

(decoys) are generated for a pair of protein structures and the 54,000 decoys with the best

shape complementarity score (described below) are kept. The decoys are clustered to reduce

redundancy with a cutoff of 10 Å, which usually yields between 2,000 and 6,000 decoys.

Next, models of the entire complex are built by combining pairwise docking decoys and the

models are refined using a genetic algorithm (GA), a combinatorial search algorithm. Multi-

LZerD represents a multimeric protein complex as a spanning tree (i.e. a connected graph

with no cycles), where nodes are proteins and edges are pairwise docking decoys. The initial

population of M (set to 200) complex models are generated by random combinations of pair-

wise decoys. Then complex models in the population undergo iterative modification to search

for better models that have better fitness scores. Complexes are modified using a GA operation

called mutation, where a model has one random edge (pairwise docking decoy) removed and

one random edge replaced (Fig 1). The modified complexes are assessed for atomic clashes

(atom pairs closer than 3 Å) and discarded if the number exceeds a threshold (200). Clustering

of the complexes was also performed to reduce redundancy. If clustering decreased the num-

ber of complexes below the initial population size M, complexes were added back at random

to fill the population (except for the final population, which is allowed to have fewer than M
complexes). Complex fitness was evaluated using a molecular mechanics scoring function

(described below) and the population was reduced to the M complexes with the best fitness

score. This procedure of exploring model conformations with better fitness scores is called a

generation. 400 mutations were performed in each generation. Each complex was run for 2000

generations and evaluated for convergence based on the fitness score. If the complex had not

converged, the GA was run for an additional 1000 generations. The previous paper showed

that most of the cases converged within 1000 generations [33, 43]. The overall procedure mim-

ics a population of protein assembly process. Finally, 200 or fewer models were generated. The

algorithm of Multi-LZerD and parameters used were not modified from its original work [33].

Refer to the original paper for more details.
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Scoring functions used for decoy comparison

The ranks of the pairwise decoys that comprise a Multi-LZerD complex model were used to

predict assembly order (described in detail below). The pairwise decoys for each subunit pair

Fig 1. Overview of the Multi-LZerD algorithm. Here, an example of a 3-chain complex is shown. The first step is to generate pairwise

docking poses (decoys) with LZerD for each pair, A-B, A-C, and B-C, which are ranked by a scoring function. Usually about a few

thousand poses are kept for each pair (top panel). Then, the Multi-LZerD population is initialized by generating M random

complexes. A complex is represented as a spanning tree, where each node is a protein chain and each edge is a pairwise decoy. The first

complex in the right panel is composed of 304th decoy ranked by the score between A and C and 2348th decoy between B and C. 2M
mutation operations are performed to increase the population size and variation (right panel). A mutation involves deleting a random

edge and adding a random edge. Next, the population is filtered for clashes and clustered. Finally, the top M complexes by the

molecular mechanics score are kept, concluding one generation. This process is repeated for 2000 generations. If the population has

not converged, another 1000 generations are run.

https://doi.org/10.1371/journal.pcbi.1005937.g001
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were ranked by a scoring function, which evaluates the binding energy of the decoys. Here we

briefly describe the eight scoring functions used in this work. Multi-LZerD is originally

equipped with two scores, a shape-based score and a molecular mechanics-based function. In

addition, we benchmarked six knowledge-based statistical scores, DFIRE [44], Dligand [37],

ITScorePro [45], GOAP [46], OPUS-PSP [47], and SOAP-PP [48]. These statistical scoring

functions have been very successful in various problems in protein structure prediction, such

as single protein structure prediction, protein-protein docking, and model quality assessment.

The general approach of constructing a knowledge-based statistical scoring function is to use

the observed distribution of some feature (e.g. atom pair distance or angles) in a set of known

protein structures and normalize the distribution by a reference state. Scoring functions typi-

cally differ in the choice of features and the reference state considered.

LZerD shape score. LZerD represents a protein with its molecular surface, where anchor

points are evenly spread. A decoy is evaluated by the LZerD shape-based scoring function [35],

which combines four terms. For the interacting anchor points taken from the interacting pro-

teins, two terms are computed: the angle between the surface normals and the 3DZD correla-

tion of the local surface around the anchor points. The surface normal angle evaluates whether

the surfaces are parallel and the 3DZD correlation quantifies the complementary of the surface

shapes. These two terms are combined with the buried surface area of the decoy and the

excluded volume, which is a penalty term representing atom clashes.

LZerD molecular mechanics-based score. The LZerD molecular mechanics score [33] is

a linear combination of van der Waals, electrostatics, hydrogen and disulfide bond, solvation,

and knowledge-based contact potential terms.

DFIRE. DFIRE [44] (Distance-scaled, Finite Ideal gas REference state) is a distance-

dependent atom contact potential that considers 167 atom types. It uses a reference state of an

ideal gas atom distribution in a finite system.

Dligand. Dligand [37] uses the DFIRE reference state to create a statistical energy func-

tion for protein complexes.

GOAP. GOAP [46] (Generalized Orientation-dependent All-atom Potential) adds an ori-

entation-dependent term to DFIRE to take both distance and orientation into account in eval-

uating atom contacts.

ITScorePro. ITScorePro [45] is a distance-dependent atom contact potential based on 20

atom types. Instead of using a reference state, the pair potentials were iteratively refined to

reduce error in protein docking prediction.

OPUS-PSP. OPUS-PSP [47] (Potential derived from Side-chain Packing) considers orien-

tation-specific packing interactions of side-chains that are classified into 19 rigid blocks. A

repulsive energy term is added to prevent steric clash.

SOAP-PP. SOAP-PP [48] (Statistically Optimized Atomic Potential for Protein-Protein

interactions) is a statistical potential for protein-protein interaction that considers atom pair

distances based on 158 atom types, bond orientation, and relative solvent-accessible surface

area. The atom pair distances and bond orientation also consider covalent separation, e.g. how

many covalent bonds separate the atoms, how many residues separate the atoms, and whether

the atoms are part of the same polypeptide chain.

Docking order prediction using Path-LZerD

We predict the assembly order of a complex by comparing the ranks of the pairwise decoys

that were assembled by Multi-LZerD to obtain the whole complex model. For example, if a

model of an A-B-C complex is made up of the A-B decoy with rank 1 and the B-C decoy with

rank 125, where pairwise decoys are ranked by a scoring function, the complex is predicted to

Protein complex assembly order prediction
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assemble A-B first, followed by AB bound with C (denoted as AB> ABC). Using the ranks of

pairwise decoys is rationalized by the thermodynamic consideration that the population of a

decoy is determined by its binding free energy.

The free energy of a binding pose i between two subunits, A and B, is defined as the differ-

ence between the free energy of the complex and the free energy of the subunits:

DGAB;i
bind ¼ Gi

AB � ðGA þ GBÞ ð1Þ

where Gi
AB is the free energy of the ith binding pose of the AB complex and GA and GB are the

free energies of subunits A and B, respectively. Thus, the probability that A and B take the

binding pose i is

pi
AB ¼

e� DGAB;i
bind=kT

P
ne� DGAB;n

bind =kT
ð2Þ

where k is the Boltzmann constant, T is the temperature, and n is the index of the binding

poses. The probability of a binding pose j of B and C, pj
BC, is computed in the same way.

For a complex with three subunits, ABC, assuming the subunits have equal concentrations,

binding pose i of AB is more populated than binding pose j of BC if pi
AB > pj

BC and the more

populated binding pose will statistically assemble first. Moreover, if we assume that different

pairwise complexes have normalization factors (denominator of Eq 2) of the same order and

similar energy distributions of binding poses, the ordering of the probabilities, pi
AB > pj

BC, fol-

lows from the ordering of the ranks, rank(Si)< rank(Sj). Here, Si is the score that estimates the

binding free energy for binding pose i of AB and rank(Si) is the rank of the score, where the

lowest (i.e. best) score has rank 1. Since the assembly order is predicted by considering pair-

wise decoys, the binding free energy of a subunit to a subcomplex is approximated by a pair-

wise interaction, i.e. DGAB:C
bind � DGBC

bind or DGAC
bind, where DGAB:C

bind is the binding free energy of the

AB subcomplex binding with the C subunit. The binding free energies of pairwise decoys are

estimated by the scoring functions introduced above, which have been successfully used for

protein structure prediction and docking [36, 37]. The thermodynamic rationale of the assem-

bly order prediction is made under reasonable assumptions in the same spirit as protein struc-

ture prediction. As we demonstrate later, the algorithm shows successful prediction in many

cases.

The next choice to make in the prediction procedure is which complex models built by

Multi-LZerD to use for the binding energy rank comparison. We used two methods that

require knowledge of the native structure (non-blind) and two methods that do not (blind).

Both non-blind methods use the metric of root mean square deviation (RMSD) to the native

complex structure. We used and compared the following four methods, which use different

complex models:

Low RMSD decoy combination method: In this method, low RMSD pairwise decoys from

LZerD are combined to form a low RMSD complex structure. To generate the model, for each

pair of subunits, five decoys with the lowest RMSD are selected. The selected pairs are exhaus-

tively combined to create fully assembled complexes. To assemble complexes, concretely, first

we examined the native complex and recorded each contacting pair of subunits using the bind-

ing interfaces shown in PISA [49] and visual inspection. These interfaces were treated as edges

and all possible spanning trees using those edges were constructed. For each spanning tree, the

five lowest RMSD pairwise decoys for each edge were exhaustively combined. The lowest

RMSD model out of all combinations of pairwise decoys was selected.

Protein complex assembly order prediction
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Lowest RMSD method: From the final GA generation of Multi-LZerD (200 or fewer mod-

els), the model with the lowest RMSD to the native structure was selected.

Final generation method: This method belongs to the blind strategy,which does not use

the tertiary structure of the target protein complex. All models from the final generation of

Multi-LZerD were used to predict the assembly pathway. Each model was given one vote, the

assembly pathways were tallied, and the most frequently occurring assembly pathway was pre-

dicted. Thus, unlike the first two methods, this method uses many models in the final genera-

tion of the GA and does not refer to the native structure. For example, for a complex of three

chains, A, B, and C, if the final generation has 200 models, among which 160 models indicate

an assembly order of AC> ABC based on their score rank of pairwise decoys, 30 models indi-

cate an AB> ABC order, and the rest indicate BC> ABC, the resulting prediction is AC>

ABC because it has the majority of votes.

Consensus across generations method: This method belongs to the blind strategy. This

method is equivalent to the final generation method, except that votes are tallied from the gen-

eration 1000 through the final generation. Since each generation produces up to 200 models,

the total number of votes will be up to 200,000. Low RMSD decoy combination and lowest

RMSD are non-blind strategies which require knowledge of the native complex structure to

compute RMSD. In contrast, final generation and consensus across generations are blind strat-

egies which do not require the native complex structure. Given a model of the complete com-

plex selected by the methods above, the pairwise decoys that make up the complete complex

were noted and the ranks and Z-scores of their binding scores were compared. The pairwise

decoys were sorted by the score rank and ties were resolved using the Z-score. Assembly was

predicted to begin with the pair with the lowest score rank and proceeded in ascending order

of score rank. In addition to each individual score, the score ranks were summed to form an

additional score. The whole procedure of predicting assembly order (path) using Multi-LZerD

models is named Path-LZerD.

Docking order prediction using buried surface area

In order to compare with the four methods in Path-LZerD, we also predicted assembly order

using buried surface area (BSA) in two ways, based on previous work [13, 14]. For all cases,

solvent-accessible surface area (SASA) was computed using Naccess [50] considering all

atoms in the crystal structure. In the first BSA approach, the pairwise buried surface area is

computed for each pair of contacting chains: BSAAB = SASAA + SASAB − SASAAB, where

SASAA and SASAB are the SASAs of chains A and B alone and SASAAB is the SASA of the

pairwise complex. The pairs were sorted in descending order of BSA and assembled into a

spanning tree, where each node is a protein chain and each edge is a contacting pair. N − 1

edges were added where N is the number of subunits, but an edge was skipped if it forms a

cycle.

In the second BSA approach, instead of computing BSA for pairs of subunits, SASA was

computed for all possible subcomplexes (e.g. combinations of [2..N − 1] chains that form a

connected subgraph). Then, BSA was computed for every possible transition between subcom-

plexes as the difference between the SASA of the component subcomplexes and the SASA of

the new subcomplex, e.g. if A combines with BC, BSAA:BC = SASAA + SASABC − SASAABC.

The complex was then assembled from its components in descending order of BSA. The for-

mer approach will be referred to as pairwise BSA while the latter will be referred to as subcom-

plex BSA.

Protein complex assembly order prediction
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Results

We first discuss overall results on bound docking cases followed by analysis on unbound/mod-

eled structure cases. Then, interesting individual cases are further analyzed. We also mention

the computational time taken for computing the docking order prediction.

Prediction on bound docking cases

The overall assembly order prediction results on bound docking cases using Path-LZerD and

BSA are summarized in Table 2. In the table, target protein complexes are classified by the

Table 2. Summary of assembly order prediction on bound docking cases.

Chains PDBID RMSD (Å) Non-blind strategies Blind strategies

BSA Low RMSD decoy Lowest RMSD Final generation Consensus

Shape Sum OPUS-PSP Sum GOAP Sum GOAP Sum

3 1a0r 0.85 (3) 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1

1ikn 14.51 (1) 0/1 0/1 0/1 0/1 0/1 1/1 1/1 1/1 1/1

1vcb 1.16 (3) 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1

2aze 1.00 (3) 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1

4 1es7 1.86 (4) 2/2 2/2 1/2 2/2 2/2 2/2 2/2 2/2 2/2

1gpq 1.74 (4) 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2

2e9x 9.50 (3) 1/2 0/2 0/2 2/2 2/2 0/2 0/2 0/2 0/2

1kf6 22.23 (2) 0/2 0/2 2/2 1/2 1/2 1/2 1/2 1/2 1/2

2bq1 24.27 (1) 2/2 2/2 1/2 2/2 1/2 0/2 0/2 0/2 0/2

2qsp 18.41 (1) 2/2 1/2 1/2 1/2 0/2 2/2 2/2 2/2 2/2

3fh6 35.72 (1) 2/2 2/2 2/2 0/2 1/2 0/2 1/2 1/2 1/2

5 1hez 11.73 (2) 3/3 0/3 0/3 3/3 3/3 3/3 3/3 3/3 3/3

1w88 4.80 (4) 2/3 3/3 1/3 3/3 3/3 1/3 1/3 1/3 1/3

6 1du3 20.86 (1) 4/4 4/4 4/4 2/4 3/4 3/4 3/4 3/4 3/4

1rlb 22.99 (1) 4/4 4/4 4/4 4/4 3/4 2/4 3/4 3/4 3/4

1s5b 22.09 (2) 4/4 1/4 2/4 4/4 4/4 3/4 4/4 3/4 4/4

3vyt 36.81 (1) 4/4 2/4 2/4 1/4 1/4 2/4 2/4 2/4 2/4

4hi0 40.80 (1) 1/4 3/4 2/4 0/4 2/4 4/4 0/4 4/4 0/4

4igc 53.52 (2) 0/4 4/4 2/4 0/4 2/4 4/4 3/4 4/4 3/4

7 3uku 36.60 (3) 2/5 0/5 0/5 2/5 0/5 2/5 1/5 2/5 1/5

4gwp 48.36 (1) 4/5 1/5 1/5 0/5 0/5 0/5 0/5 0/5 0/5

Total hits out of 21 13 (18) 11 (16) 8 (17) 11 (16) 9 (17) 10 (17) 9 (17) 10 (18) 9 (17)

Total hits in 9 subset 7 (8) 6 (6) 4 (6) 8 (8) 8(8) 7 (8) 7 (8) 7 (8) 7 (8)

Total subcomplex hits 42/58 34/58 30/58 32/58 33/58 35/58 32/58 37/58 32/58

Subcomplex hits in 9 subset 14/16 10/16 7/16 15/16 15/16 12/16 12/16 12/16 12/16

“RMSD” is the lowest RMSD of all models in the final generation of Multi-LZerD. In the RMSD column, the number in parentheses indicates the largest number of

subunits that are assembled within 4 Å RMSD (a value of 1 indicates that no pair was assembled within this cutoff). Non-blind methods require knowledge of the entire

complex structure. Results are shown as the number of steps correctly predicted, with perfect pathways in bold. X/Y denotes that X assembly steps correctly predicted

out of Y steps in total for assembling the target complex. Each step is a correct subcomplex; e.g. if the assembly order is BC> ABC, there is one step consisting of the BC

subcomplex. “BSA” shows the results for the subcomplex BSA strategy. For each LZerD strategy, results are shown for the best single score (e.g. Shape, OPUS-PSP) and

the sum of score ranks (Sum). The nine complexes in bold are in the well-predicted target subset (where the models have a low RMSD< 2.0 Å, correct topology, or

almost correct with only one subunit misplaced). They are: 1a0r, 1ikn, 1vcb, 2aze, 1es7, 1gpq, 2e9x, 1hez, and 1w88. The two rows of total hits summarize the number of

correct predictions. The number in parentheses counts partially correct predictions, i.e. the number of targets which have a non-zero value on the left side of /. The last

two rows count the number of correctly predicted subcomplexes, i.e. the sum of the left side of /, relative to the total number of subcomplexes, i.e. the sum of the right

side of /.

https://doi.org/10.1371/journal.pcbi.1005937.t002
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number of chains in the complex. On the left, the lowest RMSD of the complex structure mod-

els in the final GA generation of Multi-LZerD is shown. Then, the assembly order prediction

results are shown for three non-blind strategies: subcomplex BSA, low RMSD decoy combina-

tion, and lowest RMSD. The non-blind methods need the native structure of the complex to

predict the assembly order. The right columns show the results of two blind strategies, final

generation and consensus across generations, which do not need the native structure of the

target.

Multi-LZerD successfully predicted the structure for many of the complexes but was not

able to model the larger 6 and 7 subunit complexes within a small RMSD to the native

(Table 2). A model with an RMSD under 2.0 Å was constructed for 5 cases: 1a0r, 1vcb, 2aze,

1es7, and 1gpq. Multi-LZerD usually builds at least a subcomplex structure correctly, even

when the overall complex was not correctly assembled [51]. In parentheses is the number of

subunits that are assembled within an RMSD of 4.0 Å. Particularly, in two cases, all but one

subunit is well predicted (2e9x and 1w88; Fig 2). For the four-chain complex 2e9x, a three-

chain subcomplex was assembled with RMSD 1.6 Å and for the five-chain complex 1w88, a

four-chain subcomplex was assembled with RMSD 1.3 Å. In another two cases (1ikn and

1hez), the topology was correct or almost correct (Fig 3). The diagram next to each complex

illustrates interactions between subunits. Pairwise interfaces are defined as having at least one

contacting residue pair (at least one pair of atoms is closer than 5.0 Å.) A solid line in the dia-

gram indicates that there are more than 20 interacting residue pairs between subunits while a

Fig 2. An example of Multi-LZerD prediction that is partially correct. Dark colors: Native structure of 2e9x. Light colors: Multi-LZerD model with 9.5 Å
RMSD. Chains A, B, and D (green, cyan, and yellow, respectively) have an RMSD of 1.6 Å. The majority of the RMSD error is due to the position of chain C

(magenta).

https://doi.org/10.1371/journal.pcbi.1005937.g002
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dotted line indicates that there are fewer than 20 interacting residue pairs. The lowest RMSD

model of 1ikn has the correct topology. The model of 1hez contains all the native interactions

with an extra interaction between chain B and E. These nine cases where Multi-LZerD was

correct or mostly correct will be referred to as the well-predicted target subset. This subset was

also separately analyzed to investigate correlation between the assembly order prediction accu-

racy and the complex structure prediction accuracy.

Now we turn our attention to the assembly order prediction. A prediction for a target com-

plex is evaluated by the number of correctly predicted assembly steps (X) over the total number

Fig 3. Examples of Multi-LZerD predictions with correct or almost correct topology. Dark colors: native structures. Light colors: lowest RMSD output of

Multi-LZerD. Top: 1ikn, 14.51 Å. Bottom: 1hez, 11.73 Å. The diagram to the right of each complex represents the interactions between subunits. Nodes in the

diagrams are colored in the same way as the complex structure models. Black lines, interactions in the native structure; gray, the complex model. A solid line

indicates that there are more than 20 interacting residue pairs between the subunits and a dotted line is an interaction with fewer than 20 interacting residue

pairs. A cutoff distance of 5.0 Å was used to define inter-residue contacts.

https://doi.org/10.1371/journal.pcbi.1005937.g003
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of steps (Y) denoted as X/Y. Each step corresponds to a correct subcomplex; for example, if the

correct assembly pathway is AB> ABC> ABCD, the predicted pathway AC> ABC> ABCD

has a score 1/2 because the second subcomplex is correct. The known assembly steps of each

target are shown in Table 1 and a description of the evidence is in S1 Appendix. For each Path-

LZerD strategy, the results are shown for the best single score (e.g. shape, OPUS-PSP, GOAP)

and for the sum of score ranks. Results for each individual score are shown in supplementary

tables, from S2 to S5 Tables. As for prediction using BSA, results for the subcomplex BSA

method are shown in Table 2 and the results of the pairwise BSA method are provided in S1

Table.

Overall, the subcomplex BSA method made the largest number of correct predictions when

the number of correct full assembly orders was concerned. It correctly predicted the assembly

pathway for 13/21 (61.9%) complexes. This is understandable because it is the only method

that directly uses the interfaces shown in the native complex structure (note that the two non-

blind Path-LZerD methods, the low RMSD and the lowest RMSD methods, refer to the native

structure but it is only to identify the lowest RMSD models, which may have substantially dif-

ferent from the native structure). The second was the lowest RMSD decoy and the lowest

RMSD strategy by Path-LZerD predicting eleven cases correctly followed by the final genera-

tion and the consensus strategy with ten correct predictions.

On the other hand, when the number of partially correctly predicted assembly orders were

counted, interestingly, the lowest RMSD method with DFIRE (S3 Table) and the final genera-

tion and consensus methods with the molecular mechanics score (S4 and S5 Tables) have the

best performance with 19/21(90.5%). This is interesting because the final generation and the

consensus methods do not use the native structure to select complex models but still achieved

the best performance. In a close look (S4 and S5 Tables), these two Path-LzerD blind strategies

made at least partially correct predictions for all but two targets, while the BSA method made

three completely wrong predictions. The two blind strategies made partially correct predic-

tions for all the targets with five to seven chains, even though the structure models have large

RMSD values.

Among the Path-LZerD strategies, the best performance was observed for the low RMSD

decoy combination strategy using the shape score (S2 Table) and the lowest RMSD strategy

using OPUS-PSP (S3 Table) when perfect prediction was considered (11/21, 52.4%). If partial

correct predictions were counted, the top performing methods were the final generation (S4

Table) and the consensus strategy using molecular mechanics score (S5 Table) (19/21, 90.5%).

While the low RMSD decoy combination method has the highest number of perfectly pre-

dicted pathways (11/21 using the shape score), it also has the lowest (4/21 using GOAP). The

blind methods using Multi-LZerD had a smaller range of numbers: 8-10 perfectly predicted

pathways. This suggests that simply choosing pairwise decoys based on RMSD can be either

very effective or very ineffective, and that the pairwise decoys that survive the Multi-LZerD

genetic algorithm more consistently predict assembly orders probably taking advantage of the

voting strategy.

Comparing the BSA method to the Path-LZerD strategies, the assembly pathway of five

complexes not predicted by the BSA method were rescued by some of the Path-LZerD strate-

gies: 1ikn, 2e9x, 1kf6, 4hi0, and 4igc. There was only one case where BSA was successful and

no LZerD strategy made a perfect prediction: 3vyt. Finally, the assembly pathway of two com-

plexes had no perfect predictions by any method: 3uku and 4gwp.

The success rate of the assembly order prediction of the well-predicted subset of nine com-

plexes (PDB IDs in bold) was higher than for the entire dataset. If only the well-predicted sub-

set of nine complexes is considered, the lowest RMSD strategy with sum of score ranks is more

successful than the BSA method with eight out of nine correct predictions. For 4hi0 and 4igc,
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the BSA method failed to predict their assembly order while Multi-LZerD made successful pre-

diction although the complex structure was not well predicted.

The last two rows of Table 2 evaluate prediction accuracy in a different way by counting the

number of correctly predicted subcomplexes that appear during the assembly process. Out of

58 total subcomplexes in all the targets, the BSA method identified 42 (72.4%). The second was

the consensus method with GOAP with 37 subcomplexes correctly identified. Interestingly,

when methods among Path-LZerD are considered, blind strategies (i.e. the final generation

and the consensus method) perform better than the non-blind strategies, having 35 and 37

subcomplex hits. Also, when subcomplexes in the nine target subsets are considered (the last

row), Path-LZerD obtained 15 correct subunits, which was better than BSA (14 subunits).

When the results by the final generation method were examined (S4 Table), which involves

a voting step by structure models generated in the final generation of Multi-LZerD, it seems

that a higher number of votes correlates weakly with assembly path prediction accuracy (S6

Table). For cases with more than 75% of the votes (e.g. 150/200 votes), on average 85.4% of the

assembly steps were correctly predicted, while for cases with fewer than 75% of the votes, the

average accuracy dropped to 53.1%.

We also examined which steps were better predicted in Fig 4. From the plots, the earlier

assembly steps, particularly the first step, seem to be better predicted. For the five-chain targets

(1hez and 1w88), five methods predicted the first step of both targets correctly, but the second

and the third step were predicted for both targets by only two methods. The tendency is clearer

for the six-chain targets since there are more assembly steps and targets in this class. The first

step of all the targets were correctly predicted by five methods while subsequent steps were less

well predicted. For the seven-chain targets, the first step of one out of two targets were cor-

rectly predicted by seven methods.

Prediction on unbound/modeled structure cases

We also predicted the assembly path for unbound cases where individual subunit structures

are determined in an isolated condition and cases where subunit structures were computation-

ally modeled. Modeller [52] was used for modeling individual structures from structures of

homologous proteins. Homologous proteins to the 21 multimeric protein complexes in

Table 1 were searched using BLAST (BLASTP 2.2.31+) runs against protein sequences from

the PDB obtained from the Modeller website (https://salilab.org/modeller/supplemental.html).

The E-value cutoff used was 0.01. The search found unbound structures for three complexes

(1es7, 1rlb, and 3vyt) and template structures for modeling for eight complexes. The results are

summarized in Table 3. Only the blind strategies, the final generation method and the consen-

sus across generation method, were used. In the sequence identity (Seq. Id.) column, U indi-

cates that the prediction was made with a complex built from unbound structures while the

rest used homology models. For all but three targets, templates with different sequence identity

levels were used to see how the quality of models influences assembly path prediction. Detailed

information about the individual unbound structures and homology models is provided in S7

Table.

Compared with the prediction results in Table 2, the path predictions showed little to no

deterioration for 1a0r, 1es7, and 3fh6, three complexes with up to four chains. For larger com-

plexes with five chains or more, the number of correctly identified subunits decreased, but for

most of the cases and still identified a part of the assembly steps correctly. For 1a0r and 1es7,

the quality (i.e. RMSD) of the predicted complex structure was significantly worse than the

bound cases in Table 2, but interestingly, the assembly path predictions remained almost per-

fect. For the 1a0r case, a close look at the assembly paths of individual docking models in the
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final generation found that the successful prediction was possible because the topology of the

structure models were correct despite their large RMSD. For the 1es7 case, the first step of the

assembly process, the interaction between chain A and C, was well identified due to their large

interface area, which led to the correct path prediction. Thus, for these cases, similar to what

was observed in Table 2, the assembly path were correctly predicted even in cases that complex

structure itself was not well predicted. Path prediction is often not very sensitive to the quality

of individual structure or complex structure models, because the underlying docking simula-

tion often captures affinity of subunits that appears from more coarse-grained features of sub-

unit structures.

On the other hand, we also observed in Table 3 that modeled structure cases were substan-

tially worse than the bound cases. Prediction for 1w88 identified one correct subcomplex in

the bound case (Table 2), which decreased to 0 in six out of eight results shown in Table 3. A

close examination of the unbound predictions found that the RMSD of the pairwise decoys

was worse than the bound cases for 1w88: in the bound case, the average of the best RMSD for

Fig 4. Correctly predicted assembly steps. Targets were classified by the number of chains from four to seven chains (three-chain targets are omitted because there is

only one intermediate step) and for each class the number of times each step was correctly predicted was counted. For example, there are six six-chain complex targets in

the dataset and a six-chain complex has four intermediate steps (subcomplexes) during the assembly process. The y-axis shows the fraction of targets among the six targets

whose particular step was correctly predicted by a prediction method. The color code of the bars shows the assembly prediction methods in Table 2: LRD-Shape and

-Sum, the Low RMSD Decoy method with the Shape score and the rank sum; LR-Opus and -Sum, the Lowest RMSD method with OPUS-PSP and rank sum; FG-GOAP

and -Sum; the final generation method with GOAP and rank sum; C-GOAP and -Sum, the consensus across generation method with GOAP and rank sum.

https://doi.org/10.1371/journal.pcbi.1005937.g004
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10 pairwise decoys was 1.53 Å, while it worsened to 4.39 Å and 4.71 Å for the two modeled

cases (sequence identity ranges of 40.8-50.9% and 40.8-48.7%, respectively). Similar situations

were observed for 1rlb and 3uku where path prediction for modeled cases did not identify any

correct subcomplexes by some strategies. The average best RMSD of pairwise decoys of the

1rlb bound case was 5.96 Å while it was 10.87 Å for the modeled case. For 3uku, pairwise

decoys of the bound case had the average best RMSD of 4.41 Å but it deteriorated to 6.23 Å
and 6.58 Å in the two sets of modeled cases. Thus, for these cases, the inaccuracy of the indi-

vidual models negatively affected the quality of the pairwise decoys. This is one of the funda-

mental problems of current pairwise protein docking prediction [36]—for improvement, the

core pairwise docking algorithm, in this case LZerD, needs to be improved in order to achieve

better unbound docking performance.

Table 3. Summary of the blind strategies on unbound and modeled structure cases.

Chains PDB ID Seq Id. (%) S. RMSD (Å) RMSD Final Generation Consensus

GOAP Sum GOAP Sum

3 1a0r 41.7-70.5 1.9-7.4 17.3 (1) 1/1 1/1 1/1 1/1

30.7-52.2 1.9-2.4 6.3 (2) 1/1 1/1 1/1 1/1

30.2-37.1 2.4-9.9 12.7 (1) 1/1 1/1 1/1 1/1

4 1es7 U(4uhz, 2k3g) 1.3-2.3 10.1 (2) 2/2 2/2 2/2 2/2

79.8-87.6 0.7-1.1 14.9 (2) 2/2 1/2 2/2 1/2

55.3-79.8 1.1-1.3 12.5 (1) 2/2 2/2 2/2 2/2

55.3-58.7 0.8-1.3 12.9 (2) 2/2 2/2 2/2 2/2

28.9-55.3 1.3-9.3 17.3 (1) 2/2 0/2 2/2 2/2

2qsp 87.9-98.6 0.5-0.7 17.2 (2) 0/2 0/2 0/2 0/2

85.4-87.9 0.6-0.9 19.1 (1) 0/2 0/2 0/2 0/2

3fh6 27.8-89.1 2.4-6.9 28.6 (1) 1/2 1/2 1/2 1/2

5 1w88 40.8-50.9 0.6-3.3 31.6 (1) 1/3 2/3 0/3 0/3

40.8-48.7 0.6-3.3 32.2 (1) 0/3 0/3 0/3 0/3

6 1du3 83.2-88.3 1.5-4.3 28.5 (1) 1/4 1/4 1/4 1/4

35.1-66.3 0.8-2.4 21.8 (1) 1/4 0/4 3/4 1/4

35.1-39.7 2.3-3.3 24.6 (2) 3/4 3/4 1/4 2/4

1rlb U(2nbo, 1kt3) 0.9-11.3 26.0 (1) 0/4 2/4 0/4 0/4

1s5b 80.3-85.0 0.5-2.1 19.7 (1) 3/4 3/4 3/4 3/4

60.4-85.0 0.5-0.7 21.8 (1) 3/4 2/4 2/4 1/4

3vyt U(2zlc, 2zld, 2zle) 0.9-3.5 42.5 (1) 1/4 1/4 1/4 2/4

7 3uku 33.1-89.4 0.7-12.5 43.0 (1) 0/5 0/5 0/5 0/5

33.1-69.1 0.7-12.5 36.6 (1) 0/5 2/5 0/5 2/5

Total hits out of 22 complex models 8 (16) 6 (16) 8 (15) 7 (16)

Total hits out of 10 complexes (best hit for each PDB ID) 2 (7) 2 (9) 2 (6) 2 (7)

Total subcomplex hits out of 22 complex models 27/63 26/63 25/63 23/63

Subcomplex hits out of 10 complexes (best hit for each PDB ID) 12/31 16/31 11/31 11/31

Seq. Id. (%) shows the the range of the sequence identity of template structures of each chain that were used for homology modeling. U and PDB IDs in parenthesis

indicates that the complex structure was assembled from unbound structures. S. RMSD shows the range of the RMSD of single subunit structures. RMSD is the lowest

RMSD observed in the final generation models. In the RMSD column, the number in parentheses indicates the largest number of subunits that are assembled within 4 Å
RMSD (1 indicates that no pair was assembled within this cutoff, but at least one subunit is modeled within 4 Å RMSD in the case of homology model cases). RMSD in

bold shows that the complex model has a correct topology. Perfect path predictions are shown in bold. Rows for total hits count the number of perfect predictions and

the number of partially correct predictions among 22 complex models as well as among 10 protein complexes. For the protein complex results, since all but one complex

(1rlb) has multiple models with different subunit structure models modeled using different templates, the best result was considered as the result of the complex.

https://doi.org/10.1371/journal.pcbi.1005937.t003
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Bound case studies

We will discuss in detail several complexes with notable results in Table 2. The first complex is

1gpq, which is the complex structure of inhibitor of vertebrate lysozyme (Ivy) from E. coli
bound to hen egg white lysozyme C. Ivy forms a homodimer (denoted as A and A0 in Fig 5)

and binds to lysozyme C (denoted as C and C0). Since Ivy is functional as homodimer, it needs

to be formed first. Thus, the known assembly order is AA0> AA0C> AA0CC0 (Fig 5). The

structure is predicted correctly at an RMSD of 1.74 Å by Multi-LZerD. The assembly order is

predicted perfectly by the BSA method and all Path-LZerD methods. Thus, this is an example

where all predictions were correct.

On the other hand, there is one complex that was perfectly predicted by the BSA method

but not by Path-LZerD: 3vyt, which is a hexamer comprised of two HypCD heterodimers

bound to a central HypE homodimer. HypC (denoted as C and C0 in Fig 6), HypD (D and D0),

and HypE (E and E0) are proteins required for the maturation of [NiFe] hydrogenase, which is

involved in microbial hydrogen metabolism [53]. Since this complex is an assembly of two

HypCD dimers and a HypE homodimer (S1 Appendix Fig 6), the correct assembly order is

CD+C0D0+EE0> CD+C0D0EE0> CC0DD0EE0. A problem for this target was that the complex

structure was not modeled correctly. The best model had an RMSD of 36.8 Å and no pair of

subunits is predicted with RMSD <4.0 Å. Partly due to the incorrect structure model, only

part of the order was correctly predicted. For example, the final generation/consensus strategy

with the GOAP and the rank sum score correctly predicted the HypE homodimer and one

copy of the HypCD heterodimer; however, for higher order subcomplexes, errors emerged.

The pathways from the final generation method with the GOAP scoring function are shown in

S1 Fig. GOAP gave votes in the final generation to the correct pathway; however, it was a

Fig 5. Assembly pathway of 1gpq. Subunits marked A and A0 (green and cyan) are inhibitor of vertebrate lysozyme (IVY) and subunits

marked C and C0 (magenta and yellow) are lysozyme C. The assembly pathway is AA0> AA0C> AA0CC0.

https://doi.org/10.1371/journal.pcbi.1005937.g005

Fig 6. Assembly pathway of 3vyt. Subunits marked C and C0 (green and yellow) are HypC, subunits marked D and D0 (cyan and

salmon) are HypD, and subunits marked E and E0 (magenta and white) are HypE. The assembly pathway is CD+C0D0+EE0>

CD+C0D0EE0> CC0DD0EE0.

https://doi.org/10.1371/journal.pcbi.1005937.g006
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minority (seven). As shown in the diagram, the majority of the pathways correctly identified

the EE0 and CD subcomplexes, but D was docked to EE0 without the presence of C for most of

the cases, which resulted from underestimation of the strength of the interaction between

HypC and HypD.

4gwp is an example where Path-LzerD did not perform well. It is the structure of the media-

tor head module from yeast [54, 55]. Mediator is an essential protein complex that regulates

transcription in eukaryotes, connecting activators and repressors that are bound to promoters

with RNA polymerase II (Pol II). In yeast, mediator is organized into three modules: head,

middle, and tail. The head module plays key roles, including messenger RNA synthesis and

interaction with promoters, transcription factor TFIID, and Pol II. The head module is com-

prised of seven subunits, Med11, Med17, Med8, Med22, Med18, Med20, and Med6. In the

PDB file, these subunits correspond to chain A, B, C, D, E, and F, respectively. It is known that

the assembly begins with a subcomplex with Med17, Med11, and Med22 (chain A, B, and D),

forming a helix bundle. Subsequently, Med8 and Med6 are added (C, G), followed by docking

of the Med20–Med18 heterodimer (E, F). Thus, the assembly order is ABD> ABCDG+EF>

ABCDEFG (Fig 7). The best output of Multi-LZerD has an RMSD of 34.25 Å and no pair of

subunits is predicted within an RMSD below 4.0 Å.It was not trivial for Multi-LZerD to obtain

the correct complex structure partly because many subunits have non-compact, elongated

conformations and the pairwise decoys do not form tightly packed interactions during the

assembly pathway.

The assembly order is predicted almost perfectly by the BSA method, which predicts BD>

ABD> ABD+EF> ABD+CG+EF> ABCDG+EF> ABCDEFG. The fourth subcomplex,

ABD+CG+EF, is incorrect because chains C and G do not form a dimer before binding [54].

On the other hand, using Path-LZerD, only the low RMSD decoy combination method with

some scoring functions obtained partially correct prediction (S2 Table). S2 Fig shows the

pathways predicted by the low RMSD decoy combination strategy using DFIRE, GOAP, and

the molecular mechanics score. GOAP had both ABD and EF subcomplexes, but also the

Fig 7. Assembly pathway of 4gwp. Chain A (green) is Med11, chain B (cyan) is Med17, chain C (magenta) is Med8, chain D (yellow)

is Med22, chain E (salmon) is Med18, chain F (white) is Med20, and chain G (slate) is Med6. The assembly pathway is ABD> ABCDG

+EF> ABCDEFG.

https://doi.org/10.1371/journal.pcbi.1005937.g007
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incorrect CG subcomplex. Both DFIRE and molecular mechanics had the correct steps EF

and ABCDG+EF, but not the ABD subcomplex. Although the complete path was not suc-

cessfully predicted for this complex, it is interesting that the ABD subcomplex, the first sub-

complex that appear in the assembly path, and the EF complex, tended to be better captured

by the prediction methods. This is consistent with experimental observation that failure of

the ABD assembly leads to disassembly of the head [55]. Also, the detection of the EF

(Med18–Med20) subcomplex is consistent with their stable hydrophobic interaction, which

was detected by various experimental techniques [56–58]. Thus, the path prediction is cap-

turing stable subcomplexes during the assembly process.

In several cases, the BSA method and Path-LZerD’s non-blind strategies were more success-

ful than the blind strategies. One such case is 1w88, a tetramer of pyruvate dehydrogenase E1

bound to the peripheral subunit binding domain of dihydrolipoyl transacetylase (E2). This

complex is part of the pyruvate dehydrogenase multienzyme complex that converts pyruvate

into acetyl-CoA, and consists of three enzymes, pyruvate dehydrogenase (E1), dihydrolipoyl

transacetylase (E2), and dihydrolipoyl dehydrogenase (E3). The tetramer of E1 with two chains

of the α subunit and two β subunits is expected to form before binding to the E2 subunit

(chain I), making the assembly order AA0BB0> AA0BB0I (Fig 8). Multi-LZerD built the tetra-

mer AA0BB0 correctly with an RMSD of 1.3 Å, but misplaced Chain I, which resulted in an

overall RMSD of 4.8 Å. Despite the incorrectly placed subunit, the lowest RMSD model

method predicted the entire assembly order perfectly with many of the scoring functions (S3

Table) including the sum of score ranks (Table 2). On the other hand, the blind strategies did

not predict the entire pathway correctly. Examining the pathways predicted using the final

generation strategy and the sum of score ranks revealed that the majority of models, 174/200,

predict the assembly pathway BB0> AI+BB0> A0BB0+AI> AA0BB0I (S3 Fig) partly because

many of the models in the final generation have large RMSD values with incorrect topologies.

Only one model in the final generation, i.e. the lowest RMSD model, was consistent with the

correct assembly pathway (S3 Fig). Placing E2 (chain I) in the correct position was difficult in

Fig 8. Assembly pathway of 1w88. Subunits marked A and A0 (green and magenta) are pyruvate dehydrogenase E1 α subunit,

subunits marked B and B0 (cyan and yellow) are E1 β subunit, and subunit I (salmon) is the peripheral subunit binding domain of E2.

The assembly pathway is AA0BB0> AA0BB0I.

https://doi.org/10.1371/journal.pcbi.1005937.g008
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the docking because chain I is very small (49 residues) relative to the other subunits (E1 α, A

and A0: 368 residues; E1 β, B and B0: 324 residues).

On the other hand, for some complexes, the overall complex structure was not correctly

predicted by Multi-LZerD, but the assembly order prediction was nonetheless successful. 1s5b

is such an example. 1s5b is the structure of cholera holotoxin, formed of a homopentamer ring

composed of B subunits with the A subunit bound to its face [59]. The B pentamer binds to

gangliosides on the surface of target cells while A is an enzyme component, which permanently

activates adenylate cyclase. The resulting elevation of cAMP causes ion efflux, leading to severe

dehydration. Both components are necessary for in vivo toxic activity. Surprisingly, the homo-

pentamer ring does not form completely prior to the A subunit binding; in fact, if the homo-

pentamer ring is fully assembled in vitro, the A subunit cannot bind [60]. The A subunit binds

to a B subunit trimer and forms major contacts with those three subunits [61]; thus, the assem-

bly order is B1B2> B1B2B3> AB1B2B3> AB1B2B3B4> AB1B2B3B4B5 (Fig 9). The extensive con-

tacts between the A subunit and the B subunit trimer can be seen in the third subcomplex in

Fig 9. The homopentamer ring has C5 symmetry formed by five identical homomeric heterol-

ogous interfaces. Thus, the pairwise homomeric interfaces have very similar buried surface

area (BSA) and therefore, by definition, the pairwise BSA method must predict that all of the

interactions form sequentially, e.g. B1B2> B1B2B3> B1B2B3B4> B1B2B3B4B5> AB1B2B3B4B5.

The assembly pathway exhibited by the cholera holotoxin, in which the ring formation is inter-

rupted by a heteromeric binding step, could never be predicted by the pairwise BSA method

(S1 Table). However, the subcomplex BSA method was able to detect that the B subunit trimer

forms a larger surface area with the A subunit than the pairwise B interface (Table 2), suggest-

ing that the subunit BSA method is more biologically relevant than the pairwise BSA method.

Despite the fact that the lowest RMSD model of 1s5b produced by Multi-LZerD was 22.09

Å, Path-LZerD, including the blind strategies, predicted the assembly order perfectly using

many scoring functions (Table 2, S4 and S5 Tables). Although the correct structure was not

predicted for this complex according to the RMSD, 199 out of 200 models in the final genera-

tion of docking prediction had almost correct topology with two or fewer additional incorrect

subunit interactions, which probably is the main reason of the correct path prediction by the

blind strategies. Using OPUS-PSP, the plurality of models, 77, predict the correct assembly

pathway in the final generation method (S4 Fig). This suggests that the statistical scoring func-

tions are able to detect the more major contacts that the A subunit makes with three of the B

subunits. Knowing the importance of the interaction between chain A and a trimer of B in the

assembly process, this protein-protein interaction may be an effective target to block [62] for

preventing formation of the whole complex.

Fig 9. Assembly pathway of 1s5b. Subunit A (green) is the cholera holotoxin A subunit and subunits marked B1-B5 (cyan, magenta,

yellow, salmon, and white) are the cholera holotoxin B subunit. The assembly pathway is B1B2> B1B2B3> AB1B2B3> AB1B2B3B4>

AB1B2B3B4B5.

https://doi.org/10.1371/journal.pcbi.1005937.g009
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The importance of obtaining models with correct topology was also observed for 2qsp, a

complex of bovine hemoglobin. The best RMSD of complex models was 18.41 Å; however, the

assembly order was correctly predicted by the blind strategies (Table 2). For this target, out of

200 models constructed in the final generation, 147 had almost correct topology with two or

fewer extra incorrect subunit interactions, among which 75 (51.0%) voted to the correct

assembly order.

Finally, we discuss two interesting cases where the blind strategies are correct but all of the

non-blind strategies including BSA failed. 1ikn is a heterotrimer consisting of p65(RelA)-p50

(an NF-κ-B heterodimer) bound to the inhibitor I-κ-B. Because the inhibitor binds to the het-

erodimer, the correct assembly order is AC> ACD (Fig 10). However, the BSA method pre-

dicts AD> ADC because the BSA of the AD interface has a larger BSA than the AC interface.

The lowest RMSD structure (14.51 Å) has the inhibitor bound primarily to p50; thus, the low-

est RMSD methods predict CD> ACD. In contrast, both blind strategies predicted the correct

assembly order (Table 2). Using the sum of ranks, the correct pathway had 149 votes in genera-

tion 1000 and declined slightly to 124 votes by generation 3000 (Fig 11). Nevertheless, the cor-

rect pathway maintained the majority of votes for both the final generation and consensus

across generations strategies. In the final generation, 135 out of 200 models show the correct

topology (correct connections between subunits using a 5.0 Å cutoff distance), which likely

improved prediction accuracy. In this case, despite the lowest RMSD structure being incorrect,

the population of multiple models was able to collectively select the correct assembly pathway.

It was possible because the knowledge-based scores successfully identified strong interaction

between chain A and C despite their smaller interface.

4hi0 is a structure of urease accessory complex from Helicobacter pylori, which is involved

in maturation of urease. Urease enables the use of urea as the sole nitrogen source is and essen-

tial for H. pylori to survive in acidic gastric environment. The complex is a hexamer consisting

of a dimer of UreF/UreH heterodimers with a UreG homodimer bound. The known assembly

order is forming of a dimer of the FH dimer followed by recruiting the G dimer as summarized

in S1 Appendix, i.e. FH+F0H0+GG0> FF0HH0+GG0> FF0GG0HH0 (Fig 12). For this complex,

the BSA method wrongly predicted that the FF0 interaction occurs first because the FF0 inter-

face is larger than the FH interface. In contrast, for the blind methods, GOAP recognized the

strength of the FH interface and perfectly predicts the assembly order (Table 2). In the final

generation using GOAP, the plurality of models (44) voted for the correct assembly pathway

Fig 10. Assembly pathway of 1ikn. Subunit A is p65(RelA), subunit C is p50, and subunit D is I-κ-B. The assembly pathway is AC> ACD.

https://doi.org/10.1371/journal.pcbi.1005937.g010

Protein complex assembly order prediction

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005937 January 12, 2018 21 / 30

https://doi.org/10.1371/journal.pcbi.1005937.g010
https://doi.org/10.1371/journal.pcbi.1005937


(S5 Fig). To further explore the process of assembly order prediction with Path-LZerD, we also

looked at the number of votes for the correct and incorrect assembly pathways across multiple

generations (Fig 13). At generation 1000, the correct pathway had only 2 votes; however, the

number of votes increased steadily across 2000 more generations until it achieved plurality.

This indicates that the genetic algorithm recognized and rewarded the pairwise interfaces that

were consistent with the correct assembly order. To disrupt the formation of this important

protein complex for H. pylori by a small chemical compound, the target would be the F homo-

dimer, because they have the largest interface and this interaction is prerequisite for recruiting

the G dimer, whose GTPase function is essential for urease maturation [63].

Fig 11. Number of votes for assembly pathways of 1ikn across generations of the genetic algorithm. The pathway

for each model is determined using the sum of ranks. The x-axis shows the generation number and the y-axis shows

the number of votes for each pathway. Red line and bold label: the correct assembly pathway.

https://doi.org/10.1371/journal.pcbi.1005937.g011

Fig 12. Assembly pathway of 4hi0. Subunits marked F and F0 (green and magenta) are UreF, subunits marked H and H0 (cyan and

yellow) are UreH, and subunits marked G and G0 (salmon and white) are UreG. The assembly pathway is FH+F0H0+GG0> FF0HH0

+GG0> FF0GG0HH0.

https://doi.org/10.1371/journal.pcbi.1005937.g012
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These examples demonstrate that there are cases where the largest interface is not the first

to form. In such cases, the BSA method will generally fail to predict the correct assembly

order, while using scoring functions can lead to successful predictions.

Computational time

Computational time of the assembly pathway prediction for several examples are shown in

Table 4. Path-LZerD has three computational steps: pairwise subunit docking, multimeric

complex construction, and path prediction from files from the complex construction process.

For a three-chain complex or a small four-chain complex, the total computation was roughly

300 to 500 CPU hours, which is 1 day or less if 20 CPUs (or cores) are used, which is nowadays

commonly available. For a five to six chain complex, the time can go up to about 1500 to 2000

Fig 13. The number of votes for assembly pathways of 4hi0 across generations of the genetic algorithm. The pathway for each model is determined using

GOAP. The x-axis shows the generation number and the y-axis shows the number of votes for each pathway. Red line and bold label: the correct assembly

pathway. Pathways that received at least 20 votes in at least one generation are shown.

https://doi.org/10.1371/journal.pcbi.1005937.g013

Table 4. Computational time.

Chains PDBID Length Pair Dock Multi. Dock Path Total

3 1a0r 650 30.5 470.0 2.5 503.0

1ikn 641 56.0 372.5 2.8 431.3

4 1es7 410 32.0 331.0 1.6 364.6

2qsp 572 148.3 464.0 5.3 617.6

3fh6 1552 254.5 1214.5 42.8 1511.8

5 1w88 1433 352.3 1431.3 32.8 1816.4

6 1du3 894 165.0 749.0 5.5 919.5

1s5b 1303 134.0 624.0 7.3 765.3

Length shows the total length of the chains of a complex. The unit of computational time is in CPU hours. Computational time for a complex is divided into three steps,

the pairwise subunit docking (Pair Dock), multiple docking (Multi. Dock; assembling a complex), and computing paths from the docking results (Path). Computations

were performed on a computer with Intel Xeon-E5 CPU and 126 or 96 GB RAM.

https://doi.org/10.1371/journal.pcbi.1005937.t004
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CPU hours, which is 3-4 days with 20 CPUs. The time for pairwise docking is essentially pro-

portional to the number of subunit pair combinations (e.g. 3 for a three-chain complex and 15

for a six-chain complex), but the actual time is reduced if there are identical subunits in a com-

plex. The size of proteins is another factor that influences the computational time because in

general larger proteins have larger surface area to explore in docking.

Discussion

The assembly order of a protein complex provides not only important insights of the molec-

ular mechanism of complex formation but also useful practical information for obtaining

subcomplexes as well as drug and protein design. This is the first systematic study of pre-

dicting protein complex assembly order that employed several different approaches. Pre-

dicting the assembly order without looking at the experimentally determined structure of

the complex is totally new, and is possible by the use of a multimeric protein docking

method. For example, it will take too long time for molecular dynamics to simulate an

assembly process.

As a core of the algorithm of the assembly pathway prediction, we used our multimeric

protein docking program, Multi-LZerD. There are several multimeric docking methods

developed in the past. Wolfson and his colleagues pioneered multimeric protein docking

with their development of CombDock [64, 65] and their more recent development of Dock-

Star [66]. Methods were also reported that are specific to symmetric multimeric assembly

[67–69] and homology-based modeling [70]. Protein docking has extended its applications

from structure modeling, which is the original purpose, to other related topics including pre-

diction of protein interactions in a proteome [71, 72] and prediction of protein binding affin-

ity [73]. The current work shows a novel application of the multimeric protein docking

algorithm to complex assembly order prediction demonstrating that Multi-LZerD output

can be informative even if the quaternary structure and topology are unknown or incorrect.

Multi-LZerD generates a pool of models by GA, which turned out to be particularly useful

for blind prediction, where a prediction is made without knowing the native structure of the

target complex.

In contrast to the BSA method, which needs the experimentally determined quaternary

structure of the query protein complex, the current work (Path-LZerD) does not need the

structure of the query complex because the method builds the complex structure in the course

of assembly order prediction. Rather, it only needs structures of subunits as input for the

assembly path prediction, because it performs multimeric protein docking prediction, and

examines energy ranking of assembled pairwise decoys (the blind strategies). The results show

that the blind strategies worked perfectly for 3-chain targets, and performed well even in some

cases where structure of the complexes were not correctly predicted. There are also some cases

where the blind prediction worked better than the BSA method. The key observation that led

to the development of Path-LZerD was that the pairwise decoy rankings by a binding energy

scoring function can indicate docking order of a complex.

Ultimately, it is desired that the approach predicts both the structure and assembly order of

a multimeric complex correctly starting from the structures of subunits. Multi-LZerD success-

fully predicted the structure of a 6-chain complex previously [33] but none of the 6-chain com-

plexes in the assembly order prediction dataset were well predicted (Table 2). Although there

were cases where the assembly orders were correctly predicted despite incorrect complex

structure modeling, in general the assembly order prediction tends to be more successful when

the complex structures are well predicted, as shown for the well-predicted target subset in

Table 2. The importance of correctly predicting complex structures is also highlighted in the
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unbound and the modeled structure cases where the assembly order prediction accuracy dete-

riorated for larger complexes. Thus, a key for improving the accuracy of docking order predic-

tion is to improve the complex structure prediction. Currently, work is ongoing to improve

the performance of Multi-LZerD using more accurate scoring functions [36] and more effi-

cient conformational search methods.

Supporting information

S1 Appendix. Evidence for assembly order. A detailed explanation of the evidence for the

assembly order of each complex is provided.

(PDF)

S1 Fig. Assembly pathways of 3vyt in the final generation. The pathway for each model is

determined using GOAP. Letters in circles indicate subcomplexes, with the complete complex

at the bottom. Lines indicate assembly pathways. Numbers indicate how many models vote for

each assembly pathway. Assembly pathways with fewer than 7 votes are not visualized. Red

line: the correct assembly pathway (CD+C0D0+EE0> CD+C0D0EE0> CC0DD0EE0). Red num-

ber: the number of votes for the correct assembly pathway. Blue line: the assembly pathway

with the most votes. Blue number: the largest number of votes.

(EPS)

S2 Fig. Assembly pathways of 4gwp by low RMSD decoy combination. Letters in circles

indicate subcomplexes, with the complete complex at the bottom. Lines indicate assembly

pathways. Labels indicate the scoring function used to predict the assembly pathway. Red line:

correct assembly pathways (ABD> ABCDG+EF> ABCDEFG).

(EPS)

S3 Fig. Assembly pathways of 1w88 in the final generation. The pathway for each model is

determined using the sum of score ranks. Letters in circles indicate subcomplexes, with the

complete complex at the bottom. Lines indicate assembly pathways. Numbers indicate how

many models vote for each assembly pathway. Assembly pathways with fewer than 8 votes are

not visualized. Red line: the correct assembly pathway (AA0BB0> AA0BB0I). Red number: the

number of votes for the correct assembly pathway. Blue line: the assembly pathway with the

most votes. Blue number: the largest number of votes.

(EPS)

S4 Fig. Assembly pathways of 1s5b in the final generation. The pathway for each model is

determined using OPUS-PSP. Letters in circles indicate subcomplexes, with the complete

complex at the bottom. Lines indicate assembly pathways. Numbers indicate how many

models vote for each assembly pathway. Lines indicate assembly pathways. Numbers indicate

how many models vote for each assembly pathway. Assembly pathways with fewer than 3

votes are not visualized. Red line: the correct assembly pathway (B1B2> B1B2B3> AB1B2B3>

AB1B2B3B4> AB1B2B3B4B5). Red number: the number of votes for the correct assembly path-

way.

(EPS)

S5 Fig. Assembly pathways of 4hi0 in the final generation. The pathway for each model is

determined using GOAP. Letters in circles indicate subcomplexes, with the complete complex

at the bottom. Lines indicate assembly pathways. Numbers indicate how many models vote for

each assembly pathway. Assembly pathways with fewer than 10 votes are not visualized. Red

lines: correct assembly pathways (FH+F0H0+GG0> FF0HH0+GG0> FF0GG0HH0). Red number:
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the number of votes for the correct assembly pathway.
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S1 Table. Assembly pathways using the pairwise BSA method and the subcomplex BSA
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subunit structures.
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