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ABSTRACT

Systematic structure probing experiments (e.g.
SHAPE) of RNA mutants such as the mutate-and-map
(MaM) protocol give us a direct access into the ge-
netic robustness of ncRNA structures. Comparative
studies of homologous sequences provide a distinct,
yet complementary, approach to analyze structural
and functional properties of non-coding RNAs. In this
paper, we introduce a formal framework to combine
the biochemical signal collected from MaM experi-
ments, with the evolutionary information available in
multiple sequence alignments. We apply neutral the-
ory principles to detect complex long-range depen-
dencies between nucleotides of a single stranded
RNA, and implement these ideas into a software
called aRNhAck. We illustrate the biological signifi-
cance of this signal and show that the nucleotides
networks calculated with aRNhAck are correlated
with nucleotides located in RNA–RNA, RNA–protein,
RNA–DNA and RNA–ligand interfaces. aRNhAck is
freely available at http://csb.cs.mcgill.ca/arnhack.

INTRODUCTION

A recent surge of experimental technologies allows us to
rapidly access the structural profile of RNA molecules. Such
approaches include in vitro methods such as selective 2′-
hydroxyl acylation analyzed by primer extension (SHAPE)
(1) and parallel analysis of RNA structure (PARS) (2),
which provide transcriptome-wide measurements of RNA
structure at single-nucleotide resolution in vitro. Combined
with classical RNA nearest neighbor energy minimization
models (3), this data allowed for a significant improvement
of the accuracy of RNA secondary structure prediction
methods (4,5).

Recently, Das et al. introduced the mutate-and-map
(MaM) protocol, which consists in obtaining SHAPE data

simultaneously for an RNA and for (a large number of) its
1-point mutants (6). By revealing the perturbation of base-
pairing properties, this data provides an information to es-
timate the contribution of a specific position to the stability
of the native structure, which can in turn be used to deter-
mine the structure of the molecule. The current approach
to exploit MaM data for RNA secondary structure predic-
tion uses empirical rules and pseudo-energy bonuses within
classical dynamic programming prediction algorithms (5).

A distinct, yet complementary, approach to analyze
structural and functional properties of non-coding RNAs
makes use of the evolutionary information encapsulated
within multiple sequence alignments (MSAs). The latter
provides an alternate signal which is often key to under-
stand and characterize the origin and structure of func-
tional motifs (7,8).

To date, both approaches have not been combined and
even less reconciled. Nonetheless, an important observa-
tion is that the systematic mutations such as those con-
ducted in the MaM protocol enable us to probe the evo-
lutionary landscape of a molecule, which in turn can be
used to reveal nucleotide patterns in the fitness landscape.
To capture this signal, it is essential to design a formal
framework that calculates correlations between the genetic
robustness of the structural profile––obtained from MaM
experiments––and the evolutionary information available
for this molecule––usually contained in MSAs.

This paper attempts to look beyond RNA structure de-
termination, and introduces a novel concept to leverage the
information embedded in experimental structure probing
datasets of mutant RNAs. We apply neutral theory prin-
ciples (9) to detect functional dependencies between distant
nucleotides in a single stranded RNA. More precisely, we
first use MaM data to identify mutations that significantly
destabilize the native structure of the molecule, i.e. the mu-
tations associated with the most divergent SHAPE profiles.
Then, we retrieve from RNA MSAs (Rfam database (10))
homologous sequences containing those destabilizing mu-
tations, and compare their nucleotide distribution to the
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background distribution observed in the Rfam MSA. Fi-
nally, the ensemble of positions with highest mutual infor-
mation is used to reveal nucleotide networks of functional
dependencies. This protocol aims to capture non-trivial co-
variations or geometric conservations that are key to guar-
antee the stability and specificity of the binding site struc-
ture.

We implement our model in a software named aRN-
hAck. We illustrate potential applications of the signal cap-
tured with our theoretical framework, and apply aRNhAck
to analyze MaM datasets available on the RNA Mapping
Database (11). Our experiments reveal non-trivial long-
range dependencies within ncRNA primary structures of
5S ribosomal RNA, the yeast phenylalanine tRNA and the
cobalamin, adenine and glycine riboswitches. We investi-
gate the biological significance of these patterns by look-
ing at the distribution of these nucleotides on the RNA
three-dimensional (3D) structures. Interestingly, we find sig-
nificant correlations between the sets of nucleotides pro-
duced by our method and those identified as participating in
RNA–RNA, RNA–protein, RNA–DNA and RNA–ligand
interfaces.

MATERIALS AND METHODS

Definitions

We abstract an RNA sequence w of length n as a string in
{A,C,G,U}n. A secondary structure S for w is a set of base
pairs (i, j), 0 < i < j ≤ n, which are pairwise non-crossing,
i.e. if (i, j) and (k, l) are in S and i < k, then i < j < k < l or
i < k < l < j.

Any secondary structure S can be decomposed in five
types of secondary structure elements (SSEs):

(i) Stems consist in one or more base pairs {(i1, j1), ···, (il,
jl)} such that im + 1 = im + 1 and jm − 1 = jm + 1;

(ii) Hairpins are composed of a base pair (i, j) and, for any
position k ∈ [i + 1, j − 1], k is not involved in any base
pair;
(iii) Interior loops are a set of two base pairs {(i1, j1),
(i2, j2)}, where i1 < i2 < j2 < j1 and all k such that i1 <
k < i2 or j2 < k < j1 and k does not belong to any base
pair;

(iv) Multi-loops are a set of base pairs {(i1, j1), ···, (il, jl)}
where l > 2, i1 < i2 < j2 < ··· < il < jl < j1 and all
k such that i1 < k < i2

⋃
jl < k < j1

⋃
2≤m<l jm < k <

im+1 and k does not belong to any base pair.
(v) Exterior loops are the remaining unpaired positions, all

k such that there is no base pair (i, j) with i < k < j, and
their adjacent base pairs.

An illustration of the different types of SSEs is given in
Figure 1. We use the term of loop to denote indiscriminately
either an hairpin, an interior loop, a multi-loop or the exte-
rior loop.

By definition, the SSEs are not disjoint. Every base pair
at the interface between two structural elements belongs to
both of these SSEs. Any unpaired position, however, only
belongs to a single SSE while a base pair always belongs to
a stem and at most two other SSEs, for lonely base pairs.

SHAPE and structural information

SHAPE experiments (12) on single stranded RNA provide
a measure of the flexibility of individual nucleotides. The
reactivity score that it produces has been shown to discrim-
inate between base-paired versus unconstrained or flexible
residues (1). Many methods (4,5) have been developed to
leverage SHAPE data to increase the accuracy of secondary
structure prediction.

The result of a SHAPE experiment for an RNA of length
n is a vector of length n where every position is associated
with a positive value, indicating the reactivity of a given nu-
cleotide. The resulting vector is called a SHAPE profile. Be-
yond providing partial structural information, SHAPE pro-
files can be analyzed in a differential setting, e.g. to monitor
structural differences between related RNAs. In such a set-
ting, a normalization step is required, and we used a proce-
dure introduced by Deigan et al. (5) to preprocess all data.
It consists in dividing each value by the mean of the top 10%
of the data after excluding outliers. The outliers are defined
as the value >1.5× the interquartile range. For simplicity,
any future reference to SHAPE values will indicate normal-
ized values.

Mutate-and-Map. Given an RNA sequence w of length
n, the MaM (6) strategy consists in completing an initial
SHAPE experiment on w with n additional SHAPE exper-
iments on single-point mutants. For each sequence, a dis-
tinct position i is selected and the associated nucleotide is
mutated into his Watson-Crick complementary base (i.e. C
to G, G to C, A to U, or U to A). Thus, the sequence of the
mutant associated with position i is entirely characterized
by i, and we will denote by wi the sequence of the ith mu-
tant in the following. Each SHAPE experiment produced
n reactivities, and the MaM scheme results in a (n + 1) ×
n matrix, where each row corresponds to the SHAPE pro-
file. We will denote by R the SHAPE profile of the wild-type
sequence w, and by Ri the profile of the ith mutants wi.

Structural disruption. Given the high correlation between
an RNA SHAPE profile and its structure, it is generally ac-
cepted that a significant SHAPE profile disruption reflects
a change of structure. Using MaM data, we estimate the
SHAPE profile disruption of the point-wise mutation at po-
sition i, by comparing the SHAPE profiles of w and wi using
different metrics.

In this work, we quantify the profile disruption induced
by the ith mutation, by taking the l2 norm between R and Ri,
restricted to a window of width 2� + 1, i.e. by considering
positions in the interval [i − �, i + �], for � a parameter. In
this work, � is fixed to 10. We denote �(w, wi) this distance
measure defined as:

�(w,wi ) =
√√√√ i+λ∑

k=i−λ

(R(k) − Ri (k))2.

We also tested three alternative measures: The first one is
l2 norm between the whole profiles of w and wi, to evaluate
the global SHAPE disruption (Supplementary Figure S1);
The second is a variant of � which considers the maximally
contributing window over the whole sequence (instead of
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Figure 1. RNA secondary structure elements (SSEs). Blue edges represent canonical base pairs, while black indicate the phosphodiester backbone. The
hairpins are colored in green, the interior loops in blue, the multi-loops in red and the exterior loop in orange. The base pairs adjacent to those elements
are part of them (e.g. the base pair 9–109 belongs to a stem and to the interior loop).

only considering the one centered on i for �), and aims
at identifying non-local structural rearrangements (Supple-
mentary Figure S2); The third restrains the positions for the
l2 norm between w and wi to the SSE where the mutation
lies, in order to assess the local 3D disruption of the SHAPE
profile (Supplementary Figure S3). Although some of these
measures showed potential for applications, we only report
our analysis on the � measure, whose signal was clearest.

In the following, we use a parameter � to identity mu-
tations associated with significant changes of the structure.
More precisely, given a percentile � and a MaM experiment,
we select the mutations at position i with a SHAPE profile
disruption �(w, wi) in the � percentile of all profile disrup-
tions (See Algorithm 1).

Evolutionary information

Evolutionary information can be used to witness how na-
ture repairs non-lethally disruptive mutations to preserve or
re-establish a given phenotype/function. It has been used
for a wealth of applications, ranging from the detection of
RNA 3D modules (13) to the correction of pyrosequencing
errors (14).

On the structural level, a simple, yet powerful, exam-
ple lies in the paradigm of compensatory mutations. When
the function of an RNA secondary structure hinges on its

capacity to adopt a stable structure, which typically re-
quires the presence of canonical base-pairs A-U and G-C,
any mutation that occurs within one of the paired bases
disrupts the structure stability, and therefore the fitness of
the RNA. Evolution will then favor mutations which restore
the canonical status of the base-pair, either by reverting the
mutation or by compensating it. Compensatory mutations
may also be witnessed in positions which are not imme-
diately structurally (in a broad definition, including non-
canonical motifs and pseudoknots) related to the disrupt-
ing mutation. In this case, we hypothesize that these mu-
tations are most likely involved in the quaternary structure,
and may reside at the interface between the chain of interest
and other molecules in the formation complexes. The detec-
tion of such interactions is therefore the primary application
of our method.

To that purpose, we rely on covariation models, an in-
formation theoretical tool that has been successfully used
for RNA for sequence alignment and structure predic-
tion (15). The Rfam database (10) is a repository of RNA
families, composed of aligned homologous sequences which
are gathered from an hypothesis of structural homogeneity
within a given functional family. In this work, we will use
the hand-curated MSA of Rfam to supplement structural
disruption data, and use this additional knowledge, in con-
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junction with information theory, to identify specific pairs
of positions and nucleotides having high affinity with each
other.

Normalized point-wise mutual information. To identify
those pairs of nucleotides at specific positions which vary
together, we use the normalized point-wise mutual informa-
tion (NPMI) measure (15). Given x and y two mutations,
each indicated by a column of an alignment and a nu-
cleotide present at the position, the NPMI is defined as:

NPMI(x, y) =
log P(x,y)

P(x)P(y)

− logP (x, y)
∈ [−1, 1]

where, probabilities P(·) are estimated from their frequen-
cies in the MSA.

An NPMI of −1 indicates that x and y never appear to-
gether. On the opposite side of the spectrum, a value of 1
signifies a perfect correlation. If x and y can be considered
as two independent random variables, then the NPMI will
be 0. Starting from an Rfam alignment of total length m,
the NPMI of every 25

(m
2

)
pairs of possible mutations is com-

puted, where m is the length of the alignment. For every
(m

2

)
pair of positions, the nucleotides can be either A, C, G, U or
a gap --. The set of all NPMI s greater than −1 is called � .

The procedure to compute the positions over a cutoff per-
centile � c given a mutation m, a list of positions p and a
MSA is described in Algorithm 2.

Structures as graphs. Most disruptive mutations, when ob-
served in multiple alignments, are found in combination
with compensatory mutations which re-establish the struc-
ture. Since a common secondary structure is posited in this
work, such local covariations are scarcely informative and
should be ignored. However, RNAs are 3D, and thus one
cannot use the sequence distance between the mutation and
positions of interests. In order to assess a realistic notion of
distance, we transform the secondary structure into a graph
G where the positions are the vertices. The edges are com-
posed of the phosphodiester bonds and the canonical base
pairs. For G to adequately reflect the pairwise proximity of
nucleotides involved in a loop, an edge is added between ev-
ery pair of position belonging to the same loop. Effectively
every loop becomes a clique. Figure 2 shows the full graph
of a secondary structure. The distance from a loop to a po-
sition x is defined as the maximal shortest path in G from x
to any position in that loop.

Proximity filtering. In RNA, a large proportion of ob-
served covariations are adequately explained by the neces-
sity to preserve the secondary structure. Since the secondary
structure is, to a large extent, already revealed by compara-
tive analysis (and already present in the Rfam profile taken
as input to the method), it does not constitute the primary
object of interest of our study. In order to minimize the
probability of detecting local structural compensations, we
require a minimal distance � between the index of the mu-
tation and the position of the loops selected for their good
NPMI values. This criterion is formally implemented in Al-
gorithm 3.

Binding interfaces positions. Since both negative and pos-
itive correlations can indicate positions of interest, we use
two different, �− and � +, thresholds for the NPMI s. � + will
be a bound on the positive values of the NPMI and �− on
the negative ones. Due to the high number of possible com-
binations, NPMI s having values −1 are frequent and unin-
formative. They are discarded.

For those loops deemed as regions of interest, we predict
that the set of positions with an NPMI above � + or below
�− are nucleotides in binding interfaces while the others are
not.

Implementation

Our software, aRNhAck, is implemented in python 2.7.
To identify mutations of interest, the threshold of SHAPE
profile disruption was tested between the 95 and 99 per-
centiles. The parameter � was set to 10 creating windows
of size 21 to measure the local SHAPE profile disruptions.
The parameter � was evaluated for values between 0 and
30. The whole implementation is freely available at: http:
//csb.cs.mcgill.ca/arnhack

It requires BioPython (16) for reading the MSAs, net-
works (17) for modeling the graphs and matplotlib (18)
for visualizing the results. The 3D complex analysis used in
our validation is performed using the Python API provided
by the PyMol software (19).

http://csb.cs.mcgill.ca/arnhack
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Figure 2. RNA secondary structure graph used for proximity filtering.

Datasets

We evaluated our methods on molecule for which we could
obtain simultaneously (i) an MaM experiment dataset, (ii)
a determined 3D structures interacting with other chain(s)
and (iii) a Rfam alignment Table 1 shows the quality of the
alignment of the mutate-and-map sequences with their cor-
responding Rfam family. This search resulted in six RNAs:
the 5S ribosomal RNA, the c-di-GMP riboswitch, the
cobalamin riboswitch (Puzzle 6), the phenylalanine tRNA,
the adenine riboswitch and the glycine riboswitch.

However, the experimental structure of the glycine ri-
boswitch found in the PDB contains an artificial stem loop
binding a protein used to stabilize the RNA structure and
facilitate the crystallization. Since this protein is missing
in the MaM experiments, we decided to exclude this ri-
boswitch from our test set. Nonetheless, we show our results
in the supplementary material (Supplementary Figure S7).

The 5S ribosomal RNA is the family RF00001 on Rfam.
Its seed alignment consist of 713 sequences. The family also
provides the consensus structure. The MaM protocol was
applied to the consensus sequence of four structures which
have as PDB IDs: 2WWQ (20), 3OAS and 3OFC (21), and
3ORB (22). Those four determined structures have almost

Table 1. Bit scores of mutate-and-map sequences on covariance model
built from related Rfam alignments using infernal

RNA Bit score

5S 48.65
c-di-GMP ribo. 44.23
cobalamin ribo. 118.96
adenine ribo. 62.68
tRNA 43.91
glycine ribo. 52.85

the same sequence with slight differences in the length on
their 5′ and 3′ extremities.

The yeast phenylalanine tRNA is included in the Rfam
family RF00005 which has 960 seed sequences from vari-
ous tRNAs. Its structure has been crystallized in presence
of magnesium and manganese (PDB ID: 1EHZ). Although,
for a complete characterization of its structural context and
interactions with other molecules, we also considered struc-
tures of the two tRNAs in the structure of the yeast 80S
ribosome–tRNA complexes (PDB ID: 3J78).

The c-di-GMP riboswitch is present in family RF01051
in Rfam, which contains 156 sequences in its seed align-
ment, and a consensus structure. The consensus sequence
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was also built from four structures, with PDB IDs:
3IWN (23) and 3MXH, 3MUV, 3MUT (24). Importantly, c-di-
GMP is known to bind a pocket inside the three-way junc-
tion at positions 11 − 13, 40 − 41 and 85 of the sequence
on which the MaM experiments were run (25,26), and the
MaM experiment was done in presence of its ligand. It is
also worth noting that, in order to facilitate the crystalliza-
tion, the hairpin loop L2 of this molecule has been artifi-
cially designed to bind the U1A protein. Here, we included
only the positions binding the ligand. Nonetheless, for com-
pleteness, we also show in the supplementary material the
results including the stem loop L2 binding interface.

The MaM cobalamin riboswitch sequence can be found
in the Rfam family RF00174which has 430 seed sequences.
The PDB contains the structure bounded to its ligand (PDB
ID: 4GXY). Noticeably, the MaM experiments were done in
the presence of cobalamin ligands.

The adenine riboswitch belongs to family RF00167
which has 133 seed sequences. The structure with the ade-
nine ligand has PDB ID:1Y26. Three different MaM exper-
iments were conducted on this molecule. Experiments Ade-
nine 2 and Adenine 3 where done in presence of the lig-
and, and are used in this paper. The third experiment Ade-
nine 4 has been performed in absence of the ligand, and
thus was omitted from this benchmark since disruptive mu-
tations cannot be used to detect key structural elements of
the ligand-bound structure. Nonetheless, the results are in-
dicated in the supplementary material.

To complete our benchmark, we also built a secondary
test set of Rfam families with experimentally determined
3D structures, but for which MaM experiments were not
available. We selected all Rfam families with sequences hav-
ing a size ranging from 35 to 150 nucleotides, and with PDB
files containing at least one other molecule in the vicinity of
the RNA. In total, we found 14 families matching 729 dif-
ferent structures.

We omitted the shortest sequences (i.e. Rfam families
RF00032, RF00037 and RF00175) because our distance
metric � would be too coarse to extract a signal on such
small structures. Similarly, we also removed large molecules
(i.e. more than 150 nucleotides) because the accuracy of the
nearest-neighbor model decreases significantly beyond this
size. So it is the case for computational tools with which we
simulated MaM data (i.e. remuRNA).

Experimental design

The Infernal 1.1 (27) software was used with default
parameter values to: (i) create a covariance model for each
alignment, and; (ii) align the sequence from the MaM exper-
iment with the generated covariance model. The consensus
secondary structure was then restricted to gapless positions
within the aligned sequence w.

For each mutation over the SHAPE profile percentile cut-
off �, the dataset was composed of the regions of interest
given � , i.e. the set of positions returned by the Algorithm 3.

We used different strategies to determine the interaction
sites (i.e. positive dataset), depending of the nature and con-
text of these interactions. All interactions were manually
verified.

For the 5S RNA, we implemented a PyMOL script to
extract nucleotides of each PDB model, whose position any
of their atom is at most at 5å from any atom of another
chain the the complex. An implementation of this script is
included in the distribution of aRNhAck

For the tRNA, we extracted positions that are at most 5Å
away from another chain in the two tRNAs found inside the
structure of the yeast 80S ribosome–tRNA complexes (PDB
ID: 3J78). However, because those were not phenylalanine
tRNAs, we aligned them to the MaM sequence with Lo-
caRNA(28), and used this alignment to map the interaction
sites on the latter. We identified the positions 1, 19, 34 − 36,
56 − 57, 73 − 76 (containing the anticodon) in this positive
set. Among them, only the anticodon and T-� -C-G, known
to bind the 5S RNA in the 50S ribosomal subunit (29), mo-
tif appeared to us to be strongly conserved. Thus, we con-
sidered only these two interactions sites in our experiments
and presented the results separately. For completeness, the
results obtained on other positions have been included in
the supplementary material. Finally, we also confirmed the
location of the anticodon using tRNAscan-SE (30).

For the riboswitches, we used Ligand Explorer (31)
to identify nucleotide at most 5Å from the ligand in their
respective crystal structures.

The set of all positions is found in the Supplementary Ta-
ble S1.

All other remaining positions compose the negative
dataset. The positions not present in the model were ig-
nored. This highlights one of the challenges of this bench-
mark. For the 5S rRNA, out of 121 positions, two models
had 3 nucleotides missing, one had 4 missing and the other
6. For c-di-GMP, out of 103 positions, one model had 8 nu-
cleotides missing, two others 21 and the last 22. Which ex-
plains some discrepancies between the models.

The set � is composed of the NPMI between every pair of
positions and every possible nucleotide (i.e. A, C, G, U and –)
in the resulting alignment. The thresholds on the NPMIs,
� + (resp. �−) was sliced from the 0th to the 100th percentile
of the positive values of � (resp. negative values of � ).

Thus, for each SHAPE profile distance measure, each
SHAPE distance threshold �, each significant mutation
given that measure, each � , each PDB model and for ev-
ery threshold pair (�−, � +), we obtained standard sensitiv-
ity and specificity scores. Those with a given SHAPE pro-
file distance measure, SHAPE distance threshold �, � , PDB
model and pair (�−, � +) where averaged together. The work-
flow of the method is illustrated in Figure 3.

RESULTS

We evaluated aRNhAck on a comprehensive set of values
for � the SHAPE profile distance measure and � the prox-
imity threshold. For each (�, � ) pair, we computed a re-
ceiver operating characteristic curve and its area under the
curve (AUC). The data are shown in Figure 4A. Noticeably,
we averaged the values for the 5S rRNA and c-di-GMP ri-
boswitch who have four PDB models. Importantly, we re-
mind that the set of positives and negatives is influenced by
the value of � , as calculated by Algorithm 3. We also note
that we only show the pair of parameters �, � such that for
all structures for each RNA the positive and negative sets
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Figure 3. General overview of our method and validation procedure. Starting from mutate-and-map data, supplemented by an Rfam multiple sequence
alignment, our method identifies positions that are simultaneously distant, yet co-evolve jointly, with positions that are structurally disruptive.

Figure 4. Overall performances of aRNhAck using experimental (A) and computationally-predicted structural disruption data (B). For a set of extreme
percentile cutoff of the SHAPE profile disruption in the first row (computational remuRNA disruption in the second row) � and a minimal distance � from
the mutation we show the average AUC. 5S positive set composed of the binding interfaces with other chains present in its four PDB models. The tRNA
positive set is divided between the anticodon positions and the A-� -C-G motif positions, obtained from the litterature. The c-di-GMP, cobalamin and
adenine riboswitches positive sets are composed of the positions at most 5Å from their ligands in their PDB structures. Four different models exist for
c-di-GMP and the AUC values are averaged.
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Figure 5. Distance distribution for pairs of SSEs, weighted by the numbers of non-shared nucleotides. The different distribution affect the quantity of
positions selected by the parameter � , distance from the mutation.

are non-empty. As discussed before, many nucleotides are
missing in the PDB models of 5S and c-di-GMP.

Evolutionary stabilization of in vitro disruptive mutations re-
veal binding sites

We show our results in Figure 4A. In all cases, it exists a pair
of parameters (�, � ) for which aRNhAck achieve good pre-
dictive performance. Importantly, the maximal AUCs are
found when the SHAPE disruption percentile cutoff � is
around 97%, with the largest possible distance � from those
mutations.

Results on 5S RNA and tRNA appear to have a slightly
more diffuse pattern than other experiments. We hypothe-
size that it is due to the complexity of the nucleotide inter-
action network used to stabilize their 3D structures. Such a
network would be easily disrupted by any mutation, hence
the amplified noise in MaM experiments.

By constrast, the c-di-GMP riboswitch exhibits one of the
strongest signals, most likely because of a strong evolution-
ary conservation and the central location of the binding site.

Interestingly, the cobalamin riboswitch exhibits a nega-
tive correlation with smaller disruption cutoff � than the
optimal value for which a positive correlation is found. In
fact, these values of � are strongly associated with positions
in the leftmost hairpin of this structure. This suggests a con-
served, yet currently unannotated, structural motif or bind-
ing interface that would warrant further investigations.

Finally, the two MaM experiments on the adenine ri-
boswitch show that, although similar results are observed,
the variation between experiments remains a concern and
that the quality of the SHAPE experiments must be taken
into account. The necessity of the correct structure when
applying the MaM protocol is necessary as negative results

are obtained when using the unbound form (See Supple-
mentary Figure S9).

We conjecture that the differences in the influence of the
� parameter, minimal distance from the mutation, are due
to structural differences. We present in Figure 5 the distribu-
tion of path lengths (distance) between every pair of SSEs,
weighted by the number of combinations of positions that
are not in the intersection of the SSE. We observe that the
distribution of distances on 5S rRNA tends toward a nor-
mal distribution, while on the c-di-GMP and cobalamin ri-
boswitches it seems instead to follows a Poisson pattern. By
contrast, the tRNA and adenine riboswitches have distribu-
tions tending toward bimodal modes. Those distributions
determine how smoothly the number of positions consid-
ered could decrease as the parameter � , minimal distance
from the mutation, increases.

In Figure 6, we visualize one prediction from our method,
for the 5s chain of 3OFC. The disrupting mutation (red)
is found in the top right corner behind the black spheres,
and the positions with high mutual information are showed
in green. The black spheres represent the subset of the
residues for a chain of the complex, that are positioned
at less than 5Å from the RNA. The other spheres belong
to other molecules, each being color-coded to indicate its
chain. Interestingly, we notice that, although many different
chains are close to the RNA, and the position with high mu-
tual information are far from the mutation, there is chain A
(in black) close to the mutation and interacting with chain
Z (purple) which binds with the mutation. Chain A builds a
bridge up to chains O (beige) and F (yellow), themselves
interacting with the compensatory mutations. We believe
this example suggests the existence of mechanisms similar
to compensatory mutations, but at the level of the quater-
nary structure.
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Figure 6. Predicted positions and interacting chains of the 5S rRNA 3OFC
structure. In red on the top right behind purple spheres is the disrupting
mutation, in green the predicted position with high mutual information.
The spheres around the RNA represent the subset of nucleotides at most
at 5Å from the rRNA, from other chains in the complex. The other spheres
belong to other molecules. Each sphere is color-coded to indicate its chain
as follows. Chain A is black, Z purple, W pink, V light blue, O beige, F
yellow and M orange.

In this vision, a set of mutations contributes to re-
establish the opportunity for participating in complexes, by
compensating the effect of a disruptive mutation.

Computationally predicted structural disruptions yield
weaker signal

To justify the use of SHAPE experimental data, we evalu-
ate the performance of a fully automated pipe-line in which
mutations altering the RNA conformational landscape are
predicted with a computer software instead of MaM data.
Here, we predict these destabilizing mutations with re-
muRNA (32). Alternatively, for longer sequences, RNAsnp
(33) can also be used.

The Boltzmann conformational ensemble Bw of a se-
quence w is the probability distribution of valid RNA sec-
ondary structures on the sequence w. Given a wild type se-
quence wt and a mutant m, remuRNA (32) computes the
relative entropy (or Kullback–Leibler divergence) between
the two probability distributions Bwt and Bm. The latter

provides an estimate of the destabilization of the conforma-
tional landscape induced by the mutation. Given the set of
all secondary structure S, the relative entropy is defined as:

∑
S∈S

P(S | Bwt) log
(
P(S | Bwt)
P(S | Bm)

)
.

We report our results in Figure 4B. Here again, our data
unveil a signal that shows a correlation between the muta-
tion identified with aRNhAck and the RNA-binding inter-
faces. Nonetheless, the strength of the signal extracted with
remuRNA is of lower magnitude than the one achieved with
the SHAPE experiments and the MaM protocol. An excep-
tion is the tRNA for which aRNhAck achieves better per-
formance with remuRNA than MaM data. We conjecture
that this could be due to a difficulty of the MaM protocol
to capture a clear signal on these structures.

To further validate our model, we applied this protocol
based on remuRNA prediction on a dataset made of Rfam
families with experimentally determined 3D structures (See
‘Materials and Methods’ section). It took us 1 CPU year to
complete this experiment on each of the 727 structures. For
each family, we extracted the sequences annotated by Rfam
as having the best matching score (i.e. the Bit score mea-
suring the fitness of the PDB sequence to the Rfam covari-
ance model). This restrained the set to 52 sequences since
some families had many sequences with the same score.
We present in Figure 7 our analysis on those top scoring
sequences, showing the same trend. Complete results in-
cluding omitted (short) families RF00032, RF00037 and
RF00175 are available in the supplementary material (See
Supplementary Figure S6).

To a lesser extent, the same trend is observed through all
the matches annotated by Rfam (See Supplementary Fig-
ure S6). The full list of matching families in shown in the
Sup. Mat. It is important to notice that the set of positive
and negative positions was automatically retrieved from the
PDB. Although c-di-GMP is to the best of our knowledge
the only family with a designed sequence incorporated in
the structure, interactions not provided in the PDB struc-
tures are considered as negative.

The poorest results are achieved in family RF01118. In-
terestingly, one of the conserved feature of this family struc-
ture is the presence of a pseudoknot, which is not mod-
eled in the thermodynamic model underlying remuRNA.
For those particular cases, only chemical experiments such
as MaM can provide us trustworthy information about the
destabilization produced by single point mutations. This re-
inforces the importance of producing further experimental
data to reach the best performances.

These observations validate our methodology and at the
same time justify the use of SHAPE data.

To complete this analysis, we also investigate the ratio and
size of the overlap between the structurally-disruptive posi-
tions predicted using remuRNA and SHAPE experiments,
for different percentiles. As indicated in Supplementary Fig-
ure S4, we notice a clear linear decrease in the size of the
overlap. At the 50th percentile, the size of the intersection is
cut by half. When combining the results of remuRNA and
SHAPE experiments together, we quickly reach results that
are almost as good as those obtained with SHAPE data
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Figure 7. Performance of aRNhAck for remuRNA-predicted disruptions. For each Rfam family, we consider all PDBs having <150 nucleotides, and having
maximal matching score to family. For a set of extreme percentile cutoff of the SHAPE profile disruption in the first column (computational remuRNA
disruption in the second column) � and a minimal distance � from the mutation. Note that the PDB models considered for the 5S family (RF0001) do not
match those investigated by MaM, which explains the discrepancies observed between the results above and those of Figure 4.

alone, but then we also lose all specificity since the intersec-
tion sets are too small and appear to mainly identify mu-
tations not found in the MSA. Those results are shown in
Supplementary Figure S5.

These observations implies that although a theoretical
model do capture part of the complexity of the structural
conformation ensemble, it is currently too noisy to identify
fine grain differences captured by the SHAPE experiments.

CONCLUSION

We have presented a novel paradigm for analyzing non-
coding RNA sequences combining the biochemical signal
collected from structure probing experiments on RNA mu-
tants, with the evolutionary information available in MSAs.
We applied this model using MaM and Rfam data, and
show that the signal extracted with our technology yields
promising performance for identifying nucleotides involved
in molecular interfaces.

A broad range of methods have been produced to pre-
dict RNA–Protein interactions (34) or RNA–RNA inter-
actions (35–37). Yet, the vast majority of these programs
aim to identify potential molecular targets from a library,
and predict the best fits. By contrast, aRNhAck focuses
on the sole biochemical and evolutionary properties of the
RNA being analyzed. It enables, for the first time without
prior knowledge of potential partners, the identification of
hot-spots in RNA, involved in RNA–RNA, RNA–Protein,
RNA–DNA and RNA–ligand interfaces, i.e. sets of criti-
cal nucleotides possibly implicated in the molecular func-
tions. This information could then in turn be used to iden-
tify molecular targets or more realistically restrict the degree
of freedom of molecular docking software (38).

This result illustrates the usefulness of the signal ex-
tracted by aRNhAck, but the scope of application of these
concepts should not remain limited to quaternary struc-
tures. For instance, we envision to use the nucleotide net-
works detected with aRNhAck to predict non-canonical in-
teractions and 3D motifs within an RNA molecules.

The main contribution of this work is to show that neu-
tral theory principles can be combined with structure prob-
ing experiments to calculate complex evolutionary signals
embedded in ncRNA sequences. aRNhAck aims to be a
model for a new family of RNA sequence/structure anal-
ysis methods.

The volume of applications of aRNhAck is currently lim-
ited by the number of available datasets. Nonetheless, we
showed that, to some extent, experimental data could be
replaced by computationally-predicted data. Moreover, the
democratization of molecular probing experiments suggests
that this framework will be a valuable resource to exploit
new datasets and discover elaborated networks essential for
the functional properties of RNAs.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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7. Theis,C., Höner Zu Siederdissen,C., Hofacker,I.L. and Gorodkin,J.
(2013) Automated identification of RNA 3D modules with
discriminative power in RNA structural alignments. Nucleic Acids
Res., 41, 9999–10009.

8. Gardner,P.P. and Eldai,H. (2015) Annotating RNA motifs in
sequences and alignments. Nucleic Acids Res., 43, 691–698.

9. Schuster,P., Fontana,W., Stadler,P.F. and Hofacker,I.L. (1994) From
sequences to shapes and back: a case study in RNA secondary
structures. Proc. Biol. Sci., 255, 279–284.

10. Nawrocki,E.P., Burge,S.W., Bateman,A., Daub,J., Eberhardt,R.Y.,
Eddy,S.R., Floden,E.W., Gardner,P.P., Jones,T.A., Tate,J. et al. (2015)
Rfam 12.0: updates to the RNA families database. Nucleic Acids Res.,
43, D130–D137.

11. Cordero,P., Lucks,J.B. and Das,R. (2012) An RNA mapping
DataBase for curating RNA structure mapping experiments.
Bioinformatics, 28, 3006–3008.

12. Merino,E.J., Wilkinson,K.A., Coughlan,J.L. and Weeks,K.M. (2005)
RNA structure analysis at single nucleotide resolution by selective
2′-hydroxyl acylation and primer extension (SHAPE). J. Am. Chem.
Soc., 127, 4223–4231.

13. Theis,C., zu Siederdissen,C.H., Hofacker,I.L. and Gorodkin,J. (2013)
Automated identification of RNA 3D modules with discriminative
power in RNA structural alignments. Nucleic Acids Res., 41,
9999–10009.

14. Reinharz,V., Ponty,Y. and Waldispühl,J. (2013) Using structural and
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