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Aging, chronic inflammation, and environmental insults play an important role in a number of disease processes through alterations
of the epigenome. In this review we explore how age-related changes in the epigenetic landscape can affect heterogeneity within
the haematopoietic stem cell (HSC) compartment and the deriving clinical implications.

1. Introduction

Aging is associated with alterations in the heterogeneous
haematopoietic stem cell (HSC) compartment including
changes in clonal composition and lineage contribution.
Recent data shows that these changes in functional potential
within the HSC population may be modulated by a drift
in the epigenome that occurs with increasing age and may
ultimately lead to a transcriptional change within the HSC
pool. Here we describe the current state of knowledge of
haematopoietic stem cell heterogeneity and its changes with
age, discuss the evidence for changes in the epigenetic
landscape as a potential driver, and propose a model by
which these changes may explain some of the pathological
consequences of aging.

2. Haematopoietic Stem Cell Heterogeneity

The haematopoietic system relies on a small population of
HSCs resident in the bone marrow to generate ∼1011 new
cells every day. HSCs have the capacity of self-renewal and
differentiation through a cascade of progressively committed
and lineage restricted progenitors to ultimately generate all
mature circulatingmyeloid and lymphoid cell types [1]. Orig-
inally it was thought that HSCs were a single homogenous

cell population with the same proliferation and multipotent
differentiation capability [2]. However in the last 10 years it
has become clear that the HSC compartment is in fact made
up of a number of subsets each distinguished by its own self-
renewal capacity (long-term and short-termHSCs) [3–5] and
lineage differentiation potential [6].

The first evidence of HSC compartment heterogeneity
came from mouse spleen CFU assays; these showed a high
degree of variability in numbers and types of colonies
produced, challenging the idea of a single homogenous popu-
lation. However, direct evidence on HSC heterogeneity came
from methods that allow assessment of mature cell outputs
from limiting numbers and even single HSCs [7–10]. These
include the ability of purified single HSCs to repopulate a
secondary myeloablated host and cellular barcoding whereby
lentiviral gene transfer is used to uniquely label individual
HSCs allowing their progenies to be tracked within the
transplanted host. This work has led to HSC subsets being
distinguished according to their mature cell output. The
existence of analogous HSC subsets in humans has been
suggested by evidence from therapeutic transplantation in the
setting of 𝛽-thalassemia [11].

Although currently defined HSC subsets are able to
produce all the mature cell progeny, the ratio of myeloid
to lymphoid progeny varies markedly. HSC compartment
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Table 1: Currently defined HSC subsets in mouse and their definition by mature cell output and cell surface markers.

HSC subset Predominant mature cell
population

Cell surface markers that have been used for
prospective identification

Mouse HSC Lin− Sca-1+ cKit+ CD150+ CD48− CD34−

Myeloid-biased/lymphoid-deficient
(𝛼) Myeloid +CD150High, CD41+

Lymphoid-biased/myeloid-deficient
(𝛾/𝛿) Lymphoid +CD229+

Balanced (𝛽) Myeloid and lymphoid
Platelet-biased Platelet and myeloid +VWF+, CD41+

Human HSC Lin− CD34+ CD38− CD90+ CD45RA−
CD49f+

Lin: lineage markers; VWF: von Willebrand factor.

subsets have been described as myeloid-biased, lymphoid-
biased, or balanced [3, 12] or by others as lymphoid-
deficient (𝛼), myeloid-deficient (𝛾 and 𝛿), and balanced (𝛽),
respectively [13] (Table 1).While themajority of accumulated
evidence comes from mouse models there is also support for
myeloid-biased and lymphoid-biasedHSC subsets in humans
[14, 15]. While serial transplantation experiments are able
to define HSC subsets by their progeny of mature cells in
vivo there is not yet an effective method to prospectively
distinguish HSC subsets at molecular level. An attempt
to prospectively enrich the myeloid- and lymphoid-biased
subsets has beenmade by defining these populations based on
CD150 cell surface level. Myeloid-biasedHSC subsets express
higher levels of this surface marker compared to lymphoid-
biased HSCs [16–18]. However, this is not considered an ideal
marker as the cell populations separated are not pure and
expression of CD150 changes when cells are manipulated and
transplanted [19, 20]. Recently lymphoid-biased HSCs have
been shown to have higher expression of the surface marker
CD229 [21].

A further HSC subset recently identified is themegakary-
ocytic or platelet-biased HSC subset (Table 1). This has been
prospectively defined by reporter gene expression and/or
surface markers that are highly expressed in the megakary-
ocyte/platelet lineage: VWF [22] and CD41 (ITGA2B) [23].
Approximately 60% of mouse HSCs have been shown to
coexpress VWF and when these are serially transplanted in
limiting numbers they effect highly platelet-biased reconsti-
tution [22]. Interestingly, this population also has a strong
myeloid lineage bias whereas VWF-HSC contribution to the
myeloid lineage is minimal [22]. It has therefore been sug-
gested that previous studies that identified a myeloid-biased
HSC subset [3, 12, 13] may have identified both platelet-
biased and myeloid-biased HSCs in the absence of methods
to evaluate platelet output. Furthermore, the platelet-biased
HSC subset has been hierarchically placed at the apex of
the haematopoietic tree, due to its ability to give rise to the
lymphoid-biased HSC subset [22]. Similarly, a platelet- and
myeloid-biasedHSC subset has been identified by the expres-
sion of the megakaryocyte/platelet cell surface marker and
part of the glycoprotein IIb/IIIa fibrinogen receptor: CD41,
a population that may possibly be phenotypically analogous

to that expressing VWF [23]. CD41 had been known to be
expressed in embryonic HSCs but then switched off after
birth [24–27]. Its expression has now been demonstrated on a
subset ofmouseHSCswhich show a platelet andmyeloid bias
on serial transplantationwith a knockdown of CD41 resulting
in reduced levels of all mature blood cell lineages [23]. A
platelet-biased HSC subset has not yet been defined in the
human.

While the majority of evidence on HSC lineage commit-
ment to date, including that presented here, derives from
transplantation studies, transplantation creates an artificial
environment that is limited by engraftment-associated in-
flammation. The use of novel in situ inducible labelling tech-
niques has enabled the study of physiological haematopoiesis
in a healthy bone marrow environment. Two recent mouse
studies using this approach have proposed a model of
haematopoiesis that while supporting data from transplan-
tation studies suggest that classical long-term HSCs have
a limited contribution to steady-state haematopoiesis [28,
29]. Rather HSC heterogeneity is produced by thousands of
multipotent clones within a reservoir of cells traditionally
defined as short-term HSCs and multipotent progenitors
[29], which are shown to be longer-lived than previously
thought and have considerable self-renewal capability. These
novel techniques while still in their early stages are antici-
pated to provide further insight into haematopoietic lineage
commitment in more physiological conditions.

3. Aging within the HSC Compartment

Multiple studies have established that aging, both in mouse
and in human, leads to a myeloid-skewed haematopoietic
system, with diminished representation of lymphoid cell
populations and an increased representation of myeloid pro-
genitors that has been shown to be associated with amyeloid-
biased HSC population [17, 30–32]. Furthermore, it has been
shown that serial transplantation of young mouse HSCs into
young secondary hosts selectively expands a myeloid-biased
HSC population independent of a nonaging microenviron-
ment which suggests that HSC lineage bias is intrinsic to
the cell itself [32]. In addition, there is also evidence in the
mouse of an age-related increase in platelet-biased HSCs
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defined by their expression of CD41. When transplanted
these cells show a predominantly platelet- and myeloid-
biased reconstitution, which suggests that themyeloid-biased
HSC population seen in elderly mice may also be platelet-
biased [23]. Although age-related changes in VWF+ HSCs
have not been evaluated it could be speculated that this
population would also expand with age since this subset
leads to a platelet- and myeloid-biased reconstitution. This is
supported by similarities in gene expression profiles between
VWF+HSCs and aged HSCs, both demonstrating significant
upregulation of megakaryocyte-lineage genes such as Selp
and Clu as well as the upregulation of VWF in aged HSCs
[33]. Expansion of the VWF+ HSC population with age does
not, however, support the hierarchical positioning of this
population above the lymphoid-biased HSC subset as this
population is known to decrease with age.

In humans, age-related haematopoietic changes include
decreased bonemarrow cellularity [34], attenuated lymphoid
potential [35], increased incidence of myeloproliferative
disorders and myeloid malignancies [36], and increased
incidence of thrombosis [37]. As in mouse, these findings
have been correlated with an accumulation of HSCs within
the aged human bone marrow, which, while being able to
generate both lymphoid and myeloid progeny in culture
and in xenotransplant, showed significant myeloid skewing
compared with young HSCs [14]. The existence of an age-
related platelet-biasedHSC subset in humans has not yet been
investigated.

Postulated mechanisms that may lead to a decline in
lymphoid differentiationwith age include a gradual erosion of
lymphopoietic potential within the HSC compartment over
time, a conversion of lymphoid-biased to myeloid-biased
HSCs, and a gradual dominance of myeloid-biased HSCs
either due to their slower turnover leading to increased
survival or a higher self-renewal capacity leading to clonal
dominance with time [12, 38]. How these changes are con-
trolled and regulated is still unclear. Aging within the HSC
compartment has been shown to be associatedwith decreased
functionality due to elevated levels of reactive oxygen species
[39] and accumulation of DNA damage [40] which may
account for some of the differences observed with age. It is
clear, however, that these mechanisms do not account for all
of the cellular and molecular attributes that are associated
with aging of the HSC compartment, indicating that other
mechanisms must be involved. There are a number of lines
of evidence showing that HSC aging is transcriptionally
regulated with differences in gene expression between young
and aged HSC populations [14]. This suggests that alteration
in gene expression by changes in the epigenetic landscape
may play a key role in modulating age-related changes in the
HSC compartment.

4. Epigenetic Regulation of HSC Aging

The term epigenetic encompasses all heritable changes in
gene expression that are not due to changes inDNA sequence.
These are modifications of the genome or of DNA-associated

proteins. They include changes in DNA methylation, his-
tone modifications, and changes in chromatin structure that
impact on the accessibility of genetic loci for transcription
machinery. Noncoding RNAs also play a critical role in
epigenetic regulation. It is because of epigenetic regulation
that a cell retains its identity and its gene expression profile
through cell division and differentiation without altering its
DNA sequence. However, epigenetic marks can also change
over time [41–43] due to aging and environment, which may
be related to mutations in epigenetic regulators, although the
underlying molecular mechanisms are still unclear. It is this
change in the epigenetic landscape of the HSC compartment
that has been suggested to lead to age-related changes.

While the coding potential of the genome lies in the
arrangement of the four nucleotides, additional informa-
tion affecting phenotype is stored in the distribution of
methylated cytosine (5-methylcytosine). DNA methylation
occurs at CpG motifs that are interspersed within the
genome in clusters called CpG islands. Densely methylated
promoter regions are associated with compacted chromatin
structure and therefore transcriptional shutdown; conversely
demethylation leads to chromatin opening and therefore gene
expression.

Aging in somatic tissues has been associated with global
hypomethylation [44] where the majority of cells are post-
mitotic. In contrast in aged HSCs, which are characterised
by mitotic potential often longer than the organism lifes-
pan, a significant degree of global DNA hypermethyla-
tion is observed. However, if HSCs are taken to the end
of their proliferation potential by serial transplantation,
although not a physiological condition, similar patterns
of global hypomethylation are observed [33, 45]. Young
HSCs gain DNA methylation in regions associated with
nonhaematopoietic lineages and significant losses of DNA
methylation in genomic regions associated with blood cell
production. Conversely, aged HSCs display gains of DNA
methylation in genomic regions associated with lymphoid
and erythroid lineages; both lineages decline in number
during aging. Interestingly, themajority of genes differentially
methylated during HSC aging were associated with lineage
potential and highly expressed downstream of the HSC
in the haematopoietic tree [45]. Furthermore, age-related
hypermethylated regions were enriched for targets of the
Polycomb group of proteins, known to establish repressive
chromatin [33, 45].

Regulators of DNA methylation include DNA methyl-
transferases (DNMTs) that drive methylation of CpG motifs
and the ten-eleven translocation (Tet) enzymes that regulate
demethylation. Functional studies implicate these epigenetic
regulators in the aging process within the HSC compart-
ment. Genetic alteration studies demonstrate that DNMT1
is responsible for maintaining methylation and its loss in
the HSC compartment leads to myeloid skewing and self-
renewal defects [46, 47]. Furthermore, loss of bothDNMT3A
and DNMT3B leads to a severe arrest in HSC differentiation
[48]. Loss of Tet2 in mice attenuates differentiation and leads
to myeloid transformation and myeloid malignancies [49–
51]. Somatic mutations in Tet2 have also been shown in
normal elderly human subjects [52]. Importantly, there is now
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evidence of differential expression of both DNMT and Tet2
enzymes in aged HSCs compared with young HSCs [33, 45].

Histone posttranslational modifications including acety-
lation,methylation, phosphorylation, sumoylation, and ubiq-
uitination can change chromatin structure and therefore
DNA accessibility to transcriptional machinery. These modi-
fications may act separately or synergistically to regulate gene
expression. Priming DNA in such a way precedes lineage
commitment in the HSC population as seen by histone
modifications associated with gene expression in committed
mature cell populations already present within the HSC
compartment [53, 54]. This observation is similar to that
of differential DNA methylation of genes that are expressed
downstream described above. HSCs also utilise Polycomb
(PcG) genes to regulate aging, prevent premature aging, and
maintainHSC function by forming PcG repressive complexes
(PRC). While the PRC1 complex possesses H2AK119 ubiqui-
tin ligase activity, PRC2 acts as a H3K27 methyltransferase.

Age-related changes in histonemodifications also provide
mechanisms that may contribute to changes seen in the
aged HSC compartment. Aged HSCs show methylation of
H3K4me3, a mark of active chromatin, which correlate with
increases in gene expression of HSC identity and self-renewal
genes [33]. Differential methylation of the repressive mark
H3K27me3has also been shown in agedHSCs,with increased
H3K27me3 on a number of promoters [33]. HSC aging is also
associated with low levels of H4K16ac activation mark [55].
Furthermore, interdependency between DNA methylation
and histone modification exists and it might be relevant to
HSC aging; however its full understanding is reliant on the
development of assays that require smaller cell numbers to
detect both epigenetic marks in the same samples.

Functional studies, where lysine-specific demethylases
that drive H3K4 demethylation and regulate chromatin
accessibility have been genetically modulated, show their
critical role in stem cell differentiation. Kdm3a and Kdm5a
have also been implicated in regulating stem cell aging, a
notion supported by the fact that these proteins’ expression
decreases with age [33, 56, 57]. Knockdown of the lysine
demethylase Kdm5b (Jarid1b) leads to increasedHSC activity
[58] and is also known to be differentially expressed with
aging [45]. Knockout studies of the H3K27me3 demethylase
Kdm6a (UTX1) have shown it to be a key regulator of
haematopoiesis [59] and knockdown in C. elegans extends
their lifespan [60]. Furthermore, HSCs deficient in the Bmi1
component of PRC1 [61–63] as well as the Ezh1 [64] and Eed
[65] components of PRC2 show a severe defect with marked
derepression of the tumour suppressor and aging-associated
complex Ink4a/Arf.

Noncoding RNAs are RNAs that are not translated into
protein but are known to play an important epigenetic
regulatory role. While the direct impact of noncoding RNAs
onHSC aging requires further investigation, there is evidence
to suggest that noncoding RNAs are both highly expressed
and regulateHSC survival and function.ThemicroRNAmiR-
125b is highly expressed inHSCs and plays a role in regulating
survival [66, 67] whereas miR-126 knockdown is associated
with a myeloid-biased HSC compartment [68]. The long
noncoding RNA Xist is essential for HSC survival [69].

5. Consequences of Age-Related Changes in
the HSC Epigenetic Landscape

It is not clear if there is a physiological benefit of a progressive
myeloid bias within the HSC compartment. However, it is
clear that the epigenetic drift that leads to this phenotype
correlates with the increased incidence with age of myelo-
proliferative disorders and myeloid malignancies as well as
increased risk of infection and thrombosis (Figure 1).

Myeloproliferative disorders,myelodysplastic syndromes,
and haematological malignancies [36] are attributed to accu-
mulation of mutations in the aging HSC compartment, many
of which are involved in epigenetic regulation of the HSC
population such as Tet2 and DNMT3 [52, 70–73]. DNA
methylation plays an important role in the pathogenesis
and progression of myelodysplastic syndromes where DNA
hypermethylation and methyl silencing are implicated as
the pivotal mechanism [74–76]. In accordance with this,
clinical trials for agents that inhibit DNA methylation
are ongoing in myelodysplastic syndromes [77–80]. Acute
myeloid leukaemia is typically associated with hypomethy-
lation caused by deregulation of DNMT1 or possibly overex-
pression of Tet family genes [81, 82].

The myeloid skewing that occurs with advancing age
may also be associated with the decline in adaptive immune
response with a resultant increased risk of infection that
confers high levels of morbidity and mortality in the elderly
population. There is a known reduction in numbers of
circulating näıve lymphocytes that could be a direct effect of a
changing epigenetic landscape within the HSC compartment
leading to a reduced mature lymphoid lineage generation
[35, 83–85].

Age is also an important risk factor for coronary and
cerebrovascular platelet thrombosis [37], conditions that
have been causally linked to increased platelet activity and
increased platelet mass [86]. The setting of acute arterial
thrombosis has been likened to states of increased haemo-
static demand. While only correlative and chronological data
exists, it is reasonable to hypothesise that as in states of
increased haemostatic demand, when functional circulating
platelet mass drops, there is a consequential regulation of
megakaryocyte activity and platelet production. The nature
of this control system and how megakaryocyte activity is
regulated is still unknown; however, increases in plateletmass
have been correlated with increased megakaryocyte ploidy
[87–89]. It is also possible that this feedback may be at the
level of the HSC by an expansion of a platelet-biased HSC
subset.With an age-related increase in both platelet mass [90,
91] and platelet-biased HSCs [23] it could be suggested that
the recently discovered megakaryocyte- or platelet-primed
HSC subset may have thrombotic implications in the elderly.
It is reasonable to hypothesise that age-related changes in the
epigenetic landscape with age lead to a platelet-biased HSC
subset that is primed to generate a transcriptionally distinct
megakaryocyte phenotype due to defined epigenetic marks
that leads to increased platelet mass and activity. In support
of this increasing megakaryocyte ploidy is associated with
significantly increased expression of VWF and CD41 [92],
both markers of a platelet-biased HSC subset.
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Environmental epigenetic aging

Myeloid Lymphoid

Interdependency

Global DNA hypermethylation
Gain in DNA methylation in lymphoid lineage
Increase in H3K4me3 methylation
Increase in H3K27me3 methylation
Decrease in H4K16ac acetylation
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myeloproliferative disorders
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Figure 1: Drift in the epigenetic landscape that occurs with environmental and biological factors associated with aging leads to transcriptional
differences between the HSC compartments in the young population compared with the elderly population. This is proposed to give rise to
expansion of particular clones within the heterogeneous HSC pool to produce a myeloid- and platelet-skewed haematopoietic system.These
changes may play an important role in driving the increased incidence of myeloproliferative disorders, myeloid malignancies, infection, and
acute arterial thrombosis observed in the elderly.

A complex relationship exists between megakaryocytes
and HSCs, with a number of phenotypic and molecular sim-
ilarities including surface markers (CD41 and VWF), throm-
bopoietin (TPO), its receptor (MPL) and CXCR4, transcrip-
tion factor dependence (RUNX-1, GATA-2, Evi-1, SCL/TAL-
1, and Ets family transcription factors), signalling pathways,
and proximity within the bone marrow niche [93]. Fur-
thermore, maintenance of both megakaryocytes and HSCs
crucially depends on TPO [94–96]. While the functional
relevance of these similarities remains unclear there is now
a body of evidence that supports the existence of tight home-
ostatic control mechanisms along the HSC-megakaryocyte-
platelet axis. Recent reports demonstrate a critical role for
megakaryocytes in maintaining HSC quiescence through
either release of CXCL4 [97] and TGF𝛽 [98] or indeed CD41
expression [23]. In mouse acute depletion of megakaryocytes
leads to HSC expansion and proliferation implying a critical
regulatory feedback mechanism between megakaryocytes
and the HSC compartment [97]. Moreover, platelets may also
regulate HSC quiescence through effects on circulating TPO

concentrations [99]. Further work is required to gain a full
understanding of this complex relationship.

6. Conclusions

Epigenetic changes in the HSC compartment lead to the
phenotypic and functional changes that are seen in the
mature cell output of the haematopoietic systemwith advanc-
ing age. Although these epigenetic changes are not directly
pathological they produce an environment that is conducive
to pathological processes that are seen in prevalence in the
elderly population. In some disease processes age-related
epigenetic changes may be more directly pathogenic but in
other complex diseases such as coronary artery disease they
may indeed account for the missing heritability determinants
that have not been accounted for to date by genetic studies
of sequence variation [100]. Our understanding of the role
of epigenetic changes in stem cell regulation, though quickly
expanding, is only at its beginnings. However, as epigenetic
marks are potentially reversible this opens up the possibility
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of manipulating epigenetic states and ultimately changing the
way the genome functions.
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