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SUMMARY

Pluripotent embryonic stem cells (ESCs) constitute the cell types of the adult
vertebrate through a series of developmental state transitions. These states
can be defined by expression levels of marker genes, such as Nanog and Sox2.
In culture, ESCs reversibly transition between states. However, whether ESCs
retain memory of their previous states or transition in a memoryless (Markovian)
process remains relatively unknown. Here, we show some highly dynamic line-
ages of ESCs do not exhibit the Markovian property: their previous states and
kin relations influence future choices. Unexpectedly, the distribution of lineages
across their composition between states is constant over time, contrasting with
the predictions of a Markov model. Additionally, highly dynamic ESC lineages
show skewed cell fate distributions after retinoic acid differentiation. Together,
these data suggest ESC lineage is an important variable governing future cell
states, with implications for stem cell function and development.

INTRODUCTION

Stochastic processes have been described to play a role in multiple mammalian developmental pathways,

ranging from hematopoiesis to fate choice of retinal progenitors (Boije et al., 2014; Till and Mc, 1961). For

example, the development of mature retinal cell types from retinal precursor cells follows consistent prob-

abilities as precursor cells choose a lineage fate without any apparent regard to environment or history and

therefore has been termed stochastic (Losick and Desplan, 2008). In probability theory, a stochastic process

that does not exhibit memory of its history is termed aMarkovian process and is said to possess the Markov

property. Therefore, for a memoryless (Markovian) stochastic process, the probability of visiting each state

next depends only on the current state and not any preceding states. However, few studies of biological

processes termed stochastic have formally assessed whether these processes possess the Markov

property.

In biological development, cell states are often thought of as the expression of groups of genes at or near

specific levels for each gene (Garg and Sharp, 2016). Knowing whether the history of a process influences

future cell states is of particular interest for reversible transitions, where multiple paths could lead to the

present state. Such reversible transitions occur in many contexts, such as maintenance of airway epithelium

or intestinal crypts (de Sousa and de Sauvage, 2019; Nabhan et al., 2018; Pardo-Saganta et al., 2015; Tata

et al., 2013; Tetteh et al., 2016), or in reprogramming experiments whereby differentiated cell types are

induced to pluripotent cell states (Biddy et al., 2018). Understanding whether the history of prior states in-

fluences the probability of reaching particular future states will be important for understanding develop-

ment and homeostasis of mammalian tissues.

One context in which to consider reversible state transitions is early embryogenesis in mammals, whereby

loss of particular cells can lead to replacement through the developmental plasticity of neighbors (Chen

et al., 2018; Martinez Arias et al., 2013). Embryonic stem cells (ESCs) provide an interesting model of early

development, as these cells are derived from the inner mass of the blastocyst and can form all tissues of the

adult vertebrate organism, and ESC state transitions in culture mimic developmental state transitions in

embryos (Neagu et al., 2020; Shahbazi et al., 2017). ESCs show remarkable heterogeneity in the expression

of key transcription factors, such as the pluripotency genes Nanog and Sox2 (Abranches et al., 2014; Chak-

raborty et al., 2020; Chambers et al., 2007; Filipczyk et al., 2015; Kalmar et al., 2009; Klein et al., 2015; Kumar

et al., 2014; Singer et al., 2014; Ying et al., 2008), and heterogeneous expression in ESCs has been previ-

ously classified into discrete states with different developmental potential (Abranches et al., 2014;
iScience 24, 102879, August 20, 2021 ª 2021 The Author(s).
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Filipczyk et al., 2015; Kalmar et al., 2009). ESCs dynamically interconvert between states, transitioning back

and forth under standard culture conditions (Chakraborty et al., 2020; Filipczyk et al., 2015; Singer et al.,

2014). Previous studies characterizing the dynamics of state transitions in this system have focused on states

defined by levels of Nanog and have utilized fluorescent reporters in addition to antibody staining or fluo-

rescence in situ hybridization (Chambers et al., 2007; Filipczyk et al., 2015; Singer et al., 2014). These studies

have described the process of interconversion between states as stochastic, using measurements typically

taken over timescales on the order of hours (Abranches et al., 2014; Hormoz et al., 2016; Ochiai et al., 2014;

Singer et al., 2014). However, whether or not ESCs possesses the Markov property has not been extensively

evaluated, and ESC state transitions over longer timescales have not been explored. Therefore, ESCs are a

particularly interesting model system to consider memory of states, due to their ability to generate a

diverse array of cell fates and their exhibiting reversible state transitions in culture.

One method to assess whether state transitions are a Markovian process is to examine the correlation be-

tween the cell states of daughter and cousin cells within a lineage of ESCs. In a Markovian process, each cell

makes a state choice independent of its history, so the correlation of cell states between kin cells relaxes

over time. A Markovian model thus predicts that eventually all cell lineages converge toward a consistent

distribution of cell states as mixing amongst states occurs independently within each lineage. That is, for a

stochastic memoryless process, all lineages should converge to the same distribution of states. Measuring

how close or far a dynamical system is from this convergence point represents a type of informational en-

tropy (Baez and Pollard, 2016). Whether or not ESC state transitions are Markovian processes and the de-

gree to which they diverge from a Markovian model over long timescales is unknown.

Here, we characterize the dynamics of ESC state transitions amongst three interconverting states, defined

by levels of Nanog and Sox2, which represent distinct gene expression programs related to development

(Chakraborty et al., 2020). We genetically barcode ESCs, expand the population, and observe the propor-

tion of each ESC lineage in each state over time. We find state history for ESC lineages influences future

state transitions, and therefore, ESCs do not exhibit the Markovian property on the measured timescale

for states defined by Nanog and Sox2 reporters. Surprisingly, a subset of ESC lineages shows concerted

state transitions weeks after the barcode label is applied. These lineages show small but significant corre-

lation in the amount of transition between replicate experiments. We measure the distribution of lineages

across state space, compare them to the predictions of a Markov model, and quantify the difference as a

type of informational entropy we term lineage entropy. Strikingly, the distribution of lineage entropy

appears conserved over time. Finally, we show that lineages with a high frequency of concerted state tran-

sitions are more likely to skew their cell fates into neuroectoderm or extraembryonic endoderm when

cultured under differentiation conditions. Together, these data show ESC transitions between states,

defined by levels of pluripotency gene reporters, do not possess the Markov property and highlight the

role of ESC lineage in determining cell state path and differentiation outcomes.
RESULTS

Generation and tracking of ESC lineages over time

To assess the dynamics of ESC state transitions over time, we constructed an ESC reporter line compatible

with barcoding and state readout. We generated ESC with heterozygous insertions of fluorophore tags at

the endogenous loci of Nanog and Sox2 (GFP-P2A-Nanog and Sox2-P2A-mCerulean3 respectively, Fig-

ure S1A). We previously divided these cells into three predominant states of Nanog and Sox2 expression

(State 1 = High Nanog and High Sox2, State 2 = Low Nanog and High Sox2, and State 3 = Low Nanog and

Low Sox2; Figure 1A and [Chakraborty et al., 2020]) in ESC. We transduced ESCs with a lentiviral barcoding

vector (Bhang et al., 2015) at a low multiplicity of infection, ensuring each cell received % 1 barcode (Fig-

ure S1B). After selecting for�100,000 transduced, labeled cells representing at least 5,341 distinct barcod-

ing events, we expanded the population for nine days to 108 total cells. This allowed each barcoded ESC

the chance to expand to an estimated �15,000 cells (95th percentile range: 17–103,877 cells, interquartile

range of 16,092) distributed across all three ESC states, which were continuously cultured together (Fig-

ure 1B). We refer to these expanded, single ESC-derived cells as ESC lineages since the incorporated len-

tiviral barcode will be copied in each progeny cell, marking all ESC with the same unique barcode as kin.

We cultured these ESC lineages together and assessed their distribution across the three ESC states over a

period of 24 days (Figure 1B). First, we split our culture of 108 cells, maintaining half in culture and isolating

State 1, State 2, and State 3 cells from the other half by flow cytometric sorting for the fluorophore markers
2 iScience 24, 102879, August 20, 2021



Figure 1. Generation and tracking of ESC lineages

(A) FACS plot showing the expression of Nanog and Sox2 in a population of mouse embryonic stem cells. Cells were

binned into three states of expression (State 1 = Nanog High Sox2 High, State 2 = Nanog Low Sox2 High, State 3 = Nanog

Low Sox2 Low).

(B) Experimental Schematic. Lentivirally encoded barcodes were introduced into ESCs in the three States which were

expanded into lineages. Cells were cultured over time, during which some ESCs switched between States. At the

indicated time points half the culture was sorted into States 1–3 and the representation of each barcode (lineage)

assessed in each state through sequencing (see STAR Methods). Pink circles, Blue circles and Green circles represent

State 1, State 2 and State 3, respectively. See Table S1 for cell numbers assessed.

(C) Histogram showing the distribution of lineage sizes (in number of cells) on average across all time points.

(D) Stacked bar plot representation showing the proportion each lineage contributed to the overall population across all

time points. Each unique color row represents a distinct lineage. The number of lineages observed above background at

each time point is indicated; 2,560 lineages were detected in at least one state at all time points.

See also Figures S1 and S2.

ll
OPEN ACCESS

iScience
Article
of Nanog and Sox2. Gates used for sorting populations of States 1–3 are shown (Figure S2A) and were cho-

sen to minimize cross contamination between state populations. After day 0, the cultured ESC population

was maintained at R 23107 cells at all times to ensure high representation of lineages and was split either

every day or every other day due to the rapidly dividing nature of ESCs under standard culture conditions

(doubling time �12–14 h). Consistent with a dynamic equilibrium between states and our previous expe-

rience (Chakraborty et al., 2020), the proportions of ESC within States 1–3 remained relatively constant

over time (Figure S2B). We assessed the distribution of ESC lineages across the States in a similar manner
iScience 24, 102879, August 20, 2021 3



Figure 2. ESC population dynamics fit a 3-state Markov model

(A) Schematic of a Markov model with transitions between all 3 states.

(B) Framework for considering whether proportions of ESC in States 1–3 fit a 3-state model. The proportion of ESC in each

state prior to transition was compared to the proportion of ESC in each state after transition to fit a transition probability

matrix. This matrix predicted state proportions after each transition that were not different from the observed proportions

(row-wise chi-square test, p > 0.05), indicating the population of ESC as a whole was at equilibrium and could be well fit by

a Markov model. See Figure S2B for flow cytometry data giving the proportion of population in each state.
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by sorting at least 53107 cells every 6 days (Figure 1B), isolating �2–43105 cells for each state at each time

point to ensure representation (see Table S1 for cell numbers). We then identified the number of cells for

each lineage in each state through the relative proportion of each barcode in each sample (Figure S2C and

STAR Methods). We confirmed lineages were adequately detected through subsampling the data and

noting a minimal effect on the size distribution of lineages detected (Figure S2D). The estimated number

of cells in each ESC lineage is shown (Figures 1C and S2C and STAR Methods). A total of 2,560 lineages

were confidently identified in at least one state at all time points of the experiment and are the focus of

subsequent lineage level analysis.

Interestingly, the distribution of lineage sizes did not change appreciably over time (Figure S1) nor did any

particular lineages come to dominate the mixed culture by size (Figure 1D). This is in contrast to lineage

competition in other biological systems, such as cellular reprogramming or differentiation, in which partic-

ular clones dominate the population (Chan et al., 2019; Shakiba et al., 2019). Our system reliably allowed us

to track thousands of ESC lineages and their distribution across states over an extended period of time.

Fitting of a Markov transition matrix to ESC State changes

We noted that the overall population of ESC maintained a relatively consistent composition between

States 1–3 over time (Figure S2B). Thus, first we determined whether the overall population of ESC transi-

tions was well fit by a 3-state Markov model (Figure 2A). We used the proportion of the population in each

state before transition (X , at days 0, 6, 12, and 18) compared to the proportion of the population in each

state after transition (Y , at days 6, 12, 18, and 24) to solve for a transitional probability matrixM, using linear

least-square estimation (Figure 2B, Notes):

XM = Y (Equation 1)

If this transitional probability matrix, calculated using transitions across all five time points, could predict

each individual transition’s proportions accurately, then the system overall would be considered well fit

by the Markov model. Thus, next we applied M to the pretransition population frequencies in States 1–3
4 iScience 24, 102879, August 20, 2021
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at each time point (pretransition matrix X , Figure 2B), which yielded the expected frequencies for States 1–

3 after transition predicted by the Markov model (expected values X 0, Figure 2B). We compared these to

the actual observed frequencies in each state after transition (observed values Y , Figure 2B) and found no

significant differences between the expected values predicted by the Markov model and the observed

state proportions as evaluated by chi-square (c2 ) testing. Consistent with previous studies (Abranches

et al., 2014; Filipczyk et al., 2015; Ochiai et al., 2014; Singer et al., 2014), we conclude that ESC state tran-

sitions are well fit by a 3-state Markov model when the entire ESC population is considered together.

Distribution and transitions of ESC lineages over time

While a 3-state Markov model fits ESC population dynamics, this observation can conceal different under-

lying dynamics for individual ESC lineages. In order to test the Markov model on individual ESC lineages,

first, we assessed the dynamics and distribution of cell state for each ESC lineage. We calculated the frac-

tion of cells in each state and represented these data on a ternary plot in which each dot is a lineage and its

position indicates the relative composition of State 1, State 2, and State 3 in that lineage at each time point

(Figures 3A, S3A, and S3B). For example, a lineage on the top right corner of this plot indicates that all cells

were in State 1 and the lineage was not detected in the States 2 or 3 samples, and analogously a lineage on

the bottom left or top left corner indicates a lineage only present in State 3 or State 2, respectively. As ex-

pected, themajority of cells in most lineages were in State 1 (Figure 3A). Additionally, many lineages (955 of

2,560) were detected in all three states across all time points (Figure S3A). At all time points, a subset of

lineages was detected as present only in one or two states, as evidenced by the continued presence of lin-

eages at or near the edges of the ternary plot.

Next, we sought to understand the dynamics of how cells in each lineage transitioned between states over

time. First, we considered the change in proportion of each state for each lineage as a vector between two

points on the ternary plot, and generated a vector field diagram. The diagram represents the summated

transitions of all lineages present in each location of the plot: the fraction of lineages transitioning, the total

size of cells, and the number of distinct lineages making transitions are all displayed (Figure 2B). This plot

was fairly constant for all four transitions captured in our experiment (day 0/ 6, day 6/ 12, day 12/ 18,

and day 18 / 24, Figure S3C). The vector field plot revealed the overwhelming tendency of lineages pre-

sent in the State 2 or 3 corner of the ternary plot to return to State 1 at the next time point and for lineages

located in the State 1 region of the plot to switch into States 2 and 3. This is in agreement with previous

studies showing individual ESC transitioning between Nanog-high and Nanog-low states (Filipczyk

et al., 2015; Singer et al., 2014), though these studies traced ESC on a shorter timescale of hours compared

to the present study. However, the observation that ESC lineages also show net transitions between State 1

and States 2 and 3 at later time points is surprising, as cells transitioning in and out of a particular state

might be expected to cancel out, leaving the lineage as a whole with no net change in position.

The information of how each individual ESC lineage transitioned between time points allowed us to calcu-

late additional matrices encompassing transitional probabilities in this system. For each transition, we

considered the proportion of each lineage in each state at time tn-1 as X
.

and those in each state at time

tn as Y
.
. This allowed us to solve for the transition matrix M given by:

X
.
M = Y

.
(Equation 2)

using least-squares estimation (see Note). This matrixM represents a Markov transition matrix fit based on

average observed dynamics over data derived from the entire time course experiment across all lineages.

Transitional probabilities between the three states are shown (Figure 4A), and confidence intervals for the

parameters ofM were estimated by bootstrapping (Figure S4A, Note). Next, we used this transition matrix

(M) along with the known real sizes of each lineage (Figure S1) before and after transition to calculate the

net change in cell number for each type of transition (e.g., State 2/ State 1, State 1/ State 3, State 2/

State 2, etc.) on average across all lineages. This rate of change represents a net combination of growth,

birth, and death events for cells making each type of transition or staying within their state (Figure S4B,

see also matrix G in Note). Interestingly, cells transitioning from State 1 to State 3 show a net growth-

birth-date rate of 21%, meaning cells making this transition show much smaller apparent population sizes

after transition. In contrast, cells making the reciprocal State 3 to State 1 transition show a net growth-birth-

death rate of 847%, indicating they greatly increased in cell number. Together, the rates of state transition

and growth-birth-death between States 1 and 3 constituted a description of the dynamics in this system on

average across ESC lineages.
iScience 24, 102879, August 20, 2021 5



Figure 3. Distribution of ESC lineages over time

(A) Ternary plots showing the proportion of each lineage across states for all ESC lineages over time. Lineages in the

corners were detected as present only within that one state.

(B) Vector field showing the local average change in state proportions between two contiguous time points (such as day

0/ day 6, representing a possible state transition). The local averages for all four transitions (day 0/ 6, day 6/ 12, day

12 / 18, day 18 / 24) were equally weighted.

See also Figure S3.
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Path dependence and violation of a memoryless (Markovian) assumption

Next, we sought to analyze whether individual ESC lineage transitions had theMarkov property. We fit each

of the 2,560 lineages by a transition matrix by comparing its pretransition distribution amongst States 1–3

to its post-transition distribution amongst States 1–3, similar to the process performed for the entire ESC

population (Figure 2). The state distribution (conditional probabilities) for each lineage across time points

is given (Table S2). For each lineage, we compared its expected distribution across each transition (e.g. day

0/ day 6) to its actual distribution after transition using chi-square (c2) testing. We classified transitions as

Markovian if the lineage-specific transition matrix (Mi ) fit the transition and non-Markovian if there was a

significant deviation between the expected and observed values. For these comparisons, a number of tran-

sitions were uninformative because cells in the lineage were present in only one state at a given transition or
6 iScience 24, 102879, August 20, 2021



Figure 4. Some ESC lineages exhibit coordinated, non-Markov transitions between states

(A) Overall transitional probabilities between states inferred in the ESC system (see Note). Pink circle, blue circle, and

green circle represents State 1, State 2, and State 3, respectively. Confidence intervals represent 95th percentiles of

bootstrapping.

(B) Lineages (rows) were evaluated as fitting Markovian or non-Markovian dynamics using lineage specific transition

probability matrices and chi-squared test of homogeneity. Due to occupancy of only one state, some transitions are

uninformative. Transitions for 1,736 of 2,560 lineages are displayed; the remainder had low cell number for this analysis

(Note). Hierarchical clustering of transition patterns is shown.

(C) Schematic of state transitions under two contrasting models. In the first, ESCs are assumed to possess the Markov

property and are agnostic to their history, therefore over time, ESC lineages converge to the same mix amongst states

and same point on the ternary plot. In the second, ESC transitions are determined by their history and kin relations,

therefore ESC lineages exhibit coordinated transitions and converge to the corners of the ternary plot.

ll
OPEN ACCESS

iScience 24, 102879, August 20, 2021 7

iScience
Article



Figure 4. Continued

(D) Arrow plots show the transition of a subset of lineages from both the empirical data and that predicted by the Markov

model. Arrow color indicates lineage size (scale matches that used in Figure 3). Gray boundary indicates 95th percentile of

lineage location (empirical data) or 95% confidence interval for prediction of Markovmodel. Xmarks the equilibrium point

predicted by Markov model.

(E) Ternary plot displaying the lineage entropy (informational entropy) value for all lineages from all time points.

(F) Cumulative distribution function (CDF) plot showing lineage entropy distribution for coordinated and Markovian

hypothetical models (green and yellow, respectively) and the empirical data from D (blue).

(G) CDF plot showing the distribution across all ESC lineages of lineage entropy for the empirical data at different time

points.
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the lineage was too small in size for statistics (see Note). Overall, 1,183 lineages showed at least one non-

Markovian transition and 114 lineages showed all non-Markovian transitions (out of 1,736 total) across the

experiment (Figure 4B). Distributions for the Markov transition matrix parameters (Mi ) for the 114 lineages

most out of equilibrium are shown (Figure S4C). Thus, analysis of ESC lineages contrasted with the analysis

of the ESC population as a whole irrespective of lineage, where the population was well fit by aMarkov tran-

sition matrix (Figure 2), and suggested dynamics might differ within individual ESC lineages.

While transitions between states happen at the level of cells, if there is memory within a lineage there could

also be concerted transitions at the level of the whole lineage. Thus, in addition to evaluating whether the

distributions of cells amongst states fit a Markov model, we analyzed the sequence of states occupied by

each lineage over time. We consider a lineage in a given state (States 1, 2, or 3) if a plurality of cells in that

lineage occupy the state; in other words, for each lineage whichever state contains the highest proportion

of cells is defined as the state of that lineage. A stochastic process is said to possess the Markov property if

for the set of variables under consideration X (in our case, the group of ESC lineages) occupying states

given by S (States 1, 2, and 3):

ProbabilityðXn+ 1 = sjX1 = s1;X2 = s2;.;Xn = snÞ = ProbabilityðXn+ 1 = sjXn = snÞ (Equation 3)

where sn are the states of each lineage at time point n (days 0, 6, 12, 18, and 24). Stated, this means that the

distribution of X (lineages across states) at the next time point depends only on the present state and not

the entire history of transitions (see Note). In other words, theMarkov property means where a lineage tran-

sitions next depends only on where it is now and not where it has been previously. We enumerated the

probability of transitions between states for all 2,560 ESC lineages (Table S2) to assess this statement. Strik-

ingly, several lineages showed highly divergent conditional probabilities when the entirety of their history

was considered (Table S2). For example, we compared two lineage histories that were both in State 2 on

day 18 and assessed their probability of remaining in State 2 on day 24. In the first history, lineages that were

in State 1 on days 0, 6, and 12 showed only a 21 percent probability of remaining in State 2 on days 18/ 24.

However, this probability rose to 64 percent in the second history, where lineages were in State 2 on days 0,

6, and 12 (p-value 1.47310�6, Fisher’s exact test). We confirmed these patterns were not dependent on the

plurality vote threshold used to determine the state of a lineage, as changing the criteria for state member-

ship did not largely impact the number of non-Markovian sequence motifs (Figure S5). In a related analysis,

we generated recenter plots to visualize lineage sequence over the course of the experiment. These plots

showed patterns whereby cells followed together through several transitions along a specific path between

States 1 and 3 (Figure S6 and Table S2). The course of lineages through the experiment was also visualized

using a probability decision tree matrix (Figure S7). Altogether, transitioning lineages were heavily biased

to transition between States 1 and 2 or between States 1 and 3, with relatively few mixing transitions be-

tween States 2 and 3. This is consistent with the idea that States 2 and 3 represent distinct gene expression

programs related to developmental time points downstream of State 1 (Chakraborty et al., 2020).

Further, we inferred transitions at the level of individual cells. If ESC state transitions possess the Markov

property at the level of individual cells, distinct lineages of related ESCs should converge to the same dis-

tribution across states as every cell makes a separate choice of state regardless of its history and, therefore,

its kin relations. This is equivalent to the idea that in a Markov process, each cell will sample from the same

underlying probability distribution when choosing its next state. Thus, we compared ESC lineages over

time under a Markov model with a coordinated model in which related cells remain more likely to occupy

similar states at later time points (Figure 4C). We visualized the dynamics of lineages transitioning under

both models (Video S1 and Video S2). A Markov model did not capture the dynamics of lineages in tran-

sitioning between states, as at all time points, some lineages were distributed away from the equilibrium
8 iScience 24, 102879, August 20, 2021
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point and others appeared to be transitioning away (Figure 4D, equilibrium point and 95th percentiles for

empirical data and 95% confidence intervals for predictions of the Markov model are marked, see also Fig-

ures 3A and S3C). Additionally, a fully coordinated model did not capture the data as not all lineages were

distributed on the corners of the plot, with most lineages containing cells in each state. Instead, the system

appeared to contain a mix of ESC lineages retaining information about their kinship history and transition-

ing together and other lineages that were either not transitioning between states or had relatively equal

numbers of cells making reciprocal transitions (i.e., one cell of the lineage transitions State 2 / 1, while

another cell transitions State 1 / 2 such that the net proportion of the lineage in each state remains un-

changed). Our system did not allow us to distinguish between these two possibilities. Nevertheless,

together with assessment of state transition probabilities this analysis demonstrated ESCs do not transition

betweenNanog- and Sox2-defined cell states in a completely memoryless manner. Rather, at least a subset

of ESCs retains information about past states that influences future transitions.

Informational entropy in ESC lineages

Measuring how different lineages of cells distribute across state space represents a measure of information

contained in the system. We sought to quantify the information retained by the system of ESC lineages.

Compared to equilibrium where all lineages become perfectly mixed in their proportion of states over

time, the informational gain can be thought of as the relative information, information entropy, or relative

entropy; we will use the term lineage entropy in the present context. All of these terms represent a quantity

that approximates how far the system is from maximal uncertainty, which is achieved when all lineages are

at a perfectly mixed equilibrium point. In the scenario of a Markov process, convergence of all related cells

in an ESC lineage to an equilibrium distribution across states represents maximal lineage entropy.

Conversely, ESC lineages where all cells are in the same state would represent minimal lineage entropy.

We quantified the relative entropy of each lineage compared to the equilibrium point using a modified

version of the Shannon entropy ([Baez and Pollard, 2016], see Note). The lineage entropy at each point

in the ternary plot is shown (Figure 4E).

Next, we compared lineage entropy in our empirical data with that of the Markov model and a coordinated

model, representing the data by plotting the cumulative distribution of lineage entropy across all lineages

(Figure 4F). We found the empirical distribution of lineage entropy diverged significantly from either model.

More interestingly, the distribution of lineage entropy appeared relatively unchanged over the time course

of the experiment (Figure 4G). Maintaining the distribution of lineage entropy throughout the experiment is

unexpected as the informational entropy in a stochastic system labeled at one distinct time point (introduc-

tion of barcodes) would be expected to strictly increase as the labels become diluted over time. Together

with the analysis of transition probabilities, this suggests lineage history is a necessary variable to take into

account when predicting the future state of the ESC system, independent of the present state.

Defining ESC state by transition probability instead of gene expression

In examining the transitions of ESC lineages between states, we noted that most lineages fell into one of

two categories: either they exhibited concerted transitions between State 1 and States 2 and 3 (Video S1,

red lineages) or they exhibited no net transitions at all (Video S1, blue lineages). This led us to consider

whether lineages might be properly classified on the basis of whether they were highly dynamic and ex-

hibited concerted transitions between states (high ‘‘motility’’) rather than their levels of gene expression.

We calculated the motility of each lineage as the total distance traveled on the ternary plot over time

(see STAR Methods). First, we addressed whether the same lineages were transitioning into and out of

State 1 over time. A subset of highly dynamic lineages displayed high motility in transitioning between

states (Figures 5A and S8A). These lineages showed a range of sizes, containing a few to thousands of cells,

but did not include the largest sized lineages, which may have been at equilibrium (Figure S8B). Next, we

compared motility on the ternary plot to the Markov or non-Markov nature of each lineage when evaluated

by its lineage specific transition matrix (Mi, Figure 4B, above). We plotted a cumulative distribution of

motility across all lineages, lineages with only Markovian transitions (all blue in Figure 4B) or all non-

Markovian transitions (all red in Figure 4B). We found non-Markovian lineages were skewed toward higher

motility and Markovian lineages toward lower motility, consistent with the former being further away from

the equilibrium point (Figure 5B, p < 0.001 Kolmogorov-Smirnov test).

Analyzing motility of all lineages over time demonstrated a consistent subset transitioning between states,

resulting in a ‘‘sawtooth’’ type appearance whenmotility was plotted against time (Figures 5C and S9A). We
iScience 24, 102879, August 20, 2021 9



Figure 5. A consistent subset of ESC lineages is characterized by a high amount of state transitions

(A) Histogram showing the number of lineages with differing amounts of transition between states. Lineages are colored

according to their percentile rank of their motility between states across all time points relative to all 2,560 measured.

(B) Cumulative distribution function (CDF) plot showing the relationship between memory and motility. The relative total

amount of transition is shown for all lineages, and compared to lineages with all Markovian or all non-Markovian

transitions. p < 0.001 for comparisons to all lineages, Kolmogorov-Smirnov test.

(C) Line chart showing the amount of transition for all lineages at each transition point. Line charts showing the amount of

transition for lineages in the first decile (left) and the last decile (right) of motility are highlighted below.

(D) Stacked bar plots show the distribution of percent motility from lineages in different decile groups of transition. Inset:

CDF plot providing additional visualization of distribution of percent motility. In A–D, all lineages are decile ranked

according to their cumulative overall motility across transitions and colored identically in each panel.
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confirmed highly dynamic lineages were not due to sampling a portion of cells in states by considering the

change in motility as data were subsampled (Figure S9B), which was minimal. To visualize this effect in

another fashion, we plotted the portion of each lineage transitioning at each time point and colored line-

ages by their overall transition amount across the whole experiment (Figures 5D and S9C). The consistent

‘‘skew’’ of red, highly dynamic lineages to the right indicates that this same group of lineages was transi-

tioning between states at each time point. Finally, we calculated the pairwise correlation of motility for

each lineage across transitions, which confirmed correlation between motility at early transitions and later

transitions (Pearson’s r ranging from 0.19 to 0.50 Figure S10A). We assessed whether these effects could be

due to random amplification during library preparation by analyzing base frequency in high motility line-

ages, which was not skewed, and by randomly reassigning read counts, which resulted in no motility cor-

relation between early and late transitions (Figure S11).

This led us to consider whether motility was a conserved feature defining state in the ESC system, and if

states would be better considered as ‘‘motile’’ lineages and ‘‘nonmotile’’ lineages irrespective of specific

Nanog and Sox2 levels. When dividing lineages into motile and nonmotile states, we again did not observe

the Markovian property, as high motility at all prior transitions was associated with a higher probability of

remaining high in motility when compared against a lineage that was only high in motility at the immedi-

ately preceding transition (Table S3 and Figure S12 and Note). To further elucidate whether motility of a

lineage was a conserved feature, we performed a repeat of our entire experiment in duplicate (Figure S10B)

and compared the motility of each lineage at each transition between replicate experiments, comparing

lineages with the same barcode in each replicate to each other. We found a small correlation (Pearson’s

r ranging from 0.15 to 0.31) between motility across replicates (Figure S10C), which was significant when

compared to a model in which each lineage sampled its motility randomly from the experimental distribu-

tion (Figure S10D) but less than the average correlation of motility within each replicate (Pearson’s r ranging

from 0.19 to 0.50). Additionally, both replicates demonstrated non-Markovian state transitions and conser-

vation of lineage entropy (data not shown). Together, we conclude that motility between cell states shows

modest correlation across transitions and replicates in the ESC system.
Non-Markovian lineages skew fates upon ESC differentiation

States 1–3 represent interconverting, metastable gene expression states in ESC under culture conditions.

The identification of a subset of ESC lineages with high rate of concerted, non-Markovian transitions be-

tween States 1–3 raised the question of whether this property impacted ESC differentiation. To address

this question, we utilized retinoic acid treatment of ESC, which leads ESC to stop dividing and differentiate

into a population representing neuroectoderm and extraembryonic endoderm cell types (Niakan et al.,

2013; Semrau et al., 2017; Ying et al., 2003). After retinoic acid treatment, these cell types can be separated

by flow cytometric sorting using levels of the cell surface marker CD24 (CD24high = neuroectoderm,

CD24low = extraembryonic endoderm). We confirmed retinoic acid treatment of ESC led to upregulation

of neuroectodermal markers in the CD24high population and upregulation of extraembryonic endoderm

markers in the CD24low population (Figures S13A and S13B).

Next, similar to the experiment performed above (Figures 1, 2, 3, 4, and 5), we cultured the ESC lineages

under standard conditions with interconversion between States 1–3 for 12 days, allowing us to identify high

motility lineages (Figure 6B). Then, we differentiated ESC lineages for 4 days in retinoic acid, separated

CD24high (neuroectoderm) from CD24low (extraembryonic endoderm), and assessed the lineage (barcode)

representation in each population. For each lineage, we calculated its ratio between CD24high and CD24low

populations and plotted a cumulative distribution over this ratio. We found higher motility lineages were

skewed in their proportions, either showing relatively greater numbers of neuroectoderm (CD24high) or

extraembryonic endoderm (CD24low) cells (Figure 6C, p < 0.01 for all deciles except the fifth, F-test for vari-

ance). Lineages that were detected in States 2 or 3 by plurality vote were also skewed, consistent with the

idea that these states may be primed for differentiation and consistent with differences in their gene

expression profiles (Figure S13B and Chakraborty et al., 2020). Conversely, low-motility lineages were

more likely to be evenly split between neuroectoderm and extraembryonic endoderm fates, perhaps re-

flecting the fact that these lineages were more likely to be in equilibrium between States 1 and 3 prior

to the addition of differentiation signals. We visualized these differences by combining the top and bottom

4 deciles of motility (Figure 6D, p < 0.001 for both groups, F-test for variance). Together, these data indi-

cated that a subset of non-Markovian ESC lineages was poised to transition between states and skew their

fate upon addition of a strong differentiation signal.
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Figure 6. High motility ESC lineages skew fate to either neuroectoderm or extraembryonic endoderm upon

differentiation

(A) Phase contrast microscopy of embryonic stem cell colonies in standard culture, differentiated by 4 days of treatment

with retinoic acid. 10X objective images. Scale bar = 25 micrometers.

(B) Diagram of experiment. ESC lineages were cultured under standard conditions (serum + LIF) under which cells

transition between States 1–3 for 12 days, with sampling on day 0, 6, and 12. On day 12, a cell split was also placed in

retinoic acid for differentiation. CD24high (neuroectoderm) and CD24low (extraembryonic endoderm) cells were isolated

by flow cytometric sorting and the lineages (barcodes) in each population assessed by sequencing.

(C) For each lineage, the ratio of its occurrence in CD24high to CD24low cells is plotted (CDF). Lineages are separated into

deciles of motility across days 0–12. F-test for variance p < 0.01 for all deciles compared against all lineages except for the

fifth decile, which was not significant.

(D) As in part C, except the top 4 deciles of motility and bottom 4 deciles of motility are grouped to enable visualization. A

histogram (left) and CDF plot (right) are shown. F-test for variance p < 0.001 for both groups compared to all lineages.
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DISCUSSION

We analyze lineages of ESCs transitioning between Nanog- and Sox2-defined states over days and find a

subset of lineages with cells that transition between states together. These lineages appear to follow

distinct, specific paths of state transitions, with the full history of the lineage influencing the probability

of future transitions. Therefore, we deduce at least some ESC lineages do not possess the Markov property

of memorylessness. When exposed to a strong differentiation signal, non-Markov lineages show greater

skew in cell fate.

Several important caveats should be considered when considering the results presented here. We labeled

Nanog and Sox2 loci using knock-in fluorophore derivatives of eGFP (protein t1/2�22 h), a strategy used

extensively in prior studies at the Nanog locus (Chakraborty et al., 2020; Chambers et al., 2007; Faddah

et al., 2013; Filipczyk et al., 2015). These reporters are best thought of as reading out a cell state, and of

temporally averaged signal for Nanog and Sox2 (estimated protein t1/2 2–3 hr), as opposed to reading

out levels of gene expression in real time. Nanog and Sox2 are extensively regulated by other transcription

factors that bind their regulatory regions, making these genes centers of a larger regulatory network deter-

mining cell state. Thus, Nanog levels fluctuate over a small range on the time scale of hours, but also fluc-

tuate over a large range over the timescale of days, as ESCs transition between global Nanog-high and

Nanog-low states (Singer et al., 2014). Therefore, it is likely the reporters used here capture global changes

in state but do not capture smaller fluctuations in Nanog or Sox2 levels and likely underestimate the

dynamics of cells leaving State 1 (high Nanog and high Sox2). Despite this limitation, we still detected lin-

eages with relatively high transition rates between States 1 and 3, which correlated with differentiation po-

tential under retinoic acid treatment.

An additional caveat concerns the technical measurement of States 1–3. We discretized and binned cells

into three states and sampled them using extreme gates. While this gave us defined states to measure and

allowed us to cleanly separate populations, it does mean that intermediate states were not sampled and

the population was incompletely measured. The cells discarded during culture splitting in between the

six-day sampling intervals were another source of incomplete measurement. Incomplete measurement

could impact the measurement of Markov vs non-Markov dynamics, which we attempted to minimize by

analyzing lineages detected in the extreme gates at all time points. Additionally, we calculated dynamics

by rounding to whole cell numbers and proportions (Note), and while we cannot exclude an impact of

rounding error on the precise dynamics calculated, we detected non-Markov behavior in a high enough

fraction of lineages to feel confident in the qualitative results presented here.

The idea that kin related cells transition between states in a correlated fashion suggests the presence of as

yet unknown hidden variables that may govern these transitions. We defined state in this study using

Nanog and Sox2 reporters, and while our previous observations suggest these genes capture the greatest

component of heterogeneity in ESCs (Chakraborty et al., 2020), this is still a relatively limited two-dimen-

sional reduction of gene expression space. Our data suggest there are at least two additional microstates

in this system, as we detected skew of lineages toward either neuroectoderm or extraembryonic endoderm

upon differentiation but could not predict which lineages would go either direction. Perhaps defining the

full transcriptome of ESCs along with lineage information will allow better prediction of future states. On

the other hand, a recent study of hematopoiesis in vitro and in vivo captured both full transcriptomic infor-

mation and lineage for single cells, yet found sister progenitors to have intrinsic fate biases that could not

be accounted for by the transcriptome (Weinreb et al., 2020). Another study examined ESC differentiation

into neural lineages using defined signals from the culture medium, positing a chain of unobserved molec-

ular states that cells may transit in a non-Markov process (Stumpf et al., 2017). Our results would support

this model, adding that lineage is a key variable predicting dynamics as cells expand and that non-Markov

behavior can also be observed in the absence of external differentiation signals, as cells reversibly explore

microstates (such as States 1–3). Many elegant systems of encoding kinship relations exist in biology, and

understanding how ESCsmay use such systems alongside developing amore complete picture of how cells

encode their histories will be of great interest.

The results here may also have implications for cellular competition. Development in the mammalian body

is known to occur in part through competition, whereby the fittest precursor cells survive and make greater

contributions to the adult organism (Claveria et al., 2013; Dejosez et al., 2013). Greater fitness in cell compe-

tition experiments has often been attributed to the ability of elite clonal lineages to rapidly divide, thereby
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increasing their number (Shakiba et al., 2019). We find a subset of ESC lineages shows consistently high

motility in transitioning between states but does not appreciably increase its growth rate and thus does

not dominate the population. This may indicate that in some contexts highly dynamic lineages are those

with a greater ability to switch between states in a manner distinct from elite growth ability.

Fluctuations between states in biological systems have previously been proposed to arise in part from slow

global fluctuation of the transcriptome, possibly over timescales as long as a week (Huang, 2009). The re-

sults presented here would support such a model. While the source of such fluctuations is unknown, one

possible source could be oscillators that may in part drive state transitions and identification of such sys-

tems will be of great interest. In mammalian embryogenesis, cells in the inner cell mass display heteroge-

neous levels of Nanog over a relatively small time window (E3.75–E4.75 [Shahbazi et al., 2017]), and the

source of this heterogeneity remains unclear. ESCs are derived from the inner cell mass, and this enables

Nanog and Sox2 state transitions to be studied in a large number of cells over several days. Since ESCs

in vivo eventually constitute the entirety of the adult organism, understanding whether they display non-

Markov behavior in a way that influences their future lineage choices during mammalian development

will be of great interest. This could reveal new understandings of the true interchangeability of ESCs

and their descendant cells during embryogenesis and may help identify the fluctuations giving rise to het-

erogeneity in key developmental factors. Together, the results presented here showing ESC state transi-

tions are non-Markovian for some lineages may have implications for understanding the flow of biological

information during state transitions and may suggest homeostasis and biological robustness are best un-

derstood both at the level of individual cells and at the level of the lineages fromwhich they are descended.
Limitations of the study

Several limitations apply to the present work. We measured cell state using Nanog and Sox2 reporters,

which represent a limited two-dimensional view of gene expression space. Reporter half-lives were chosen

to match global gene expression states, but likely underestimated dynamics of Nanog and Sox2 them-

selves. Additionally, states were measured using discretization, binning, and extreme gates that helped

ensure purity, but came at the expense of incomplete measurement and possible blur in the estimate of

dynamics. Finally, the study is limited in that no molecular mechanism for the long timescale memory

was discerned. Aspects related to these limitations are discussed further above.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

APC Rat Anti-Mouse CD24 conjugated

antibody

BD Bioscience Cat# 562349; RRID: AB_11151896

Deposited data

FASTQ raw data This paper Bioproject: PRJNA670562

Code for data analysis This paper GitHub: https://github.com/SGarg-Lab/

lineage-entropy

Experimental models: Cell lines

V6.5 mouse embryonic stem cell line Novus Biologicals Cat# NBP1-41162

Oligonucleotides

Primers for fluorophore tagging of

pluripotency genes, see Method Details

This paper N/A

Forward and reverse primers for lineage

tracing, see Table S5

This paper N/A

Flowcell primer for next generation

sequencing, see Table S5

This paper N/A

Primers for RT-qPCR, see Table S6 This paper N/A

Recombinant DNA

ClonTracer Barcoding Library Addgene Cat# 67267
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Salil Garg (salilg@mit.edu).
Materials availability

Plasmids, constructs, and primers are available upon requests.
Data and code availability

The FASTQ files for this experiment are available on Sequence Read Archive (SRA) with Bioproject:

PRJNA670562. Python scripts for processing FASTQ files generated by sequencing and subsequent ana-

lyses are available on GitHub (https://github.com/SGarg-Lab/lineage-entropy).

Any additional information required to reanalyze the data reported in this work paper is available from the

Lead Contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell line information

Twomouse embryonic stem cell (ESC) lines were used in this study: V6.5 (gift from the Jaenisch Laboratory,

Whitehead Institute, MIT) and V6.5 derived Nanog-GFP/Sox2-mCerulean generated as described below

using stably-integrated DNA barcodes ((Bhang et al., 2015), Addgene #67267).
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Cell line maintenance

Cells were cultured in liquid medium on 10-cm tissue plates pre-coated with 0.2% gelatin in phosphate-

buffered saline (PBS). Cells were grown in an incubator at 37�C with 5% CO2. Cells were tested for myco-

plasma infection every 6 months.

The liquid medium contains 415 mL of Dulbecco’s Modified Eagle Media (DMEM, Catalog number

1195073, Gibco), 5 mL of 0.1 mM L-glutamine, 5 mL of 0.1 mM non-essential amino acids, 5 mL of 0.1 mM

penicillin-streptomycin antibiotics solution, 5 mL of 1 M HEPES buffer, 4 mL of 14.3 M beta-mercaptoetha-

nol, 82.5 mL HyClone fetal bovine serum (FBS), and 55 mL of 1000U/mL Leukemia Inhibitory Factor (LIF).

DMEM + additive components were filtered sterilized using a 0.45 micron filter (Catalog number

430770, Corning) before adding FBS and LIF.
METHOD DETAILS

Fluorophore tagging of pluripotency genes

EndogenousNanog and Sox2 genes were tagged byGFP andmCerulean via CRISPR-Cas9 induced homol-

ogy directed repair (HDR). Single-guided RNAs targeting upstream of the start codon (Nanog) or down-

stream of the stop codon (Sox2). The single-guide RNA sequence (For Nanog locus: 5’-CACCGTCAGTGT

GATGGCGAGGGA-3’ and its complementary 3’-AAACTCCCTCGCCATCACACTGAC-5’; For Sox2 locus:

5’-CACCGATTGGGAGGGGTGCAAAAAG-3’ and its complementary 3’-AAACCTTTTTGCACCCCTCC

CAATC-5’) was cloned into PX330 plasmid using BbsI restriction site. The plasmid was then introduced

to the cell using cationic lipid transfection (Lipofectamine 2000, Invitrogen, Catalog number #11668019)

along with a homology-directed repair construct encoding the relevant fluorophore (GFP for Nanog and

mCerulean for Sox2), T2A/P2A post-translational cleavage sequences, and a drug resistance gene

(PuromycinR forNanog and BlasticidinR for Sox2). Cells were then selected in culture medium with Puromy-

cin and Blasticidin at concentrations of 2 mg/mL and 4 mg/mL, respectively, for 14 days.
Molecular barcoding of ESC

ESCs were labeled using ClonTracer library ((Bhang et al., 2015), Addgene #67267). Nanog-GFP; Sox2-

mCerulean V6.5 ESCs were transduced with the aforementioned barcoding library by spinoculation.

101,703 transduced cells (Table S1) were selected by the expression of RFP using flow cytometric sorting.

Successfully transduced cells were then cultured for �2 weeks until at least 108 cells were present in the

population. These cells were then cultured and sorted as described in Figure 1B.
Retinoic acid-induced differentiation of ESC

ESCs were seeded in the aforementioned liquid medium on 10-cm tissue plates pre-coated with 0.2%

gelatin in phosphate buffer saline (PBS) at the density of 250,000 cells. The next day, we changed the

old medium with the new N2B27 medium with 0.25 uM retinoic acid solution. N2B27 medium contained

2.5 ml of 200 mM L-glutamine (Catalog number 25030140, Gibco), 2.5 ml of 100X N2 supplement solution

(Catalog number 17502048, Gibco), 5 ml of 50X B27 supplement solution (Catalog number 17504044,

Gibco), 247.5 ml of Dulbecco’s Modified Eagle Medium: Nutrient Mixture F-12 Ham (DMEM/F12, Catalog

number D6421, Sigma), 245 ml of Neurobasal medium (Catalog number 21103049, Gibco), and 500 ul of

100 mM beta-mercaptoethanol. The 25 mM retinoic acid stock solution was made by resuspending

50 mg of retinoic acid (RA, Catalog number R2625-50MG, Sigma) in 6.67 ml of dimethyl sulfoxide

(DMSO, Catalog number 472301-100ML, Sigma). Differentiating cells were cultured in this N2B27 medium

with retinoic acid for 4 days, and the medium was refreshed after 48 hours.
Staining CD24 proteins on differentiated ESC

RA-induced differentiated ESCs could be classified into two main populations: one that expressed high

CD24 marker (neuroectoderm) and low CD24 marker (extraembryonic endoderm). To quantify the amount

of this protein marker, ESCs were washed with phosphate-buffered saline (PBS), harvested by trypsiniza-

tion, and adjusted so their concentration was 5,000,000 cells/ml in FACS buffer (10% Hyclone Fetal Bovine

Serum (FBS) in PBS). 100 ml of cell suspension was then added to wells of 96-well plates. Then 1 mg of APC

Rat Anti-Mouse CD24 conjugated antibody (Catalog number 562349, BD bioscience) was added to each

well before incubating at 4oC for an hour. Stained cells were then washed three times with described

FACS buffer, before keeping at 4oC until analysis.
18 iScience 24, 102879, August 20, 2021
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Reverse transcription quantitative real-time PCR (RT-qPCR) to measure gene expression

differences on differentiated ESC

After being stained with APC Rat Anti-Mouse CD24 conjugated antibody for an hour, differentiated ESC

were sorted into two populations, CD24high and CD24low. RNA was then extracted from these samples

by TRIzol extraction (TRIzol, Catalog number 15596018, Thermo Fisher) using the protocol from Thermo

Fisher instructionmanual. cDNAwas synthesized using SuperScript IV Reverse Transcriptase (Catalog num-

ber 18090010, Thermo Fisher). cDNA was then amplified by different pairs of primers that target 7 different

genes using SYBR green master mix. Primer sequences are given in Table S6.

Flow cytometry and fluorescence activated cell sorting (FACS)

BarcodedNanog-GFP; Sox2-mCerulean V6.5 ESCs were analyzed for their Nanog-Sox2 expression on a BD

LSRII HTS-2 with FACSDiva v8.0 acquisition software. Data gathered from flow cytometry were then

analyzed by FlowJo V9.9. Live cells were first selected based on the forward scatter area (FSC) vs. side scat-

ter area (SSC). Single cells were then selected based on forward scatter height (FSC-H) vs. forward scatter

width (FSC-W). The expression of GFP and mCerulean (a proxy for Nanog and Sox2 expression, respec-

tively) were observed using FITC and Pacific Blue detector channels using wild type V6.5 or singly GFP/

mCerulean labeled ESC as compensation controls. For the experiment detecting ESC lineages, this bar-

coded fluorophore-tagged ESC line was sorted by a BD FACS ARIA machine into 3 states based on the

level of GFP (representing Nanog level) and mCerulean (representing Sox2 level). Distinct states were

sorted into culture medium, spun at 223 rcf for 5 minutes, and cell pellets frozen for analysis.

ESCs that were differentiated by retinoic acid for four days were analyzed for their CD24 expression on a BD

LSRII HTS-2 with FACSDiva v8.0 acquisition software. Data gathered from flow cytometry were then

analyzed by FlowJo V9.9. Live cells were first selected based on the forward scatter area (FSC) vs. side scat-

ter area (SSC). Single cells were then selected based on forward scatter height (FSC-H) vs. forward scatter

width (FSC-W). The expression of CD24 was observed using APC detector channels using wild type V6.5

and unstained differentiated ESCs as compensation controls. Differentiated cells were then sorted by a

BD FACS ARIA machine into 2 states based on the level of CD24 (CD24high and CD24low). Distinct states

were sorted into culture medium, spun at 223 rcf for 5 minutes, and cell pellets for frozen for analysis.

FACS analyzers and sorters utilized were provided by The Swanson Biotechnology Center Flow Cytometry

Facility, Koch Institute for Integrative Cancer Research at MIT.

Extracting DNA barcodes from ESC genome

Genomic contents from sorted cells were extracted using SigmaGenEluteMammalian Genomic DNA Prep

Kit (Catalog number #G1N70) and PCR amplified using the primers listed in Table S5. DNA samples from

different states and different timepoints were amplified using unique reverse primers. PCR reactions con-

tained 10 mL of 5X NEB Phusion High-Fidelity buffer (Catalog number B0518S), 1.5 mL of DMSO, 1 mL of

dNTPs (NEB, catalog number N0447S), 1 mL of 10 mM forward primer, 1 mL of 10 mM reverse primer,

0.5 mL of NEB 2000U/mL Phusion High-Fidelity DNA Polymerase (Catalog number M0530S), genomic

DNA, and ddH20 to 30 mL. Reactions were amplified using an annealing temperature of 55.5oC for 25 cy-

cles. Amplicons were pooled together for DNA next-generation sequencing.

Illumina sequencing

Amplicons were sequenced using Illumina MiSeq and NextSeq500 sequencers. This sequencing service

was provided by MIT BioMicro Center, MIT Department of Biology. The flowcell primer 5’-CCGAGATCTA

CACACTGACTGCAGTCTGAGTCTGACAG-3’ was used.

Quality metrics for sequencing reads

Sequencing reads in FASTQ files generated fromDNA next-generation sequencing were quality filtered by

Phred Score (Phred +33, Illumina 1.9) and for sequencing errors compared to the reference amplicon. The

reference sequence is: 5’-NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNAGCAGAGCTACGCACTC

TATGCTAGTGCTAGAGATCGGAAGAGCACACGTCTGAACTCCAGTCACXXXXXXXXXXATCTCGTATGCC

GTCTTCTGCTTG-3’ where N represents barcodes and X sample indices, respectively. Before use in sub-

sequent analyses, each read must pass the following criteria: 1. The sum of the Phred quality values of the

barcoding region (the first 30 bases) must be greater than 80% of maximum Phred quality values (40 Phred
iScience 24, 102879, August 20, 2021 19
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score/base * 30 base = 1200 maximum Phred score); 2. The Hamming distance (the number of base mis-

matches) between the read and the reference sequence in the first constant region (the 31st to 95th nucle-

otide) must be less than 6; 3. The Hamming distance between the read and the reference sequence in the

second constant region (the 106th to 130th nucleotide) must be less than 3; 4. The Hamming distance

between the read’s sample index and one of the sample indices must be less than 2. The number of reads

that passed these quality metrics are listed in Table S4. Reads that passed the quality metrics were then

separated based on sample indices. (Note that each sample was amplified by a unique reverse primer

that contained a distinct sample index. This allowed us to separate them in this pipeline.) Finally, reads

that passed the quality standard with barcodes less than 6 Hamming distance away from each other

were collapsed together.

Total count normalization method

Quality filtered reads were then normalized into cell counts based on the State sample from which they origi-

nated. Specifically, reads that were in State 1 were normalized to 90,000,000 cells whereas State 2 and State 3

reads were normalized to 5,000,000 cells. This ratio of State 1: State 2: State 3 = 90:5:5 was approximated

from the distribution of cells in the FACSplot (Figures 1A and S2B) and normalized to the total of 108 cells sorted.

Please note that this calculation approach allows samples with different sequencing depth to normalize to the

same total number of cells if they represent cells in the sameState. For example, all State 1 cells fromDay 0, 6, 12,

18, and24 are always normalized to 90,000,000 cells. Lineages are further considered if andonly if the sumof their

read numbers in State 1, State 2, and State 3 is greater than 0 at all timepoints.

Reads from CD24high and CD24low samples were normalized to 3,000,000 and 1,000,000 cells, respectively,

since these are the actual number of cells sorted in each sample.

Motility of ESC lineages

Relative transition amount or motility is defined by the Cartesian distance between the location of a lineage

in the first timepoint (x1, y1) to the location in the second timepoint (x2, y2) on the ternary plot. In other

words,

Motility =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x2Þ2 + ðy1 � y2Þ2

q

Using ternary plot coordinates for (x,y) where a lineage entirely in State 1 is (1,0), State 2 is (0,1), and State 3

is (0,0). Note that the motility is always between 0 (no change in state proportions between two timepoints)

and
ffiffiffi
2

p
(100% change along State 1-State 3 axis). The maximum change of state proportions along State

1-State 2 axis and State 2-State 3 axis is 1. This weighting was regarded as appropriate given the greater

gene expression differences between States 1 and 3 as compared to State 2 (Figure 1A and (Chakraborty

et al., 2020). Lineages were ranked (Figure 5A) and separated into 10 groups based on their overall motility

(sum of motilities in all 4 transitions). The motility in each transition of each group was shown in Figures 5C,

5D, S8, and S9. Percent Motility (used in Figures 5, S8, and S9) was calculated by:

Percent Motility = (Motility of that lineage /
ffiffiffi
2

p
) * 100

Calculating the proportion of lineages in various states over time

To simplify our analysis, each lineage was assigned to one of the three bins – State 1 bin, State 2 bin, and State 3

bin – based on which state had the highest number of cells (plurality vote). For example, lineage which had 1000

State 1 cells, 500 State 2 cells, and 500 State 3 cells, would be assigned to State 1 bin. Using thismethod, we sepa-

rated our 2,560 analyzable lineages into 2,323 State 1 lineages, 86 State 2 lineages, and 151 State 3 lineages, and

we continued to follow how lineages in different bins changed their state assignment over time fromDay 0 to Day

24 (Figure S7). The decision tree was produced by Python networkxmodule. The width of edges corresponded to

the proportion of lineages in that transition. Different shades of gray represented different timepoints.

Calculating the correlation of motility among replicate experiments

To determine whether the correlation in motility between two experimental replicates was significant

(Figures S10C and S10D), we calculated a correlation of randomizedmotility using the followingmethod: 1.

Identify lineages that exist in both replicates; 2. For each replicate (WT1 andWT2), collect the experimental

motility values of each transition for each lineage; 3. Randomly assigned motility values to each lineage

from the distribution of motilities within that replicate using the data collected from step (2); 4. Calculate
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log10 of percent motilities from these randomly assignedWT1 and WT2 motility values; 5. For each lineage

in WT1 and WT2 replicates, plot the data and calculate Pearson correlation coefficients (r-values) for each

transition. The comparison between empirically observed motility correlation (Figure S10C) and those

randomly selected (Figure S10D) is shown. Upon 100,000 trials of this randomization procedure, R2 be-

tween randomly assigned WT1 and WT2 motilities ranged from 0 to 0.01 for these trials.
Fisher’s exact test of independence between different state histories

To determine whether the difference in state distributions between two different state histories was significant

(Table S2, ‘‘Motif Analysis’’ sheet; Table S3, ‘‘Motif Analysis’’ sheet), we compared the number of lineages in each

state at Day 24 for lineages with two distinct histories for lineages that occupied the same state on Day 18 using

Fisher’s Exact Test. We restricted analysis to histories that contained lineages occupying all states in the last

timepoint such that the Fisher statistic is defined. Benjamini-Hochberg false discovery rate was used for multiple

testing correction. The contingency tables and the corrected p-values ofNanog-Sox2 state transitions are found

in Table S2, ‘‘Fisher exact test’’ sheet. The contingency tables, p-values, and the Bonferroni corrected alpha value

of motility state transitions are found in Table S3, ‘‘Fisher exact test’’ sheet.
Note

Estimating overall transitional probability matrix from FACS information. First, we want to under-

stand the how cells in three different states (State 1: High Nanog/High Sox2; State 2: Low Nanog/

High Sox2; State 3: Low Nanog/Low Sox2) interconvert between one another in the bulk population. We

model this system using Markovian model in which the cell state percentages after cell state transition

(let’s called this matrix Y; values always between 0 and 100) can be accurately predicted by cell state

percentages before cell state transition (matrix X, values between 0 and 100) multiplied by a transitional

matrix M:

XM = Y

We use percentages of cells in different FACS data (Figure S2B) in X and Ymatrices. The pre-transition ma-

trixX is a 4 3 3matrix, where rows contain the proportions of cells in State 1, State 2, State 3 on Day 0, Day 6,

Day 12, and Day 18. Its counterpart, the post-transition matrix Y is also a 4 3 3 matrix, where rows contain

the proportions of cells in State 1, State 2, State 3 on Day 6, Day 12, Day 18, and Day 24. The unknown tran-

sitional matrix M is a 33 3 matrix that explains the state transition between X and Y.

To solve for a matrixM, we can use ordinary least squares (OLS) estimation to calculate the matrix by mini-

mizing the sum of squared errors. The error of estimation is therefore given by r=Y� XM where r is a 43 3

matrix. We calculate the sum of squared errors (noted as S) by multiplication of r with rT, where rT denotes

the transpose of r.

S = Cr; rD

= rrT

= ðY�XMÞðY � XMÞT

= ðY�XMÞ�YT �MTXT
�

=YYT �YMTXT �XMYT + XMMTXT

AmatrixM that minimize the sum of squared errors Smust occur at the critical point where the gradient of S

with respect to M equals 0.

vS

vM
=
v
�
YYT � YMTXT � XMYT +XMMTXT

�
vM

= � 2XTðY�XMÞ
=XTY�XTXM

= 0

Therefore,

M=
�
XTX

��1
XTY

Please note that matrix M is not necessarily right stochastic since we used unbounded linear least square

estimation, and we do not normalize this matrix before performing downstream calculation.
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We can use this calculated matrixM to estimate the state proportions after transitions (let’s called this ma-

trix X0) by performing the following calculation

X0 = XM

Then we can perform row-wise chi-squared comparison between X0 (cell state percentages under

Markovian assumptions) and Y (observed cell state percentages after transition), to check if matrixM accu-

rately predicted the distribution of cells. If the p-values from chi-square test are greater than the alpha value

(0.05), which in this case, they are, it means that matrix M can predict the distribution after the transition

process, and hence cell state transitions in the bulk population is Markovian.
Estimating overall transitional probability matrix using lineage information

We can model the system of three cell states where cells in each state can either stay in the same state or

convert to one of the other two states after each transition. In this section, we describe how we estimate the

transitional probabilities that explain how lineages change states between timepoints.

Each lineage contains information about the proportion of cells in different states, which is known for all

timepoints (Day 0, Day 6, Day 12, Day 18 and Day 24). We will focus on two contiguous timepoints for clarity

(note this will generalize to any transition): the data from Day 0 and Day 6.

Let Xi and Yi be 133 row vectors that contain the proportion of 3 states of lineage i on Day 0 and Day 6,

respectively. In other words,

Xi = ½Ps1;i Ps2;i Ps3;i �
Yi =

�
P0
s1;i P0

s2;i P0
s3;i

�
Where for example Ps2;i indicates the proportion of lineage i that is in State 2 at timepoint Day 0. Therefore,

the row sums of Xi and Yi will always equal to 1.

Because these three states can interconvert between one another, there must be a matrixM of transitional

probabilities can explain the conversion from Xi to Yi. Therefore, we can write,

XiM=Yi2 3

where; M=4M11 M12 M13

M21 M22 M23

M31 M32 M33

5

Please note that the multiplication of Xi and M describes how state proportions ½Ps1;i Ps2;i Ps3;i � change
to

�
P0
s1;i P0

s2;i P0
s3;i

�
. And the M calculated in this section is different from M estimated in the previous

section, Estimating overall transitional probability matrix from FACS information.

Here, we want to solve a system of linear equations for matrix M. However, considering only one lineage

leaves 3 constraints with 9 unknowns, making it difficult to explicitly consider M for any single lineage.

Hence, we utilize the 2,560 lineages that exist in all timepoints (Figure 1D). We can use this information

to estimate the transitional probability matrixM that explains the transitions between states for all lineages

on averageof I between Day 0 to Day 6.

This now gives two 256033 matrices instead of two 133 row vectors. We note the matrix of state propor-

tions of all lineages on Day 0 as X and its Day 6 counterpart as Y. Note that row j of X and Y represents the

state proportions of lineage j on Day 0 and Day 6, respectively. From this, we can write,

XM=Y

and can solve for the matrix M that minimizes the error of transforming X to Y. Because this is a system of

linear equations, we use ordinary least squares (OLS) estimation to calculate thematrixMbyminimizing the

sum of squared errors, explained in Estimating overall transitional probability matrix from FACS

information.

M=
�
XTX

��1
XTY
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Using the knowledge from this derivation, we can estimate the transitional probability matrix M that ex-

plains the transition from one timepoint to another subsequent timepoint by substituting X as a matrix

of state proportions in an earlier timepoint and Y as a matrix of state proportions in a later timepoint.

In order to find an average transitional probability matrix across all transitions, instead of using 25603 3 X

and Ymatrices, we combine the state proportions of all lineages on Day 0, Day 6, Day 12 and Day 18 into a

1024033 matrix X0 and combine the state proportions of all lineages on Day 6, Day 12, Day 18, and Day 24

into a 102403 3matrix Y0. Note that row j of both X0 and Y0 represents the state proportions of the same

lineage; X0j has the information from the earlier timepoint while Y0j has the information from the later

timepoint.

Because there are 10240 rows in X0 and, Y0 the change in extreme state proportions (i.e., ½ 0 0 1 � to
½ 1 0 0 �) do not greatly affect the least-square estimated matrix M. And the resulting matrix M is right

stochastic (i.e., each row sums to 1, and the value of each entry is always between 0 and 1). Therefore,

further normalization is not needed.
Estimating lineage-specific transitional probability matrix

To calculate a transitional probability matrix that is specific to each unique lineage i, we use two 43 3

matrices, Xi and Yi . Rows in matrix Xi represent the proportions of cells from lineage i in three states on

Day 0, Day 6, Day 12, and Day 18, respectively. On the other hand, row in matrix Yi represents the propor-

tions of cells on Day 6, Day 12, Day 18, and Day 24. Assume that there is a matrix Mi that can explain the

transition between cell state proportions in the earlier timepoints (Xi) to the later timepoints (Yi), we can

write

XiMi = Yi

Note that the row sums of Xi and Yi will always equal to 1.

Then we can use least square estimation to find the Mi that best describe this set of linear questions.

Mi =
�
XT
i Xi

��1
XT
i Yi

Therefore, we have 2,560 unique transitional probability matricesMi, which describe how each specific line-

age change their state.

However, unlike the overall transitional probability matrix M which is calculated from 1024033 matrices,

X0and Y0, the lineage-specific transitional probability matrix Mi is calculated from 433 matrices, Xi and

Yi: We use this matrix Mi in downstream analyses without further normalization.
Determining the Markovian property of each transition across all lineages

A transition is Markovian if the lineage-specific transitional matrix (described in previous section) can pre-

dict the distribution of cells across three states on the later timepoint without statistical significance in dif-

ferences between expected and observed values. For example, a transition from Day 0 to Day 6 of lineage i

is Markovian if the distribution of cell states on Day 6 can be predicted by Mi.

To evaluate theMarkovian property of lineage i at the transition between Day a to Day b, we normalize cells

in each timepoint to 1,000,000 cells instead of 100,000,000 cells to reflect the real number of sorted cells

(Table S1). This change in normalization makes several lineages become smaller and round down to less

than 1 cell at some timepoint (i.e., some timepoints now have 0 cells), reducing the total number of analyz-

able lineages from 2,560 to 1,736.

Let Nb
i , as 1 33 matrix that describes the distribution of cell numbers in three states on Day b. And let’s

define Xa
i and Xb

i as 1 33 matrices that represent the distribution of cell proportions among three states

on Day a and Day b, respectively.

Note that each entry inNb
i is a positive integer describing the number of cells in each state, while each entry

ofXa
i and Xb

i is some real number between 0 and 1 showing the fraction of cells occupying a particular state.
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Next, to check if a transition matrix Mi can predict the empirical distribution, we find the expected distri-

bution of cells of Day b from Day a, X0b
i , by calculating

X0b
i = Xa

i Mi

Then we can calculate the expected distribution of cells on Day b, N0b
i

N0b
i = X0b

i ,
X

Nb
i

where
P

Nb
i is the sum of the number of cells across three states on Day b; in other words, it is the total

number of cells on Dayb.

Now we can test whether Nb
i (the expected distribution of cells on Day b calculated by the Markovian

assumption) and N0b
i (the observed distribution of cells on Day b) are b significantly different using chi-

square test of homogeneity using the entries from Nb
i as observed values and the entries from N0bi as ex-

pected values. Note that because lineage-specific transition matrix Mi may have some negative values, we

remove those negative or zero estimated cell number from the analysis, and thus refer to them as uninfor-

mative lineages. This chi-square homogeneity test only uses positive values from both Nb
i and N0b

i .

P-values from these tests across 1,736 lineages during transition ða;bÞ are then corrected using Benjamini-

Hochberg false discovery rate.
Estimating lineage-specific transitional probability matrix of all non-Markovian lineages

After understanding the Markovian property in each lineage, we identified 114 lineages where all 4 state

transitions are non-Markovian.We sought to understand the distribution of values in their transitional prob-

ability matrices. Let Xi be a 433 matrix representing the proportions of cells in three states on Day 0, 6, 12,

and 18, and Yi be a 433matrix representing the proportions of cells in three states on Day 6, 12, 18, and 24.

Assume that there is a matrixMi that can explain the transition between cell state proportions in the earlier

timepoints (Xi ) to the later timepoints (Yi), we can write

XiMi = Yi

Note that the row sums of Xi and Yi will always equal to 1.

We used scipymodule scipy.optimize.lsq_linear to estimate the lineage-specific transitional probabilityMi .

Please note that we have added a linear constraint to make sure the sum of each row inMi will be 1 and each

Mi will be right stochastic. The distributions of all values in 114 transitional probability matrices are shown in

Figure S4C.
Estimating growth-birth-death rate

We next sought to use our knowledge of transitional probabilities in the system of ESC lineages to estimate

the net rate of growth, birth, and death events for mouse embryonic stem cells making all types of state

transitions. Calculating the net growth-birth-death rate is not trivial because this rate is intertwined with

state transition rates calculated in Estimating overall transitional probability matrix. In this section, we

focus on extracting the net growth-birth-death rate once average rates of transition between states are

taken into account. Please note that the calculation of this growth-birth-death rate is not used in any

Markovian analysis. It is calculated to understand the change in cell size for cells undergoing different state

transitions.

We first find the distributions of cells in State 1, State 2, and State 3 across all lineages predicted by the

transition matrix M for a given lineage making a transition between two timepoints. The number of cells

of each lineage in each state at each timepoint is calculated from the empirical data as described

(see STARMethods). We consider the difference between the number of cells at the second timepoint pre-

dicted by the transition matrix M and the number of cells empirically observed in each state at this time-

point for this lineage as a result of growth, birth, and death events.

To demonstrate, we will use the data from Day 0 and Day 6 as an example, noting that this procedure gen-

eralizes to analysis of data from all other contiguous timepoints. Let Ui and Vi be 133 row vectors that

contain the normalized cell number in all three states for lineage i on Day 0 and Day 6, respectively.
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In other words,

Ui = ½Us1;i Us2;i Us3;i �
Vi = ½Vs1;i Vs2;i Vs3;i �

The expected distribution of cells after Day 0 cells transition between states can be found by multiplying Ui

with transitional probability matrix M we calculated in Estimating overall transitional probability matrix.

The product is U0
i .

U0
i =UiM

Here, vector U0
i describes the expected number of cells on Day 6 due to the state transition alone. Vector Vi

contains the observed number of cells for lineage i on Day 6. We assume the difference between these two

vectors stems from growth, birth, and death processes happening between Day 0 and Day 6 timepoints for

this lineage. To model this process, we introduce a 333 matrix G which describes the difference between

the number of cells in U0
i and Vi. In other words, matrix G describes the rate of change cell numbers in

different states after considering the rate of transition.

Mathematically,

U0
iG = Vi

Note that each entry (a,b) of the matrixG describes the amount of cell growth or cell death between state a

before the transition and state b after the transition. If the value in entry (a,b) is greater than one then it

implies that cells proliferate in the transition from a to b. On the other hand, if the value in entry (a,b) is lower

than one then cells must reduce in their number during the transition from a to b.

However, we cannot solve for matrixG for an individual lineage because the system of linear equations has

more unknowns (9) than constraints (3). Hence, we again utilize the 2,560 lineages that are present at all

timepoints (Figure 1D), and use this information from all lineages to solve for G that minimizes the differ-

ence of state distributions using the ordinary least squares method.

Let U and V be 256033 matrices that represent the distributions of cells in three states of all 2,560 lineages

on Day 0 and Day 6, respectively. We can write,

UG =V

From ordinary least square estimation,

G=
�
UTU

��1�
UTV

�
Here G is a transition matrix describing the change in cell numbers between Day 0 and Day 6. We can use

this fact to find growth-birth-death transition matrices between two other contiguous timepoints.

To find the growth-birth-death rate between two timepoints, we use matrixG to find the expected number

of cells in different states after the transition process.

Let a 133 row vector N that describes the number of cells in different states. In other word, N =

½Ns1 Ns2 Ns3 �. Assuming that there are 100 cells in State 1 at the first timepoint, we want to know

how these cells change their number between timepoints due to the growth-birth-death process alone.

We can find the expected number of cells Es1 in different states after cell state transitions and growth-

birth-death processes by calculating

Ns1 = ½100 0 0 �
Es1 =Ns1MG

where Mis the transitional probability matrix we derived from the least square estimation calculated in

Estimating overall transitional probability matrix using lineage information andG is the rate of cell change

matrix derived above.

The rate of change in State 1 cell number due to the growth, birth, death processes is then the entry-wise

division (Hadamard division) between Es1 andNs1M, where Es1 represents the number of cells after the tran-

sition and growth-birth-death process, whereas Ns1M represents the number of cells after the transition
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process alone. In other words, growth-birth-death rates1 = ½Es1;1=ðNs1MÞ1 Es1;2=ðNs1MÞ2 Es1;3=ðNs1MÞ3�
where Es1;i is the number of cells after the transition and growth-birth-death process that originate from

state 1 and convert to state and ðNs1MÞi is the number of cells after the transition process only that originate

from state 1 and convert to state i.

If the growth-birth-death ratei,j is greater than 1, this implies that cells increase size during the transition

from i to j, whereas a value lower than 1 means cells decrease size during that transition.

We can calculate the rate of change in the number of cells in State 2 and 3 using the method above.

To calculate an overall growth-birth-death rate across all 5 timepoints, we form amatrixU0 that contains the
number of cells in each state from all lineages from 4 timepoints (Day 0, Day 6, Day 12 and Day 18) and form

amatrix V0 that contains the number of that contains the number of cells in each state from all lineages from

4 subsequent timepoints (Day 6, Day 12, Day 18 and Day 24). Please note that entries in each row of U0 and
V0 are from the same lineages; entries in U0 are from an earlier timepoint while their counterparts in V0 are
from the subsequent timepoint. From this we can calculate rate of change in cell size matrix G0 and the

growth-birth-death rate for each state the way we have mentioned above.

Estimates for the growth-birth-death rate for each state are shown in Figure S4B. The error estimation and

confidence interval are calculated from 80% bootstrapping over 100,000 iterations.
Calculating lineage entropy

We start here with definitions of concepts as they are considered in the present study; thesemay be familiar

to many readers. In information theory, entropy of a variable reveals the average amount of information or

uncertainty in its outcomes. Given a random variable X with n possible outcomes x1; x2; :::; xn that occurs

with probability Pðx1Þ;Pðx2Þ; :::;PðxnÞ, the informational entropy of X can be mathematically defined as

HðXÞ = � Pn
i = 1

PðxiÞlog PðxiÞ

where entropy is always between 0 and 1. This quantity may be familiar to readers as the Shannon Entropy.

A further intuition can be found by considering a coin-flip thought experiment. If the coin is fair, there are

two possible outcomes (heads and tails) both occuring at equal probability 1/2. Therefore, if flipping this

coin, we do not know for sure which result will be obtained, meaning this system has maximal uncertainty

and maximal information to be gained once we know the result of the coin flip, high information entropy).

The entropy in this system in this case is

HðXÞ = �
Xn

i = 1

PðxiÞlog PðxiÞ

= �
�
1

2
log

1

2
+
1

2
log

1

2

�

= 1

On the other hand, if we are flipping a coin that has heads on both sides, we do know for sure that after the

coin flip the result will be heads and this does not yield us any new information (minimal uncertainty, min-

imal informational entropy, minimal information to be gained once the result of the coin flip is known).

Mathematically,

HðXÞ = �
Xn

i = 1

PðxiÞlog PðxiÞ

= �ð1 log 1Þ
= 0

In general, the system with more uncertainty is considered to have more information content to be gained

and higher informational entropy value.
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We can use this concept to describe the lineage entropy (or informational entropy) in each lineage, consis-

tent with the idea that lineages with more heterogeneous proportion amongst states should have higher

entropy than lineages occupying only one cell state, in analogy to our coin flip.

According to the empirical data, the steady-state distribution of State 1, State 2 and State 3 given by aver-

aging all values is at ½Pðs1Þ Pðs2Þ Pðs3Þ � = ½ 0:73 0:15 0:12 �. We calculate the lineage entropy H0ðLÞ of
a lineage L by:

H 0ðLÞ = � ðP 0ðs1Þlog 3P
0ðs1Þ+P 0ðs2Þlog 3P

0ðs2Þ+P 0ðs3Þlog 3P
0ðs3ÞÞ

where P0ðs1Þ;P0ðs2Þ, and P0ðs3Þ are the scaled proportion of State 1, State 2, and State 3 in lineage L respec-

tively. In other words,

P 0ðs1Þ =

8>>><
>>>:

Pðs1Þ
0:73

3
1

3
0%Pðs1Þ%0:73

1+
Pðs1Þ � 1

1� 0:73
3
2

3
0:73<Pðs1Þ%1

P 0ðs2Þ =

8>>><
>>>:

Pðs2Þ
0:15

3
1

3
0%Pðs2Þ%0:15

1+
Pðs2Þ � 1

1� 0:15
3
2

3
0:15<Pðs2Þ%1

P 0ðs3Þ =

8>>><
>>>:

Pðs3Þ
0:12

3
1

3
0%Pðs3Þ%0:12

1+
Pðs3Þ � 1

1� 0:12
3
2

3
0:12<Pðs3Þ%1

This scaling ensures that the maximum lineage entropy occurs at the steady-state distribution instead of.

½ 0:33 0:33 0:33 �

Please note that these scaled proportions are not real probabilities because they don’t add up to 1, and

there is no additional normalization required for calculating H0ðLÞ:
QUANTIFICATION AND STATISTICAL ANALYSIS

Figure 2 evaluates the Markovian property of the system on a population level. The system is Markovian if

the distribution of all cells in the system across three states can be predicted using associated transitional

probability matrices. (Adjusted p-value > 0.05 from chi-square test of homogeneity). Otherwise, the system

is non-Markovian. Results show that the system is Markovian in all timepoints (p > 0.05).

Figure 4B shows the pattern of state transitions of all lineages in all time points. Lineages are classified as

Markovian lineages if the empirical number of cells in three states can be accurately predicted using asso-

ciated transitional probability matrices. (Adjusted p-value > 0.05 from chi-square test of homogeneity and

Benjamini-Hochberg correction.) On the other hand, if the matrices cannot estimate the empirical distribu-

tion of cell states on the next time point, lineages are classified as non-Markovian. (Adjusted p-value < 0.05

from chi-square test of homogeneity and Benjamini-Hochberg correction.)

Figure 5B shows the relationship between memory and motility. The relative total amount of transition is

shown for all lineages, and compared to lineages with all Markovian or all non-Markovian transitions, using

Kolmogorov-Smirnov test. p-value < 0.001 (***) for all comparisons.

Figure 6C shows the ratio of CD24high (neuroectoderm) to CD24low (extraembryonic endoderm) among lin-

eages with different total amount of transitions (motility). F-test for variance p < 0.01 for all deciles

compared against all lineages except for the fifth decile, which was not significant.

In Figure 6D, the top 4 deciles of motility and the bottom 4 deciles of motility are grouped together and

compared to the distribution of CD24high (neuroectoderm) to CD24low (extraembryonic endoderm) in all

lineages group. F-test for variance p < 0.001 (***) for both groups compared to all lineages.
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Figure S13B compares the fold expression of different gene markers in CD24high (neuroectoderm) to

CD24low (extraembryonic endoderm) cells. P-values for two-sample t-tests are shown. Asterisks indicate

levels of significance (* p < 0.05, ** p < 0.01, *** p < 0.001).

Figure S13C shows the ratio of descendants in CD24high vs CD24low populations for lineages in States 1–3

across all time points. F-tests for variance were conducted comparing each state to all lineages and p-

values < 0.001 (***) are indicated.
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