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Circadian (B24 h) timekeeping is essential for the lives of many organisms. To understand the
biochemical mechanisms of this timekeeping, we have developed a detailed mathematical model of
the mammalian circadian clock. Our model can accurately predict diverse experimental data
including the phenotypes of mutations or knockdown of clock genes as well as the time courses and
relative expression of clock transcripts and proteins. Using this model, we show how a universal
motif of circadian timekeeping, where repressors tightly bind activators rather than directly binding
to DNA, can generate oscillations when activators and repressors are in stoichiometric balance.
Furthermore, we find that an additional slow negative feedback loop preserves this stoichiometric
balance and maintains timekeeping with a fixed period. The role of this mechanism in generating
robust rhythms is validated by analysis of a simple and general model and a previous model of the
Drosophila circadian clock. We propose a double-negative feedback loop design for biological clocks
whose period needs to be tightly regulated even with large changes in gene dosage.
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Introduction

Circadian (B24 h) clocks time many physiological and meta-
bolic processes. When these clocks were first discovered,
three basic properties were identified (Dunlap et al, 2004).
(1) Rhythms need to be autonomous. (2) Rhythms need to
be capable of adjusting in response to external signals.
(3) Rhythms need to persist over a wide range of temperatures.
More recently, the biochemical mechanisms of circadian
timekeeping have been identified (Ko and Takahashi, 2006).
In particular, interlocked transcription–translation feedback
loops (TTFLs) have been discovered as the basic mechanism of
rhythm generation in many organisms (Novak and Tyson,
2008). With this discovery, recent experimentation has identi-
fied another property of circadian rhythms in higher organisms.
Circadian rhythms persist with a 24-h period even in the
presence of large changes in the expression of the components
of these TTFLs (Ko and Takahashi, 2006; Dibner et al, 2009).
While mechanisms for rhythm generation with a flexible period
have been identified (Stricker et al, 2008; Tsai et al, 2008; Tigges
et al, 2009), mechanisms for this robustness of period to gene
dosage remain unexplained, even by mathematical models
(Dibner et al, 2009).

Two interlocked negative feedback loops have been identi-
fied in the TTFL networks generating circadian rhythms in
higher organisms (Figure 1) (Blau and Young, 1999; Glossop

et al, 1999; Benito et al, 2007; Liu et al, 2008). A ‘core’ negative
feedback loop consists of repressors (PERIOD and TIMELESS
in Drosophila or PERIOD1–3 and CRYPTOCHROME1–2 in
mammals), which inactivate activators (CYCLE and CLOCK in
Drosophila and BMAL1–2 and CLOCK in mammals) of their
own transcription. An additional negative feedback loop
controls the expression of the activators, which inactivate
their own transcription through Vrille (Drosophila) or the Rev-
erbs genes (Mammals) (Blau and Young, 1999; Preitner et al,
2002). While other feedback loops have also been identified,
these two negative feedback loops seem to predominate (Blau
and Young, 1999; Glossop et al, 1999; Benito et al, 2007; Liu
et al, 2008; Bugge et al, 2012; Cho et al, 2012).

Near 24-h oscillations persist even when the components of
the TTFLs of the circadian clock are over or under expressed.
Heterozygous mutations of clock genes never abolish rhyth-
micity, and their period phenotypes are either indistinguish-
able from the wild-type (WT) phenotypes or much smaller
than mutations that affect post-translational modifications
(Baggs et al, 2009; Etchegaray et al, 2009; Lee et al, 2009).
Abolishing rhythmicity through single gene knockout is
surprisingly difficult (Baggs et al, 2009; Ko et al, 2010).
Moreover, the mammalian circadian clock is also resistant to
global changes in transcription rates (Dibner et al, 2009).
These results all suggest that gene dosage may not be
important for circadian timekeeping in higher organisms.
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Gene dosage, however, is not completely unimportant
for timekeeping. Knockdown of clock genes causes
increased expression in similar components through paralog
compensation, which may help restore gene dosage and
indicates that gene dosage needs to be tightly regulated (Baggs
et al, 2009). Population rhythmicity in mouse embryonic
fibroblasts shows much lower amplitude than in liver, which
might be due to the fact that the ratio of repressors to activators
is significantly lower in fibroblasts than that found in liver (Lee
et al, 2001, 2011). A 1–1 stoichiometric binding occurs between
the activators and repressors driving rhythms in Drosophila
(Menet et al, 2010), although not in Neurospora (He et al, 2005;
Huang et al, 2007).

Here, we propose a mechanistic explanation for the
robustness to gene dosage in the circadian clock of higher
organisms through mathematical modeling. We develop the
most detailed mathematical model of the mammalian circa-
dian clock available, which should be useful in many future
studies. Our model reproduces a surprising amount of
experimental data on the mammalian circadian clock includ-
ing the time courses and relative concentrations of key
transcripts and proteins, the effects of mutations of key clock
genes, and the effects of changes in gene dosage. With this
model, we show that proper stoichiometric balance between
activators (BMAL–CLOCK/NPAS2) and repressors (PER1–2/
CRY1–2) is key to sustained oscillations. Furthermore, we find
that an additional slow negative feedback loop, in which
activators indirectly inactivate themselves, improves the
regulation of the stoichiometric balance and sustains oscilla-
tions with a nearly constant period over a large change in gene
expression level. Tight binding between activators and
repressors is also predicted to be crucial for rhythm genera-
tion. These mechanisms are also validated by mathematical
analysis of a simplified mathematical model of the mammalian
circadian clock, and simulations of a previously published
Drosophila model. We here propose a novel design for
biological oscillators where maintaining period is crucial: a
core negative feedback loop with repression by protein
sequestration, with an additional negative feedback loop,
which controls a relatively stable activator.

Results

Mathematical modeling of the mammalian
circadian clock

We develop a new mathematical model of the intracellular
mammalian circadian clock. This model contains key genes,
mRNAs and proteins (PER1, PER2, CRY1, CRY2, BMAL1/2,
NPAS2, CLOCK, CKIe/d, GSK3b, Rev-erba/b) that have been
found to be central to mammalian circadian timekeeping
(Figure 1A). While greatly expanded, the model is largely
based on our previous model, which has made surprising
predictions about mammalian timekeeping that have been
subsequently verified experimentally (Forger and Peskin,
2003; Gallego et al, 2006; Ko et al, 2010; Yamada and Forger,
2010). Modifications and extensions of the model are described
in the Materials and methods, Supplementary information and
Supplementary Tables 1 and 2. The parameters of the model
are estimated using experimental data and a simulated

annealing method (a global stochastic parameter searcher)
(Gonzalez et al, 2007) (see Materials and methods,
Supplementary information and Supplementary Table 3 for
details). In particular, we incorporated experimentally deter-
mined rate constants (Supplementary Table 3) (Kwon et al,
2006; Siepka et al, 2007; Chen et al, 2009; Suter et al, 2011), fit
the time courses of both mRNA and proteins (Figure 2A and B)
(Lee et al, 2001; Reppert and Weaver, 2001; Ueda et al, 2005)
and fit the relative abundance of proteins (Figure 2C) (Lee
et al, 2001).

Our model accurately predicts the phenotype of known
mutations of genes in the central circadian clock (suprachias-
matic nuclei, SCN) (Yoo et al, 2005; Baggs et al, 2009; Ko et al,
2010), which other models do not predict (Table I) (Forger and
Peskin, 2003; Leloup and Goldbeter, 2003; Mirsky et al, 2009;
Relógio et al, 2011). Interestingly, our model shows opposite
phenotypes for Cry1� /� and Cry2� /� matching experimental
data (Liu et al, 2007). There are two differences between CRY1
and CRY2 in our model. First, Cry1 transcription is delayed
through repression by Rev-erba and Rev-erbb (Preitner et al,
2002; Liu et al, 2008; Ukai-Tadenuma et al, 2011). Additionally,
Cry1 mRNA is more stable than Cry2 mRNA and CRY1 protein
is more stable than CRY2 protein (Busino et al, 2007; Siepka
et al, 2007; Chen et al, 2009). Since a longer half-life causes
rhythms to be delayed, and delayed rhythms cause a longer
period (Forger, 2011; Ukai-Tadenuma et al, 2011), removing
CRY1 shortens the period and removing CRY2 lengthens the
period. The opposite phenotypes of Clock� /� (null mutation)
and ClockD19/þ (dominant-negative mutation) are also cor-
rectly simulated in the model for the first time (Vitaterna et al,
1994; Herzog et al, 1998; Debruyne et al, 2006). Moreover, our
model also predicts the mutant phenotypes of isolated SCN
neurons, which are different from the SCN slices (Liu et al,
2007). We note that SCN slices have significantly higher gene
expression of per1 and per2 through CREB/CRE pathway than
isolated SCN neurons (Yamaguchi et al, 2003). Interestingly,
when we reduced per1 and per2 expression about 60% in our
model, our model was able to accurately reproduce the
phenotypes of isolated SCN neurons (Table II).

We also conducted a sensitivity analysis to look at what
parameters determine the period of our model. Four of the top
five high parameters, in our sensitivity analysis, were also in
the top five found in a previous sensitivity analysis with the
original Forger and Peskin model and which was used to
conclude that PER2 plays a dominant role in period
determination (Wilkins et al, 2007) (see Supplementary
Figure 1).

Proper stoichiometric balance between activators
and repressors is crucial to sustained rhythms

Since our mathematical model can accurately predict the
phenotype of known mutations of the mammalian circadian
clock, we next looked for a mechanism that could explain why
some phenotypes were rhythmic, while others were not. We
found that stoichiometry plays a key role in determining which
mutations showed rhythmic phenotypes. Here, we define
stoichiometry as the average ratio between the concentration
of repressors (all forms of PER and CRY in the nucleus) to that
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of activators (all forms of BMAL–CLOCK/NPAS2 in the
nucleus) over a period. Moreover, we specifically refer to
repressors and activators of E/E’-boxes when discussing
stoichiometry. We found that mutations that caused the
stoichiometry to be too high or too low, yielded arrhythmic
phenotypes (Figure 3A). So long as the mutations allowed the
stoichiometry to be around a 1–1 ratio, relatively high
amplitude oscillations were seen. Thus, we predict that
stoichiometry provides a unifying principle to determine the
rhythmicity of mutations of the mammalian circadian
clock. To further test this principle, we constitutively expressed
either the Per2 gene (the dominant repressor gene) or the
Bmal and Clock genes (the dominant activator genes)
at different levels. Interestingly, within a range centered near

a 1–1 stoichiometry, the model shows sustained oscillations
with high amplitude (Figure 3B). However, if the stoichiometry
was too high or too low, rhythms are dampened or completely
absent (Figure 3B). This matches a recent experimental study
showing that the amplitude and sustainability of population
rhythms increase when the level of PER–CRY is increased
closer to that of BMAL1–CLOCK in mouse fibroblasts (Lee
et al, 2011).

We defined the stoichiometry as the average ratio between
the total concentrations of repressors to that of activators
over a period. However, recent work has shown that CRY1
has stronger repressor activity than CRY2. The underlying
biochemical mechanisms for this result have not been fully
identified (Khan et al, 2012). If the difference is due to a
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Figure 1 Schematic of the detailed mammalian circadian clock model. (A) Only some of the relevant species are shown. Circles refer to transcripts and squares are
proteins, possibly in complex. Small circles refer to phosphorylation states that are color coded by the kinases that perform the phosphorylation. See section ‘Description
of the detailed model’ in Supplementary information for details. (B) The detailed model consists of a core negative feedback loop and an additional negative feedback
loop (the NNF structure). The repressors (PER1–2 and CRY1–2) inactivate the activators (BMALs and CLOCK/NPAS2) of their own transcription expression through the
core negative feedback loop. The activators inactivate their own transcription expression by inducing the Rev-erbs through the secondary negative feedback loop.
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different post-translational mechanism (e.g., binding between
PER and CRY, which could affect the repressor concentration in
the nucleus), the current definition of stoichiometry can be
kept. Otherwise, a more sophisticated definition of stoichio-
metry may be needed (e.g., one that gives more weight to
concentration of CRY1 than that of CRY2).

How stoichiometry generates rhythms

To test the role of stoichiometry in sustaining oscillations, we
developed a simple model by modifying the well-studied
Goodwin model (Goodwin, 1965) to include an activator (A),
which becomes inactive when bound by a repressor (P)
(Figure 3C). Transcription is proportional to the fraction of
free activator that is not bound by the repressor, f(P, A, Kd)
(Buchler and Cross, 2009), matching experimental data from
the mammalian circadian clock (Supplementary Figure 2)

(Froy et al, 2002). mRNA (M) is translated to a repressor
protein (Pc). The protein enters the nucleus (P) and binds and
inhibits the activator (A). This generates a single-negative
feedback loop (SNF) since the activator is constitutively
expressed. The model is similar to a previously published
mathematical model (Francois and Hakim, 2005); however,
we allow for both association and dissociation of the activator
and repressor (through a defined Kd), which turns out to be
crucial for understanding the effects of stoichiometry. By
nondimensionalization and setting the clearance rates of all
species to be equal (to increase the chance of oscillations,
see Forger, 2011), only two parameters remain: the activator
concentration (A) and the dissociation constant (Kd) (see
Supplementary information).

When we changed the activator concentration, which
changed the stoichiometry (average ratio between the level
of repressor (P) to the level of activator (A)), sustained
oscillations were only seen at around a 1–1 stoichiometry
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similar to our detailed model (Figure 3D). As the other
parameter (Kd) decreased (indicating tight binding), the range
of stoichiometry that permitted oscillation increased
(Figure 3D). Interestingly, if the binding was too weak, the
rhythms did not occur. The tight binding between activators
and repressors is also found in the detailed model, and in the
mammalian circadian clock (Lee et al, 2001; Froy et al, 2002;
Sato et al, 2006). This indicates that the sustained rhythms
require tight binding as well as balanced stoichiometry in the
circadian clock.

Many previous studies have argued that ultrasensitive
responses (e.g., a large change in transcription rate for a small
change in repressor or activator concentration) can cause
oscillations in feedback loops (Kim and Ferrell, 2007; Buchler
and Louis, 2008; Novak and Tyson, 2008; Forger, 2011). A
previous study showed that an ultrasensitive response can be
generated by tight binding of activators and repressors in a
synthetic system (Buchler and Cross, 2009). Taken together,
this provides a potential mechanism of rhythm generation.
That is, when the total concentration of repressor is higher
than that of activators, the repressor sequesters and buffers
activator and inhibits transcription completely (Buchler and
Louis, 2008). As the repressor is depleted, the excess free
activators are no longer sequestered by repressors and are free
to turn on the transcription. At this threshold, transcription of
repressor shows an ultrasensitive response to the concentra-
tion of repressor or activator. Ultrasensitive responses amplify
rhythms and prevent rhythms from dampening (Forger, 2011).
In both our simple and our detailed model, we found
ultrasensitive responses around a 1–1 stoichiometry
(Supplementary Figure 3A). When the stoichiometry was not
around 1–1, an ultrasensitive response was not seen, and both
models did not show sustained rhythms.

Over the course of a day, as levels of repressor and activator
change, the stoichiometry and also sensitivity change as well.
We found that the 1–1 average stoichiometry is required to
generate the ultrasensitive response, which causes rhythms
through mathematical analysis, confirming our simulation
results (Figure 3D). That is, via both local and global stability
analysis, we derived an approximate range of the
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(see Supplementary information). In agreement with our
simulations shown in Figure 3D, this mathematical analysis
also suggests that (1) oscillations are seen around a 1–1
stoichiometry; (2) the stoichiometry needs to be 48/9 for
sustained rhythmicity; (3) as the binding between acti-
vators and repressors becomes tighter, the upper bound on
stoichiometry increases; (4) if the binding is too weak
(e.g., Kd¼ 10� 3), sustained oscillations do not occur.

An additional negative feedback loop improves the
regulation of stoichiometric balance

If stoichiometry is key to sustained oscillation, are there
mechanisms within circadian clocks that keep the stoichio-
metry of components balanced? Does the additional negative
feedback loop of the negative–negative feedback loop (NNF)
structure, found in circadian clocks, help balance stoichiome-
try? To test this structure, we added an additional negative
feedback loop into our simple model (Figure 4A). Previously,
other studies suggested that an additional positive, rather than
negative, feedback loop could sustain intracellular clocks
(Barkai and Leibler, 2000; Stricker et al, 2008; Tsai et al, 2008;

Table I Comparison of model predictions with experimental data and previous model predictions on the phenotypes of circadian mutations

Gene SCN Animal New model
Relógio et al
(2011)

Mirsky
et al (2009)

Leloup and
Goldbeter (2003)

Forger and
Peskin (2003)

Cry1� /� Short Short � 1 Long AR Short WT
Cry2� /� Long Long þ 1.6 Long Long Short Long
Per1� /� WT AR AR Short Long
Per1ldc WT Short/AR
Per2� /� AR AR AR Short Short
Per2ldc Short/AR
Bmal1� /� SR** AR AR AR AR AR
Bmal1� /þ WT* þ 0.1 AR NA AR Long
Clock� /� WT Short � 0.2 Long AR AR AR
ClockD19/D19 AR* Long AR Long NA NA NA
ClockD19/þ Long* þ 1.1 Long NA NA NA
Npas2� /� WT Short WT NA NA NA NA
Rev-erba� /� Short � 0.2 AR Short NA WT
CK1etau/tau Short Short � 3 NA NA Short Short

Here we indicate whether the phenotype predicted by our model, or seen in experimental data is WT, stochastically rhythmic (SR), arrhythmic (AR) or shows a change
in period in hours. Experimental data can be found in Baggs et al (2009) as well as references cited therein, except those marked with * which can be found in Yoo et al
(2005) and ** which can be found in Ko et al (2010). See Materials and methods for details. Bold represents different phenotype prediction of previous models from the
new model. NA represents not available. For the Leloup–Goldbeter model, first parameter set of the model is used.

Table II Comparison of modified model predictions with experimental data of
single SCN neurons on the phenotypes of circadian mutations

Gene dSCN Model

Cry1� /� AR AR
Cry2� /� Long þ 2.3
Per1� /� AR
Per1ldc AR
Bmal1� /� AR* AR

Here, we indicate whether the phenotype predicted by our model, or seen in
experimental data is arrhythmic (AR) or shows a change in period in hours.
Experimental data can be found in Liu et al (2007), except those marked with *
which can be found in Ko et al (2010). See Materials and methods for details.
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Tigges et al, 2009). We tested these structures by including an
additional protein R (Rev-ERBs or RORs in the mammalian
circadian clocks) that is transcribed in a similar way to P. R
then represses (as in the Rev-erbs) or promotes (as in the Rors)
the production of A in the negative–negative feedback loop
(NNF) or the positive–negative feedback loop (PNF) structure,
respectively (Figure 4A).

We studied how the SNF, NNFand PNF structures effectively
maintain the stoichiometric balance when model parameters
(e.g., transcription rate) are changed. With both simulation
and steady-state analysis, we found that the NNF structure is
best at keeping stoichiometry balanced while the PNF
structure is worst at keeping stoichiometry balanced, regard-
less which parameters are perturbed (see Supplementary
information, Figure 4B and Supplementary Figure 4A–C).
Moreover, our detailed model, which also follows the NNF
structure, also carefully balanced the stoichiometry by
controlling the expression of repressors and activators.
Knockdown of the repressor Cry1 leads to higher expression
of the repressors, which are controlled by E-boxes, and lower
expression of the activators, which are controlled by a ROREs
(Figure 4C). Opposite effects are seen when the activator
CLOCK is removed (Figure 4C). This active control of
repressors and/or activators via the NNF structure regulates

the stoichiometric balance tightly (Supplementary Figure 4D)
and matches experimental data on gene dosage (Baggs et al,
2009). Moreover, the detailed model (with the NNF structure)
also correctly predicts the change of clock gene expression
after the removal of the additional negative feedback loop
(Rev-erba,b� /� ) (Figure 4D) (Liu et al, 2008; Bugge et al, 2012;
Cho et al, 2012). In particular, knockout of the Rev-erba,b
decreases PER expression, but increase CRY1 expression. For
our nominal set of parameters, oscillations are still possible
when this additional negative feedback is removed. However,
for other sets of parameters, where stoichiometry is not as well
balanced, removal of this additional negative feedback stops
rhythmicity (see below). This could explain the phenotype of
the Rev-erba,b� /� , which show some indications of rhythmi-
city (Bugge et al, 2012; Cho et al, 2012). Our model predicts
that rhythm generation remains in cell types that have a near
balanced stoichiometry, and a lack of rhythms in cell types
without a balanced stoichiometry.

A slow additional negative feedback loop
improves the robustness of rhythms

Our central hypothesis is that, as stoichiometry is more tightly
regulated, oscillations will occur over a wider range of
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parameters. To confirm this, we varied the transcription rate of
the activator (or activator concentration in the SNF) and the
transcription rate of the repressor to determine which sets of
parameters yielded oscillations. While the SNF, NNF and PNF
structures have almost the same behavior with their nominal
parameters (mean stoichiometry, amplitude and period, see
Supplementary Figure 5A), the NNF structure oscillated over

the widest range of parameters and the PNF oscillated over the
narrowest range of parameters in the simple model (Figure 5A;
Supplementary Figure 5C). Interestingly, as the activator
becomes more stable (i.e., the additional negative feedback
becomes slower), the NNF structure allows sustained oscilla-
tions over a wider range of parameters (Supplementary
Figure 5D). Indeed, the clearance rate of the activators is
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Rev-erba� /� (50% reduction of transcription rate of the Rev-erbs due to the presence of Rev-erbb) slightly shortens the period and has little effect on the expression
level of Per2, Cry1 and Bmal1. Double knockout of the Rev-erba and Rev-erbb (100% reduction of transcription rate of the Rev-erbs) increases the expression level of
Bmal1 and Cry1, but decreases that of Per2. All the values were normalized by the average of Per2 expression level in WT.
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significantly slower than other circadian clock components
(Supplementary Table 4) (Kwon et al, 2006).

We also checked the role of the NNF structure in our detailed
mammalian clock model. We modified the NNF structure of
the detailed model to that of an SNF by fixing the activator
(BMAL, CLOCK and NPAS2) concentration to the average
value found in their WT simulations. We also constructed the
PNF structure by converting the repressor (REV-ERBs) to an
activator (e.g., the RORs) in the NNF structure. This did not
significantly change the rhythms in the core feedback loop
(Supplementary Figure 5B), matching previous studies that
showed that the loss or change in rhythms in the activators had
little effect on the circadian rhythms (Liu et al, 2008). It is
tempting to conclude that the additional feedback loops
controlling activators are not important in the circadian
clocks. However, when we changed the transcription rate of
the repressor (Per) and activator (Bmal, Clock and Npas2),
the original model (with an NNF structure) had the widest
range of parameters where oscillations occur while the PNF
structure had the narrowest range of parameters (Figure 5B).
Interestingly, experiments have shown that REV-ERBs play a
more dominant role than the RORs, indicating that our
proposed mechanism may play an important role in in vivo

timekeeping (Liu et al, 2008). Thus, the choice of the
additional feedback greatly affected the range of parameters
where oscillations are seen.

We also examined the role of the additional negative
feedback loop in a mathematical model of the Drosophila
circadian clock (Smolen et al, 2002). The original study that
developed the model concluded that the NNF and SNF
structures were equally likely to show oscillations. However,
their study only changed transcription rates by 20%. With a
larger perturbation of parameters, we found that the additional
negative feedback loop significantly extends the range of
parameters that yield oscillations (Figure 5C).

A network design for cellular timekeeping where
maintaining a fixed period is crucial

The PNF structure can create a robust biological oscillator that
has a tunable period when the additional positive feedback
loop is fast (i.e., the activator degrades quickly) (Stricker et al,
2008; Tsai et al, 2008; Tigges et al, 2009) (Figure 6A).
Consistent with these findings, our simple model with the
PNF structure has a tunable period for changes in gene
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expression levels (Figure 6C). However, the simple model with
the NNF structure has a nearly constant period in the presence
of large changes in gene expression levels (Figure 6B and D).
Furthermore, this NNF structure becomes more robust as the
additional negative feedback loop slows (i.e., the activator
degrades more slowly) (Supplementary Figure 5D) in contrast
to the fast positive feedback of the tunable clocks (Stricker
et al, 2008; Tsai et al, 2008; Tigges et al, 2009). Consequently,
our results propose two different designs for robust biological
oscillators. The NNF structure (Figure 6B) is suitable for
biological clocks in which the maintenance of a fixed period is
crucial (e.g., circadian clocks). The PNF structure (Figure 6A)
is suitable for the biological oscillators that need to tune their
period (e.g., cell cycle or pacemaker in the sino-atrial node)
(Tsai et al, 2008). This is also supported by mathematical
analysis of the simple model (for more details, see
Supplementary information).

Discussion

Our work identifies several key mechanisms that allow 24-h
rhythms in the circadian clocks of higher organisms:
(1) Proper stoichiometric balance between the activators and
the repressors, (2) tight binding between activators and
repressors, (3) the NNF structure and (4) longer half-life of
activators than repressors. These mechanisms synergistically
generate rhythms with periods robust to gene dosages
(Figure 6D). The range of the stoichiometry where the rhythms
occur widens as binding between activators and repressors
tightens (Figure 3D). Moreover, the NNF structure regulates
the expression of activators as well as repressors to balance
stoichiometry (Figure 4B and C). For instance, increased
stoichiometry (elevated repressor concentrations) strengthens
the repression in the core negative feedback loop and reduces

the expression of the repressors (e.g., Pers and Crys) and Rev-
erbs. The decreased expression of Rev-erbs weakens the
additional negative feedback and increases the expression of
activators (Bmal1 and Npas2), which lowers the stoichiometry
(Supplementary Figure 4D). When this is done on a slower
timescale, so that the basics of the 24-h timekeeping are
unaffected, the robustness of the rhythms is enhanced
(Supplementary Figure 5D).

Relation to previous experimental data

Many experimental observations could be interpreted as
mechanisms by which the mammalian circadian clock
balances stoichiometry. When the repressor (CRY) is over-
expressed or the repressor (PER) is removed, the activator
(BMAL1) concentration is found to increase or decrease,
respectively (Shearman et al, 2000; Fan et al, 2007). When a
repressor’s expression is reduced, the expression of other
repressors is increased and the expression of activators is
decreased (Baggs et al, 2009). Knockdown of activators yields
opposite effects (Baggs et al, 2009). Both our detailed and
simplified NNF models confirm these results (Figure 4B and C;
Supplementary Figure 4D). Additionally, the rhythms of the
mammalian circadian clock persist even after the transcription
of all clock genes are reduced significantly (Dibner et al, 2009).
In agreement with these data, both the detailed and the simple
model oscillate after significant reduction of the transcription
rates of both activators and repressors because their stoichio-
metry is maintained (Supplementary Figure 5E). Our study
also suggests an underlying mechanism (ultrasensitive
response) for a previous experimental observation showing
that the robustness of circadian rhythms is enhanced by
making the level of PER–CRY closer to that of CLOCK–BMAL1
in mouse fibroblasts (Supplementary information; Supple-
mentary Figure 3A) (Lee et al, 2011).
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Experimental data also support the role of the slow
additional negative feedback loop in regulating circadian
timekeeping in higher organisms. The time course of the
activator (BMAL1 in mammal or CLK in Drosophila) seems to
be controlled mainly by the additional negative feedback loop
(Rev-Erbs or Vrille) (Blau and Young, 1999; Benito et al, 2007;
Liu et al, 2008). The elimination of additional positive
feedback loop has little effect on circadian clocks in contrast
to other cellular clocks based on the PNF structure (Benito
et al, 2007; Kim and Ferrell, 2007; Liu et al, 2008; Tsai et al,
2008). Furthermore, a key step, the clearance rate of the
activators, which governs the timescale of the additional
feedback loop, is significantly slower than other circadian
clock components (Supplementary Table 4) (Kwon et al,
2006). Removing the slow additional negative feedback loops
in the mammalian clock (Rev-erba� /� ) yields timekeeping
where the period is not as well-maintained (Preitner et al,
2002). Moreover, recent studies have confirmed a pivotal role
for the additional negative feedback loop for regulating the
circadian rhythms via double knockout of Rev-erba and Rev-
erbb (Bugge et al, 2012; Cho et al, 2012). Thus, our proposed
mechanism of robust circadian timekeeping matches known
data on the mammalian circadian clock. Further comparison
with known experimental data is shown in Supplementary
Figure 7.

Relation to previous modeling work

Our study is the first circadian modeling study that shows the
importance of a balanced stoichiometry in rhythm generation.
Our results for the SNF structure match a previous model
based on the protein sequestration (Francois and Hakim,
2005), which focuses on other mechanisms, for example, slow
RNA dynamics, that do not play a role in circadian clocks. We
have identified a basic mechanism of tight binding and protein
sequestration for generating high sensitivity, similar to what
has been proposed in the cell cycle and synthetic studies
(Buchler and Cross, 2009), as the key rhythm generating
mechanism in our model. Previous circadian clock models do
not use this mechanism, and a careful justification, based on
experimental data from higher organisms, of the mechanisms
for generating high sensitivity and, consequently, oscillations,
in these models has yet to be performed (Yoo et al, 2005). In
fact, several of these mechanisms have been called into
question (Forger and Peskin, 2003).

Previous models have used different mechanisms for rhythm
generation (e.g., high-Hill coefficients) and have proposed
different roles for the additional negative feedback loop. They
have proposed that the additional negative feedback loop is
capable of independent oscillations, even when the core
negative feedback loop was removed (Leloup and Goldbeter,
2004; Relógio et al, 2011). However, despite much experimental
study, no oscillations have yet been found from this additional
feedback loop in isolation (Sato et al, 2006) and the known
phenotypes of knockout of genes in this additional feedback
loop had not been correctly predicted (Preitner et al, 2002;
Relógio et al, 2011). Moreover, other previous studies argued
that the additional negative feedback loop is not important
(Becker-Weimann et al, 2004), which does not match with

recent experimental data on the mammalian circadian clock
(Bugge et al, 2012; Cho et al, 2012). We claim that the additional
negative feedback loop is not an independent oscillator, nor
ancillary, but acts to regulate stoichiometry.

Interestingly, the predictions of previous modeling
studies (Griffith, 1968; Becker-Weimann et al, 2004) match
experimental data from the Neurospora circadian clock, in
which a 1–1 stoichiometry is not important and the additional
negative feedback loop seems to not play an important role
(Baker et al, 2012). Our predictions match experimental data
from circadian clocks in higher organisms (Supplementary
Figures 7 and 8).

Proposed experiments based on model
predictions

Our most important prediction may be the following: when the
stoichiometry between activators and repressors is within a
fixed range, oscillations are sustained, and outside this range
oscillations are damped (Figure 3). This can be tested by
measuring the relative concentration of activators and
repressors in many tissues and in the presence of several
possible mutations that lead to damped or sustained rhythms.
This has been done in WT fibroblasts and liver (Lee et al, 2001,
2011), but has not been done in other tissues or mutants.
Moreover, we note that these previous experiments were done
in population cell assays, whereas single-cell measurements
may be needed to determine whether damped oscillations are
the result of damped rhythms in single cell, or greater
population desynchrony (Welsh et al, 2004; Leise et al, 2012).

The behavior of isolated SCN neurons is similar to
fibroblasts in that mutations of circadian genes can easily lead
to arrhythmicity (Liu et al, 2007). We note that intercellular
coupling in the SCN not only synchronizes SCN neurons, but
also increases transcription of per1 and per2 (Yamaguchi et al,
2003), which may balance stoichiometry and help sustain
rhythms when repressors are effectively removed (Tables I
and II). Thus, we predict that increasing transcription of per1
and/or per2 could enhance rhythmicity in isolated SCN
neurons similar to what is seen in fibroblasts (Lee et al,
2001). Moreover, our model predicts that cells with low
stoichiometry (e.g., isolated SCN neurons) shows larger phase
shifts in response to light than cells with 1–1 stoichiometry
(e.g., SCN slices) (data not shown). It would be interesting
future work to see whether different cell types have different
PRCs depending on their stoichiometry.

We also predict that tight binding between activators and
repressors is required for rhythmicity (Figure 3D). Several
studies have identified binding sites for PER and CRY on
BMAL1 and CLOCK (Sato et al, 2006; Langmesser et al, 2008;
Ye et al, 2011). Point mutations in binding sites can generate
different binding affinities between PER–CRY and BMAL1–
CLOCK. Comparing the experimentally measured binding
affinities of these mutants, with the resultant rhythms, or lack
thereof, would directly test this prediction.

Loss of the additional negative feedback loop (e.g., in the
Rev-erbs� /� , constitutive expression of Rev-erbs or constitu-
tive expression of BMAL) is predicted to cause the intracellular
circadian clock to oscillate over a much narrower range of
conditions (Figure 5). It would be interesting to test whether
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these cells would have less temperature compensation or
would lose rhythms more easily when other genes are knocked
out (e.g., Cry2� /� , Per1� /� ). Moreover, we predict that in the
Rev-erbs� /� , rhythms persist in cell types with a balanced
stoichiometry, but not in poorly balanced cells (Figure 5). It
would be interesting future work to investigate whether SCN
and peripheral clocks have different phenotypes of Rev-erbs� /�

depending on their stoichiometry. We also predict that Rev-
erbs� /� cells show a wider period distribution than WT
(Figure 6).

Our modeling and analysis also predict that relatively stable
activators (e.g., BMAL1 and CLOCK) in the additional negative
feedback loop allow rhythmicity over a wide range of
conditions (Supplementary Figure 5D). These activators can
be destabilized with point mutations (Sahar et al, 2010). Simply
destabilizing the activators might lead to lower activator
concentrations and unbalance stoichiometry, which is also
predicted to reduce rhythmicity. However, we predict a loss of
rhythmicity when these activators are destabilized, even when
the overall activator concentrations are controlled for.

Perhaps the most direct way to test our model is to build the
clock described in our simple NNF model using the tools of
synthetic biology. Other synthetic clocks have been built, and
the design we propose is not more complex than what has been
previously built (Stricker et al, 2008; Tsai et al, 2008; Tigges
et al, 2009). Validation could first be done in an analog electric
circuit, even though this might be much less convincing.
Building a synthetic clock would be of particular importance
since it would be the first synthetic clock predicted to have a
tightly regulated period.

Future work

Further work should explore the role of the NNF structure in the
presence of molecular noise (Forger and Peskin, 2005; Li and Li,
2008). Here, we studied the role of an additional negative
feedback loop controlling the activators of the circadian clocks
of higher organisms. Future work could consider the functions
of the additional negative feedback loops in other organisms. In
particular, the plant circadian clock has a different feedback
loop structure than the mammalian or Drosophila circadian
clocks (Pokhilko et al, 2012). It would be interesting to see if our
ideas carry over to other organisms and other cellular clocks.
Furthermore, other types of feedback loops in the circadian
clocks of higher organisms could be explored. Here, we found
that balancing stoichiometry properly might be a universal
principle of biological timekeeping. This finding not only is in
agreement with experiment data from the circadian clocks in
higher organisms, but even in agreement with the circadian
clock in cyanobacteria as well (Rust et al, 2007). It would be
interesting to test the role of stoichiometry in other cellular
clocks, such as developmental clocks.

Materials and methods

Modifications and extensions of the detailed
model

The modifications and extensions of the detailed model from the
original model (Forger and Peskin, 2003) are listed. See Supplementary
information and Supplementary Tables 1 and 2 for details.

(1) Detailed modeling of additional feedback loops: The new model
includes the secondary feedback loops, which regulate transcrip-
tion of genes with a RORE in their promoters, including Bmals,
Npas2 and Cry1 (Preitner et al, 2002; Debruyne et al, 2006; Liu
et al, 2008).

(2) Updated mechanisms of BMAL–CLOCK/NPAS2 repression:
Matching recent findings, we updated the mechanisms by which
the repressor (PER/CRY) inhibits the activator (BMAL–CLOCK/
NPAS2) (Kondratov et al, 2006; Dardente et al, 2007; Chen et al,
2009; Ye et al, 2011).

(3) Accounting for the heterogeneity of different genes with E-boxes:
We introduced three different types of E-boxes for Per1/Per2/Cry1,
Cry2 and Rev-erbs, matching experimental data (Ueda et al, 2005;
Lee et al, 2011).

(4) Inclusion of kinase GSK3b: The new model includes another
important kinase GSK3b for post-translational modification
of the circadian clock as well as CKIe/d (Iitaka et al, 2005; Yin
et al, 2006).

(5) Improved description of the effect of light on the circadian clock:
We included a previous model of the effect of light on the circadian
clock (Kronauer et al, 1999).

Variables and equations of the detailed model

The monomer proteins considered in our model are PER1, PER2,
CRY1, CRY2, BMALs, CLOCK/NPAS2, REV-ERBs, CKI and GSK3b.
Although only 10 monomers are considered in the model, they can
produce many complexes depending on the state of binding,
phosphorylation and subcellular locations. To describe these all
complexes, 181 variables are needed (Supplementary Tables 1 and 2):
159 variables are for protein complexes, 12 variables are for mRNAs,
8 variables are indicator of the promoter activity and 2 variables
are for light effect and GSK3b activity. The reactions between
these variables are described by ODE systems using explicit mass
kinetics as in the original model (Forger and Peskin, 2003). More
details of the detailed equations are provided in the Supplementary
information.

Parameter estimation of the detailed model

While the original model used 36 parameters, the new model has the
75 parameters due to the extensions and modifications of the model.
Despite the increased number of parameters, we could get tighter
restriction on the range of parameters with newly published data
(listed below). Over these ranges, parameters are estimated by fitting
to more various types of data: time courses of gene expressions and
proteins, abundance of proteins and mutation phenotypes.

(1) We choose 14 parameters (degradation rate of mRNAs and
proteins) matching published experimental data. These parameter
values were allowed to vary up to 50% from the experimentally
determined values to account for experimental error and cellular
heterogeneity.

(2) PER1’s phosphorylation rate is set lower than that of PER2 (Lee
et al, 2001). Light induced-Per1 transcription is set lower than light
induced-Per2 transcription (Challet et al, 2003).

(3) The dissociation constant between BMALs–CLOCK and CRY is
set greater than that between BMALs–CLOCK and PER (Chen et al,
2009).

(4) The ratio between cytoplasm and nucleus volume are limited to
between 1 and 3.5 (Miller et al, 1989).

(5) The other parameters are also restricted into a biologically
reasonable range (see Supplementary Table S3).

Within these restrictions, a simulated annealing method (SA, a
global stochastic parameter searcher) (Gonzalez et al, 2007) was used
to estimate the parameters in two steps. First, we found parameters
that provides a good fit with mRNA and protein time profiles measured
in mouse SCN (Reppert and Weaver, 2001; Ueda et al, 2005) and
relative abundance of clock proteins measured in mouse liver (Lee
et al, 2001) and fibroblast (Lee et al, 2009, 2011) (Figure 2A–C). In this
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fitting, we used a similar cost function to that used in estimating the
parameters of the original model (Forger and Peskin, 2003)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX10
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Xnj

i¼ 1

wij
ðsij � eijÞ2
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þ
X

k

ðpmk�pkÞ2
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Here, j runs through 6 mRNAs and 4 proteins. nj is the number of data
points (12 for mRNA and 13 for protein). sij and eij are simulated time
courses and experimentally measured time courses, respectively. sij are
normalized, in the same way as was done in the experimental data (see
Figure 2 for details). wij¼ 5 when eij¼ 1 and wij¼ 1 otherwise, so that
the cost function has more weight at the peak time than other times.
pmk and pk are maximum value of protein abundance, respectively.
pmk and pk are normalized, so that the maximum abundance of the
CRY1 protein is 1.

After the first round of SA, we found several parameter sets
qualitatively matching with experimental data on phenotypes of
mutations of mice (WT, short, long and AR) (Table I). Then we used
these parameter sets as initial parameter sets for another round of SA to
get the final parameter set, which shows a quantitatively good fit with
knockout mutation phenotype as well as time profiles (Supplementary
Table 3). The cost function used for the second round is followed.
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mpl and ml are simulated period and experimentally measured
period of rhythmic phenotypes of mutations, respectively. man are
simulated relative amplitude of arrhythmic phenotypes of mutation
(e.g., Per2� /� or Bmal1� /� ).’

Validation of the detailed model with experimental
data

Time profile of mRNA and proteins
As previously mentioned, we fit the model simulations with time
profiles of clock mRNA and proteins in SCN to estimate the unknown
parameters. We followed the same experimental procedures used to
measure time profiles. The model was entrained under 12 h–12 h
light/dark cycle with 500 lux light strength for 20 days. Then, the
concentrations of mRNAs were measured during the following 48 h in
darkness and measured time courses were compared with experi-
mental data (Ueda et al, 2005) (Figure 2A). In the same way, the
simulated protein time profiles are also fit with the data (Reppert and
Weaver, 2001) (Figure 2B).

Relative abundance of proteins
Relative abundance among core clock proteins were compared with
liver (Lee et al, 2001) and fibroblast data (Lee et al, 2011) because SCN
data has not yet been reported (Figure 2C).

Knockout mutation phenotype
We also tested whether our model could predict the phenotype of
mutations of clock genes (Table I). Overall, the model simulation well
matches with SCN or behavioral phenotype. Homozygous and
heterozygous knockouts were simulated by reducing transcription
rates by 100% and 50%, respectively. To simulate the Rev-erba� /� , we
also reduced the transcription rate of the Rev-Erbs by 50%, which
represented both Rev-erba and Rev-erbb in our model. To model the
Bmal1� /� , we reduced transcriptional rate of Bmals by 95%, which
accounts for the low levels of Bmal2 when compared with Bmal1 (Ko
et al, 2010). For the ClockD19/þ , the half of WT CLOCK proteins were
mutated to be transcriptionally inactive, yet still competed with the
remaining WT CLOCK proteins. For the CK1etau/tau, we increase the
CK1 phosphorylation rate for PER1 and PER2 by four times.

Simulation of the detailed model

All the simulations and parameter search were done with 150� 8 Ghz
CPU using MATHEMATICA 8.0 (Wolfram Research).

Model description and analysis of the simple
model

The simple model is available in SBML, Mathematica, Matlab, Cþ þ
and XPPAUT format from the ModelDB (Access code: 145800) (Hines
et al, 2004; Mendes et al, 2009). The detailed model is available in
Mathematica, Matlab and XPPAUT format from the ModelDB (Access
code: 145801). (Schmidt and Jirstrand, 2006). See Supplementary
information.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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