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Abstract: Controlling environmental pollution is a burning problem for all countries more than ever.
Currently, due to the increasing industrialization, the number of days when the limits of air pollutants
are over the threshold levels exceeds 80–85% of the year. Therefore, cheap and effective sensors are
always welcome. One idea is to combine such solutions with cars and provide real-time information
about the current pollution level. However, the environmental conditions are demanding, and thus
the developed sensors need to be characterized by the high 3S parameters: sensitivity, stability and
selectivity. In this paper, we present the results on the heterostructure of CuO/SnOx and SnOx/CuO
as a possible approach for selective NO2 detection. The developed gas sensors exhibited lower
operating temperature and high response in the wide range of NO2 and in a wide range of relative
humidity changes. Material characterizations and impedance spectroscopy measurements were also
conducted to analyze the chemical and electrical behavior.

Keywords: copper oxide; CuO; gas-sensing; impedance spectroscopy; NO2 detection; SnOx; tin oxide

1. Introduction

With the development of industry, technology and environmental awareness, the
need to monitor emissions and levels of gases in the atmosphere increases. According to
market research, the gas sensor market will develop dynamically [1–3]. One of the main
gases with a negative impact on the environment and human health is nitrogen dioxide
(NO2). According to the guidelines of the World Health Organization (WHO) [4], the
current guideline values of 40 µg/m3, which corresponds to 21.3 ppb (annual average),
and 100 µg/m3 (1 h average), which corresponds to 106.4 ppb, have negative effects on
health. NO2, considered as an air pollutant, has several interrelated activities. Even at
short-term concentrations above 200 µg/m3, it is a toxic gas causing inflammation in the
respiratory tract [4]. NO2 is a source of nitrate aerosols, an important fraction of PM2.5, and
in the presence of ozone ultraviolet light. The sources of anthropogenic NO2 emissions
include combustion processes (heating, energy production, engines in vehicles and ships).
Epidemiological studies have shown that prolonged exposure of children with asthma
to NO2 exacerbates the symptoms of bronchitis [5]. The WHO Guidelines for Indoor Air
Quality [4] provides a detailed and concise summary of studies on the effects of nitrogen
oxides on human health. Moreover, a correlation was observed between the decrease in
lung function and the increase in NO2 concentrations currently measured in the cities
of Europe and North America [5]. The European Union also referred to the guideline
values set by WHO in [6]. Different countries have nonidentical permissible levels of NO2.
Various acceptable levels resulting from miscellaneous regulations and standards are not
wide and therefore significant. An example of the permissible NO2 concentrations in the
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United States of America are presented in [7]. Currently, in accordance with the European
Union Euro 6 standard, the permissible levels of pollutant emissions from cars, including
NO2, have been significantly reduced; for example, NOx emissions should not exceed
0.08 g/km [8–10]. Increasingly higher standards and requirements for exhaust emissions
from means of transport require more and more accurate gas sensors necessary to control
exhaust emissions. There is now more and more research on this subject. One of the many
examples of car tests for exhaust emissions, especially NOx, is found in [11].

Many types of gas sensors are used to detect the presence of NO2 [12], including elec-
trochemical sensors [13], catalytic sensors, optical sensors—infrared absorption (Infra-Red)
and semiconductor sensors, which are also used in mass resonant [14–18]. Various materials
are used in the production of semiconductor gas sensors, such as MoS2 [19]. Carbon based
materials, such as carbon nanotubes (CNTs) [20] and graphene oxide [21], are also used for
gas detection. Currently, the most popular resistance sensors are metal oxide semiconduc-
tor sensors (MOX) [13,22–30]. Various metal oxides are used as gas sensors; for example,
barium titanate, strontium titanate and barium strontium titanate doped with various ele-
ments depending on the doped materials; they behave as p-type or n-type [31,32], n-type
including zinc oxide (ZnO) [33,34], tin dioxide (SnO2) [35], tungsten trioxide (WO3) [36],
indium oxide (In2O3), gallium oxide (Ga2O3), vanadium oxide (V2O5) and iron oxide
(Fe2O3) and p-type metal oxides such as nickel oxide (NiO), copper oxide (CuO) [37],
cobalt oxide (Co3O4), manganese oxide (Mn3O4) and chromium oxide (Cr2O3) [38,39]. As
gas-sensitive materials in gas sensors, heterostructures are also used, such as tin sulfide/tin
oxide (SnS2/SnO2), tungsten disulfide/titanium dioxide (WS2/TiO2), molybdenum disul-
fide/tin oxide (MoS2/SnO2), molybdenum disulfide/zinc oxide (MoS2/ZnO), reduced
graphene oxide/tin oxide (rGO/SnO2), reduced graphene oxide/carbon dot (rGO/CD),
reduced graphene oxide/molybdenum disulfide (rGO/MoS2) [40], reduced graphene
oxide/iron oxide (rGO/F2O3) [41], cobalt tetroxide/titanium dioxide (Co3O4/TiO2) [42],
zinc oxide/indium oxide (ZnO/In2O3), tin oxide/cupric oxide (SnO2/CuO), titanium
dioxide/vanadium pentoxide (TiO2/V2O5) [30], graphene in combination with metal
oxides [43] and many others.

In this paper, the gas sensors based on the heterostructures of tin oxide and copper
oxide were investigated for NO2 detection in a wide range of concentrations. The deposited
films exhibited very good selectivity to VOCs such as ethanol and acetone, and thanks to
heterostructures of n-type/p-type and p-type/n-type, the influence of relative humidity
was compensated. Additionally, measurements were made by impedance spectroscopy
in order to determine the parameters of the equivalent electrical model for the tested
nanomaterials.

2. Materials and Methods
2.1. Gas Sensor Substrates

As gas sensor substrates, a commercially available CC2 BVT alumina-based sensor
substrate with electrodes were used (Figure 1a,b). After the cleaning process in an ultrasonic
bath, the gas sensor substrates were placed in the deposition chamber and gas-sensitive
layers were deposited as described in the sections below and schematically presented in
Figure 1c.

2.2. Gas-Sensitive Layer Deposition

The gas-sensitive layers were obtained in the commercially available magnetron
sputtering deposition system from Kurt J. Lesker Company (Hastings, East Sussex, UK), in
details presented and discussed [44]. Briefly, the Ultra High Vacuum multitarget deposition
system was equipped with the EpiCentre Right-angle (ECR) manipulator, which enables
the deposition with the utilization of the glancing angle deposition (GLAD) technique,
where deposition angle, rotation and deposition temperature are crucial parameters and
can be changed by changing the ECR manipulator properties (Figure 1c). Thanks to
the multitarget feature, copper and tin metal targets were used during the deposition in
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reaction mode without changing the deposition conditions. Such realization enables the
deposition of heterostructures without any interlayer between both semiconductors.
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2.2.1. Tin Oxide

The tin oxide thin films were deposited in DC MF (direct current medium frequency)
mode from Sn metallic target (purity 4 N—99.99%) by applying reactive sputtering under
a mixture of 34% argon and 66% oxygen (purity of gases 5 N—99.999%). The deposition
process parameters have been kept as in the previously reported paper, where single tin
oxide-based gas-sensing layers were deposited [35,45]. In brief, the base vacuum and
deposition vacuum were 1 × 10−5 mbar and 2 × 10−2 mbar, respectively. The deposi-
tion temperature was set to 200 ◦C and deposition time was adjusted to deposit various
thicknesses with a constant power of 50 W [35,45].

2.2.2. Copper Oxide

The copper oxide thin films were deposited in the same DC MF (direct current medium
frequency) mode as tin oxide (Cu target purity 4 N—99.99%), and under the same pressure
and gas-mixture condition (purity of gases 5 N—99.999%), which are different in compari-
son with those previously reported [37,46]. However, thanks to the previous experiments
with Emission Optical Spectroscopy [47], the reactive atmosphere can be controlled to
provide stable and repeatable conditions.

2.3. Gas-Sensing Measurements

Measurements of the sensor properties of the prepared samples were performed on
a dedicated setup, consisting of a measuring chamber with a volume of about 300 cm3,
with the possibility of regulating and stabilizing the temperature of the sensor in the



Sensors 2021, 21, 4387 4 of 17

chamber (previously presented in [48]). The target gases were supplied to the chamber
via MFC controllers from gas canisters (Air Liquid, Cracow, Poland) with various initial
concentrations ranging from 0.5–20 ppm. The measurement of changes in the resistance of
the gas sensor was carried out using a Keithley 6517 electrometer operating with a constant
test voltage of 1V. The measuring station also enables the measurement of frequency
characteristics using the Solartron ModuLab XM MTS system. The measurement data were
collected via a dedicated software.

2.3.1. Measurements of Resistance Changes with Direct Current (DC)

Each sample underwent the same measurement procedure, which first consisted of
heating and stabilizing the sample at 400 ◦C for 12 h. The next step, after cooling the sample
to the room temperature (RT), was the measurement aimed at determining the optimal
operating temperature. This measurement was performed in the temperature range from
RT to 405 ◦C, at a relative humidity (RH) equal to 50%. The total gas flow through the
chamber was 500 sccm. The concentration of NO2 applied was 20 ppm. The temperature
was changed abruptly every 5 measuring cycles of 15 min/15 min (air/air + NO2). The
results of this test are shown in the Figure 5a. Both samples responded best to the presence
of NO2 at optimal temperature.

When describing their results, the authors of the research often use the terms sensitivity
and response of a gas sensor interchangeably. One of the basic parameters characterizing
the gas sensor is its reaction to the gas that the sensor is to detect. Most commonly used
to describe a sensor’s reaction to gas is the sensor response or sensitivity. Currently, there
is no uniform definition of the sensitivity (or response) of a gas sensor. Typically, the
sensitivity/response (S) can be defined as R0/Rg for reducing gases or Rg/R0 for oxidizing
gases, where R0 is the resistance of the gas sensors in the reference gas (usually air) and
Rg is the resistance in the reference gas containing the target gases. Both R0 and Rg have
a significant relationship with the surface reactions taking place [49]. In this paper, this
definition was used to determine the sensor’s response to NO2:

S =
R0

Rg
(1)

where R0 is the sensor resistance without gas presence and Rg is the sensor resistance in
the presence of gas.

Another common definition of sensitivity are the dependencies [50,51]:

S =
R0

Rg
− 1 (2)

S =

∣∣R0 − Rg
∣∣

Rg
(3)

Scientists have different definitions of sensitivity, and the very concept of sensitivity is
often used interchangeably with the sensor response. The definition adopted in this work,
given by Formula (1) for the sensor’s lack of response to the presence of NO2 (no change
in resistance), results in a value equal to 1. However, the greater the sensor’s response to
gas, the higher the ratio (1) gives the result. When defining the sensor response given by
Formula (1), the result is always equal to (no gas response) or greater than 1.

2.3.2. Measurements of Electrical Properties with Alternating Current (AC)

Measurements of electrical properties by means of direct current methods are strongly
disturbed by the polarization phenomena occurring in the measuring system [52]. These
phenomena usually overestimate the value of the measured resistances, and in the case of
low-voltage measurements, the current flow may be blocked, which makes it impossible to
determine the electrical parameters of the sample [52–54]. In this case, the sample param-
eters calculated by the direct current methods are the sum of the electronic conductivity
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processes of individual grains, the polarization processes of the intracrystalline parts and
the electrode processes. For this reason, in the tested material, in order to distinguish
individual parameters of each of the above-mentioned processes, which are characterized
by different time constants, alternating current (AC) methods are used, e.g., impedance
spectroscopy [52–54].

This method allows the understanding of the physical and chemical processes that
influence the behavior of metal oxide semiconductor gas sensors, but require correct
data interpretation.

The Solatron ModuLab XM measurement system was used to determine the parame-
ters of the studied heterostructures. This system enables the determination of impedance
characteristics in a wide frequencies range. The tests carried out measurements in the
range from 10−1 Hz to 106 Hz at an operating temperature of 275 ◦C in RH = 50%. The
(AC) signal amplitude was set to 1 V. The recorded impedance spectra were analyzed using
the ZView software.

2.4. Material Characterization

The structural analysis of the films was carried out by an X-ray diffraction technique
using PANalytical X’Pert Pro MDP with CuKα (λ = 1.5406 Å) at a step size of 0.04◦ over
the 2θ range of 30–80◦. The chemical composition of the films was confirmed by Energy
Dispersive X-ray (EDS) analysis using a FEI Inspect S50 scanning electron microscope
(SEM) and an X-ray energy dispersive spectrometer with Detector EDS Octane Elect Plus
and Analyzer EDAX Z2-i7. In order to assure EDS measurement, the basic SEM operation
parameters were that the working distance was 10 mm, the acceleration voltages of the
incident electron were 5 kV and 30 kV, the electronic beam spot size was 5 and the current
intensity of the incident electronic beam was about 95 µA. Raman spectroscopy was used
as a method to characterize the material tested. The Raman spectra were tested by HORIBA
LabRAM HR Raman microscope with a laser treatment at 488 nm.

3. Results
3.1. Characterization Results

The crystallographic structure of the deposited gas-sensing layers was determined
with X-ray diffraction (XRD) with the special adapter to the XRD system, due to the
very thin thicknesses of the copper and tin oxides. The thickness was measured by the
utilization of X-ray reflectance (XRR) technique and further confirmed by the utilization of
a mechanical profilometer. The estimated thickness was 85 nm ± 1 nm. Figure 2 shows
the XRD experiment results, where peaks from CuO are observed (110, −111, 111, 020,
022, 220) from JCPD 01-072-0629 and no peaks from SnOx, which suggests that SnOx
was not crystallized. The obtained results are in accordance with the previous results,
where a higher temperature during the magnetron deposition process is required to obtain
crystalline forms [55]. Moreover, the intensity of the CuO peaks is higher when CuO
was deposited as a second layer, which suggests that a not-planar shape was obtained.
Otherwise, the signal from the bottom layer will not be reached due to the lower X-ray
measurement angle during the XRD experiments.

Regardless of the XRD measurements, to determine the composition of CuO and
SnOx, Raman spectrometry was conducted. Raman analysis detected both crystalline and
amorphous phases in the sample. Raman spectra performed at 488 nm excitation contains
intense peaks attributed to glass substrate (444 cm−1, 783 cm−1, 1099 cm−1); two peaks at
297 cm−1 and 361 cm−1 can be assigned to CuO [56–58] and the peak at 128 cm−1 can be
attributed to Sn-O, as presented in Figure 3.
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The morphology of the structures was investigated by scanning electron microscopy
(SEM) operated at 5 kV and 30 kV. It can be seen that the surface of the sample looks uneven
due to the alumina substrate effect. The analysis of the morphology of the structures
indicates that the morphology of the Al2O3 substrate is primarily visible. The CuO/SnOx
structures are too thin to be visualized in a classic SEM test. The EDS method turned out
to be effective in the case of the investigated thin-layer CuO/SnOx structures. Detailed
information about the atomic structure and the elemental distribution of SnOx–CuO stack
was obtained by SEM and, in combination with EDS, for elemental analysis resolution. The
EDS experiments results have shown solely the presence of Cu, Sn and O. As shown in the
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elemental map, obtained by EDS analysis (Figure 4), the sensing structure consists of Sn, Cu
and O (explained in caption of Figure 4), indicating the uniform formation of SnOx/CuO.
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3.2. Gas-Sensing Characteristics
3.2.1. NO2

The first experiments were conducted to determine the optimal operating temperature
of the samples, i.e., SnOx/CuO and CuO/SnOx. As can be observed (Figure 5a), the
maximal response was obtained around 250 ◦C for both cases; for SnOx/CuO, it was
240 ◦C and for CuO/SnOx, it was 275 ◦C. Therefore, further experiments were conducted
at the optimal operating temperatures. The calibration curves (0.5–20 ppm of NO2) were
presented in Figure 5b, and measurement data were fitted with A1 − A2e−kx formula with
R2 = 0.97278 and 0.96837 for SnOx/CuO and CuO/SnOx, respectively. The effect of relative
humidity (30%, 50%, 70%) with NO2 (0.5–20 ppm) is presented in Figure 5c,d. However,
for both cases, increased RH level resulted in an increased response.
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Within the study, the multi-test was performed to verify the stability of the samples
over time. Figure 6a for the SnOx/CuO sample and Figure 5b for the CuO/SnOx sample
show the results of measurements of changes in sensor resistance for three measurement
cycles 60 min/60 min (air/air + NO2) at different concentrations of NO2 in the range
of 0.5–5.0 ppm. The measurements were made at the optimum operating temperatures
(Figure 5a) and 50% RH. For the NO2 concentration equal to 5 ppm, a stability test was
carried out for 10 measurement cycles of 30 min/30 min (air/air + NO2) at the optimal
temperature and RH 50%. The results for individual samples are presented in Figure 5c,d.
Figure 6c,d show the results of the stable operation tests for both samples consisting of
10 cycles of 30 min/30 min (air/air + NO2) each. Measurements on each of the samples were
carried out for several weeks at different temperatures, RH levels and NO2 concentrations;
during this time, no change in sensor properties of the samples was observed. Both samples
exhibited good stability over time.
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The impedance spectra in Nyquist representation (Z” plotted against Z’) for the
prepared sample of SnOx/CuO and CuO/SnOx in the optimal operating temperature in
air and under NO2 exposure (0.5–5 ppm) are shown in Figure 7. It was also observed that
the diameter of the circle decreased when the NO2 admission was increased.

Nyquist plots show the imaginary part of Z′ as a function of the real part Z′ ′ (Figure 7a,b).
In order to develop a suitable surrogate model of an electrical circuit, samples need to be
analyzed over a wide frequency range. Distribution of the absolute fit error is included in
Figure 8 below the Bode and Nyquist plots. The decreasing impedance with increasing
frequency is evidence of the increasing conductivity of the sample. The Supplementary
Materials contain plots of frequency characteristics of the phase, Bode representations
(Figure S1), which are complementary to Figure 7a,c.
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A simple replacement model was used to describe the frequency characteristics of the
obtained thin films as a function of NO2 concentration.

Based on the results of matching the impedance spectra, a substitute model consisting
of R and constant phase element (CPE) elements connected in parallel were proposed. The
CPE is defined according to the following equation [53]:

ZCPE =
[
A(jω)α]−1 (4)

The constant marked with the letter A defines the impedance modulus. The α, which
is in the exponent, represents the impedance angle range (from 0◦ to 90◦). In the case where
the α value is equal to 90◦, the CPE is defined as a capacitor with a capacitance equal to A.
In the case where α is equal to 0, we can assume that the element is resistance. The main
effect of this function in an impedance plot is to distort the semicircle.

The CPE is a distributed element that produces an impedance having a constant phase
angle in the complex plane [52]. With received characteristics, it can be concluded that
the electric resistance R of tested thin films reacts to the presence of nitrogen dioxide. In
the analyzed cases, the P (phase) parameter of the CPE element takes values in the range
of 0.90–0.95, which correspond to the capacity. The mechanisms of electronic or ionic
conduction are represented by the resistive element (R). Capacitance (C) represents the
sample’s polarizability in various areas of the material structure, which takes place inside
the grain, at their boundaries and at the electrodes [59].

Parameters of the electrical equivalent circuit for SnOx/CuO, in air: R = (1.71 ±
0.02)·105 Ohm, CPE-A = (4.46 ± 0.07)·10−11 F, CPE-P = 0.89 ± 0.01); upon 0.5 ppm NO2
admission: R = (1.03± 0.04)·105 Ohm, CPE-A = (7.20± 0.06)·10−1 1F, CPE-P = (0.86± 0.01).
Parameters of the electrical equivalent circuit for CuO/SnOx, in air: R = (0.92 ± 0.01)·105

Ohm, CPE-A = (4.38 ± 0.11)·10−11 F, CPE-P = 0.90 ± 0.01); upon 0.5 ppm NO2 admission:
R = (0.47 ± 0.01)·105 ohm, CPE-A = (6.93 ± 0.01)·10−11 F, CPE-P = (0.87 ± 0.01).
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The determined parameters of the substitute model allow us to determine the influence
of the participation of particular phases of the structure—granular and intergranular
conductivity and electrode processes—in the gas detection mechanisms.

3.2.2. VOCs

The deposited gas-sensing layers were tested for cross-sensitivity under exposure
to various VOCs such as acetone, ethanol and propane, as well as under various concen-
trations of relative humidity. The results are given in Figure 9. As can be observed in
the 0.5–2.0 ppm range, the gas sensors result in no response to VOCs. Moreover, thanks
to the p-n and n-p structures, the response to various RHs is more stable in comparison
with typical single structure responses of MOX-based gas sensors, i.e., CuO-based and
SnO-based.
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Figure 9. The gas-sensing results of the samples after exposure to various VOCs and relative humidity.

3.2.3. Response and Recovery Times

Regardless of the sensitivity and selectivity, the gas sensors are also characterized by
response and recovery time(s). A good method for response and recovery times calculations
was given by Zhang et al. [60]. Usually, the 10–90% range of the signal changes is used
for determining these times. However, within this study, the developed gas sensors
were tested in the measurement setup that was designed for air-pollution monitoring in
the specific industrial application which is classified. Therefore, the simple comparison
between obtained responses and responses reported in other studies cannot be conducted.
During the determination of the response and recovery times, the sensors were tested in
cycles lasting 60 min/60 min (air/air + NO2). For such long measurement cycles, it is
possible to assume a relatively steady state of the sensor operation after nearly one hour
of operation in constant conditions of the presence or absence of NO2 in the measuring
chamber. The concentration of NO2 was 5 ppm. The samples operated at the optimum
operating temperature and a relative humidity of 50%. Figure 10a shows the response and
recovery time determination method for the SnOx/CuO sample and Figure 10b shows this
for the CuO/SnOx sample.

Interestingly, the developed gas sensors based on SnOx/CuO composition exhibited
both higher and faster NO2 response, while recovery times were comparable. Therefore,
the SnOx/CuO structure is preferred and further experiments will be conducted to define
an optimal ratio between both materials.
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4. Conclusions

The analysis of air pollutants is currently one of the burning tasks. Thanks to tech-
nical developments, fabrication of the gas sensors based on chemo resistive structures
are cheap and could be an effective way to include the sensors in many applications, in-
cluding the automotive industry. However, the environmental conditions are challenging
in such applications, and therefore, novel realizations are a subject of research, includ-
ing heterostructures of semiconductors. In this paper, we report the research results on
CuO/SnOx and SnOx/CuO structures under exposure to various concentrations of NO2, as
well as VOCs. The gas-sensitive layers were deposited with the utilization of the glancing
angle sputtering deposition technique that offers a uniform distribution of the material;
however, to provide a stable substrate for demanding conditions, such as working in the
cars, the alumina substrates were used. The alumina substrates are characterized by high
thermal and chemical stability, and the developed sensors have also shown good stability,
selectivity and sensitivity to NO2 in the 0.5–20 ppm range, which covers the concentrations
in the air. Thanks to the heterostructure composition, the sensors work well in the 30–70%
RH range, and SnOx/CuO showed a higher response at lower temperatures. The drawback
of the developed sensors is the higher response time; however, the measurement setup
was not optimized for this issue. The authors of the paper are working on creating an
electronic nose in which many gas sensors will work in a microsystem. The developed
sensors showed in this article will be used as a part of the mentioned microsystem and
gas-dosing parts will be further optimized. The entire electronic nose system will be pre-
sented in another article, as will other sensors included in the microsystem. Nevertheless,
the obtained results are very promising.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/s21134387/s1, Figure S1: Impedance spectra of the nanomaterials in operating temperature
of 275 ◦C in air and upon NO2 admission (0.5 ppm–5 ppm): (a) Bode representation SnOx/CuO;
(b) Bode representation CuO/SnOx.
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Oxide and Copper Oxide as a Gas Sensor. Coatings 2020, 10, 1015. [CrossRef]
49. Wang, C.; Yin, L.; Zhang, L.; Xiang, D.; Gao, R. Metal Oxide Gas Sensors: Sensitivity and Influencing Factors. Sensors 2010, 10,

2088–2106. [CrossRef]

http://doi.org/10.1108/SR-10-2016-0230
http://doi.org/10.1016/j.aca.2015.02.002
http://doi.org/10.3390/s20226694
http://doi.org/10.1016/j.mseb.2017.12.036
http://doi.org/10.3390/s19061285
http://doi.org/10.1016/j.sna.2020.112026
http://doi.org/10.1016/j.jsamd.2017.07.009
http://doi.org/10.1016/j.mtadv.2020.100099
http://doi.org/10.3390/nano11041026
http://doi.org/10.3390/s20236781
http://doi.org/10.1016/j.aca.2018.09.020
http://doi.org/10.3390/coatings11020185
http://doi.org/10.3390/ma13214797
http://doi.org/10.1016/j.ceramint.2003.12.068
http://doi.org/10.1016/j.proeng.2012.09.278
http://doi.org/10.3390/mi10090574
http://doi.org/10.1016/j.vacuum.2020.109378
http://doi.org/10.3390/coatings10040378
http://doi.org/10.3390/s120302610
http://doi.org/10.1039/C9TC04132J
http://doi.org/10.3390/s21031011
http://doi.org/10.3390/s18040956
http://doi.org/10.1016/j.snb.2015.07.070
https://www.lesker.com/newweb/deposition_materials/depositionmaterials_sputtertargets_1.cfm?pgid=cu1
https://www.lesker.com/newweb/deposition_materials/depositionmaterials_sputtertargets_1.cfm?pgid=cu1
http://doi.org/10.3390/ma12060877
http://www.ncbi.nlm.nih.gov/pubmed/30875985
http://doi.org/10.3390/coatings8120425
http://doi.org/10.1007/s10854-020-03713-z
http://doi.org/10.3390/coatings10111015
http://doi.org/10.3390/s100302088


Sensors 2021, 21, 4387 17 of 17

50. Dufour, N.; Veyrac, Y.; Menini, P.; Blanc, F.; Talhi, C.; Franc, B.; Ganibal, C.; Wartelle, C.; Aguir, K. Increasing the sensitivity and
selectivity of Metal Oxide gas sensors by controlling the sensitive layer polarization. In Proceedings of the 2012 IEEE Sensors,
Taipei, Taiwan, 28–31 October 2012; pp. 1–4.

51. Ahlers, S.; Müller, G.; Doll, T. A rate equation approach to the gas sensitivity of thin film metal oxide materials. Sens. Actuators
B Chem. 2005, 107, 587–599. [CrossRef]

52. Schipani, F.; Miller, D.R.; Ponce, M.A.; Aldao, C.M.; Akbar, S.A.; Morris, P.A. Electrical Characterization of Semiconductor
Oxide-Based Gas Sensors Using Impedance Spectroscopy: A Review. Rev. Adv. Sci. Eng. 2016, 5, 86–105. [CrossRef]

53. Schipani, F.; Miller, D.; Ponce, M.; Aldao, C.; Akbar, S.; Morris, P.; Xu, J. Conduction mechanisms in SnO2 single-nanowire gas
sensors: An impedance spectroscopy study. Sens. Actuators B Chem. 2017, 241, 99–108. [CrossRef]

54. Szafraniak, B.; Kusior, A.; Radecka, M.; Zakrzewska, K. Impedance Spectroscopy in H2 Sensing with TiO2/SnO2 Nanomaterials.
Metrol. Meas. Syst. 2020, 27, 417–425. [CrossRef]

55. Farva, U.; Kim, J. Growth temperature-dependent morphological, optical, and electrical study of SnO2 thin film by atomic layer
deposition. Mater. Chem. Phys. 2021, 267, 124584. [CrossRef]

56. Scragg, J.J.S.; Choubrac, L.; Lafond, A.; Ericson, T.; Platzer-Björkman, C. A low-temperature order-disorder transition in
Cu2ZnSnS4 thin films. Appl. Phys. Lett. 2014, 104, 041911. [CrossRef]

57. Fontané, X.; Izquierdo-Roca, V.; Saucedo, E.; Schorr, S.; Yukhymchuk, V.O.; Valakh, M.Y.; Pérez-Rodríguez, A.; Morante, J.R.
Vibrational properties of stannite and kesterite type compounds: Raman scattering analysis of Cu2(Fe,Zn)SnS4. J. Alloys Compd.
2012, 539, 190–194. [CrossRef]

58. Guo, Y.; Wei, J.; Liu, Y.; Yang, T.; Xu, Z. Surfactant-Tuned Phase Structure and Morphologies of Cu2ZnSnS4 Hierarchical
Microstructures and Their Visible-Light Photocatalytic Activities. Nanoscale Res. Lett. 2017, 12, 181. [CrossRef] [PubMed]

59. Chenari, H.M.; Hassanzadeh, A.; Golzan, M.; Sedghi, H.; Talebian, M. Coulomb blockade phenomena and impedance spec-
troscopy studies in a double-barrier junction. Solid State Commun. 2010, 150, 2285–2287. [CrossRef]

60. Zhang, C.; Boudiba, A.; De Marco, P.; Snyders, R.; Olivier, M.-G.; Debliquy, M. Room temperature responses of visible-light
illuminated WO3 sensors to NO2 in sub-ppm range. Sens. Actuators B Chem. 2013, 181, 395–401. [CrossRef]

http://doi.org/10.1016/j.snb.2004.11.020
http://doi.org/10.1166/rase.2016.1109
http://doi.org/10.1016/j.snb.2016.10.061
http://doi.org/10.24425/MMS.2020.134588
http://doi.org/10.1016/j.matchemphys.2021.124584
http://doi.org/10.1063/1.4863685
http://doi.org/10.1016/j.jallcom.2012.06.042
http://doi.org/10.1186/s11671-017-1868-4
http://www.ncbi.nlm.nih.gov/pubmed/28282984
http://doi.org/10.1016/j.ssc.2010.09.008
http://doi.org/10.1016/j.snb.2013.01.082

	Introduction 
	Materials and Methods 
	Gas Sensor Substrates 
	Gas-Sensitive Layer Deposition 
	Tin Oxide 
	Copper Oxide 

	Gas-Sensing Measurements 
	Measurements of Resistance Changes with Direct Current (DC) 
	Measurements of Electrical Properties with Alternating Current (AC) 

	Material Characterization 

	Results 
	Characterization Results 
	Gas-Sensing Characteristics 
	NO2 
	VOCs 
	Response and Recovery Times 


	Conclusions 
	References

