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deep convolutional neural
network to classify crystal structures using selected
area electron beam diffraction patterns containing
lattice defect information†

Jae Min Jeong, ‡a Moonsoo Ra, ‡b Jinha Jeong*b and Woong Lee *ac

A deep convolutional neural network (DCNN) architecture ResNet has been tested to verify its ability to

handle selected area electron diffraction pattern (SADP) datasets carrying information on lattice defects

including strains, thermal lattice vibrations, point defects, dislocations, and twin boundaries. The

disordered states of the crystal lattices in the presence of these defects were predicted by ab initio

molecular dynamics simulations, first principles geometry optimizations, and lattice manipulation

operations in an effort to establish a possible dataset augmentation strategy for the improvement of

classification performance of the ResNet. Using the disordered lattice information originating from the

defects, test dataset SADPs were generated by simulating electron diffraction in transmission electron

microscopy. The ResNet, pre-trained using SADPs from defect-free materials, showed decreasing but

acceptable classification accuracies with increasing degrees of lattice disorder regarding the lattice

vibrations and point defects. When tested using the diffraction patterns for strained lattices, the ResNet

responded to the changing lattice symmetry when strain levels are relatively high suggesting that it has

capability to discern different symmetries induced by large strains. However, the ResNet failed to

recognize lattice structure when dislocations and twin boundaries were considered. It is suggested that

DCNN architectures be trained over various scenarios including changes in the image feature

characteristics in the diffraction patterns related to defects in future developments for improved general

classification performances.
1. Introduction

The crystal structure of a material, or crystallographic symme-
tries specically, has a close relation to its fundamental tensor
properties such as elastic constants, electric conductivity,
dielectric constants, etc1,2. Investigation of crystal structures,
which is one important discipline of materials characterization,
is typically carried out by analysing images including X-ray
diffraction (XRD) patterns, electron backscatter diffraction
(EBSD) patterns, and selected area electron diffraction (SAED or
SAD) patterns.3,4 Among these, SAD patterns (SADPs) are the
two-dimensional projection of the three-dimensional reciprocal
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lattice of a crystal structure as an outcome of the diffraction of
incident electron beams at crystallographic planes of a crystal-
line material.5 Arrangements of diffraction spots in each SADP
depend on the geometric relations between the zone axis of the
specimen as aligned with the incident electron beam direction
(BD) as well as on the selection rule appropriate for the given
crystal system.5 Additionally, the relative intensities (bright-
nesses) of the diffraction spots are determined by the types and
numbers of component atoms on the specic crystallographic
planes of a given crystal structure.5 Interpretations of SADPs to
nd crystal symmetry information and lattice structure thus
require in-depth knowledge of crystallography and experience
with transmission electron microscopy (TEM) while the task
itself is oen time-consuming. It would therefore be benecial
to accelerate the materials characterization process if the
analysis is performed by articial intelligence which has
demonstrated strengths in image recognition and classication
using other types of diffraction patterns listed above.6–10

The application of articial intelligence, deep learning (DL)
in particular, to the classication of crystal structure using
SADPs is in its early development stage. Ziletti et al.11 rst
employed a convolutional neural network (CNN) to classify the
RSC Adv., 2024, 14, 18489–18500 | 18489
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space groups using SADP-like simulated diffraction patterns.
They dened a space group descriptor by superposing diffrac-
tion patterns obtained and colour-indexed for three major
crystallographic axes, namely a-, b-, and c-axes. For the selected
space groups of 139, 141, 166, 194, 221, 225, 227, and 229, the
training and test accuracy of 100% was reported. Tiong et al.12

constructed three colour-indexed geometric meshes by con-
necting diffraction spots on diffraction patterns for three major
crystallographic axes as space group descriptors which were to
be processed in a parallel multistream DenseNet. They achieved
the classication accuracy of 80.1% over 72 space groups. The
rst attempt to mimic human perception process of the
diffraction patterns was made in the previous work by the
authors of this study.13 In this work, a CNN architecture
ResNet14 was trained and validated using simulated TEM SADPs
obtained for various combinations of acceleration voltages,
camera lengths, and 16 zone axes ranging from [001] to [233] as
appear in standard diffraction patterns. The labelling scheme
based on ‘how the SADPs appear’ and the classication algo-
rithm based on the ensemble of inference probabilities were
developed and the validation accuracy of 92.6% was obtained
for the space groups 213, 221, 225, 227 and 229. Further
development of this scheme was reported by Chen et al.
recently.15 They adopted a vector map representation of
diffraction patterns obtained from the four-dimensional scan-
ning tunnelling electronmicroscopy to train and validate a CNN
architecture called PointNet. It was possible to identify all 7
crystal systems, from triclinic to cubic systems, instead of the
space groups with the accuracy of 94%.

While these works have demonstrated application potentials
of DL architectures to the analysis and classication of SADPs,
there remain many issues to be addressed for further develop-
ments. For instance, the laws of thermodynamics state that no
material is defect free and therefore the DL architectures should
have robustness against the noisy SADPs from the specimens
containing crystalline defects. Indeed, Ziletti et al. tested their
CNN architecture for defects using test dataset comprising
simulated diffraction patterns for materials having the vacancy
concentration of up to 25% and for materials with randomly
displaced lattice atoms corresponding to a few % changes in
interatomic distances.11 Tiong et al. also considered the effect of
vacancies by considering diffraction patterns from materials
containing up to 20% of vacancy concentration as test data-
sets.12 These works demonstrated that their DL architectures
trained and validated using datasets for defect-free or perfect
crystals were robust to defect-related noisy diffraction patterns.
Defects were considered from another perspective in a recent
work by Chen et al. where the SADPs were articially modied
by displacing and deleting diffraction spots and adding
redundant spots. It was reported that the test accuracy gradually
decreased with increasing noise levels.15

Despite these attempts, it is still necessary to verify whether
the DL architectures can classify noisy SADPs containing defect
information further since there are more crystalline defects
other than vacancies and lattice disordering. For example,
thermal lattice vibration, lattice strains, impurities, disloca-
tions, etc, can be considered.16 Noisy SADPs can be generated by
18490 | RSC Adv., 2024, 14, 18489–18500
adjusting positions and brightness of the diffraction spots to
represent defects, while such modications would be more
realistic if performed based on actual changes in lattice struc-
ture caused by the presence of defects.17 Moreover, the previous
work by the authors of this study has not been tested with noisy
diffraction patterns. This previous work showed that ResNet
architecture could classify space groups of materials using
SADPs in its pristine form13 whereas the other works pre-
processed the SADPs by colour-indexing and superpositions,11

constructing geometric meshes over them,12 or vectorizing the
positions and intensities of the diffraction spots.15 From
a practical viewpoint, it is desired that the crystal structure
classication task be carried out using SADPs as obtained from
TEM directly. In this respect, it would be necessary to test the
ResNet architecture adopted in the previous study for tolerance
to noises in SADPs due to crystalline defect. In this study,
capability of this ResNet 101 architecture to process noisy
SADPs is addressed by considering defects in single crystal
systems such as lattice strains, lattice vibrations, vacancies,
impurities, dislocations, and twin boundaries. Changes in the
lattice structures caused by these defects were rst considered
using theoretical calculations, ab initio simulations and lattice
simulations to generate noisy SADPs. Based on the experiment-
ations using ‘realistic’ noisy SADPs, future directions for the
dataset augmentation to improve crystal structure classication
performance of DL architectures is discussed.
2. Dataset preparations to test the
ResNet architecture for noisy SADPs

The purpose of this study is to verify the classication perform-
ance of the ResNet architecture, as trained and validated to
classify 5 space groups of 213, 221, 225, 227, and 229 in the
previous study, regarding the noisy diffraction patterns and
then to suggest future direction of the development of CNN
architectures for applications to the classication of real SADPs
containing defect information. The rst step to these tasks is to
prepare the test SADP dataset containing defect information. In
the previous study, an in-house code was developed for auto-
mated generation of SADPs in large quantity by simulating
electron beam diffractions in TEM.13 For the consistency of the
data structure, the same code was used applying the same
combinations of three acceleration voltages, three camera
lengths, and 16 zone axes to generate the test SADPs.13 This code
requires crystal information les (CIFs) as inputs from which
virtual TEM specimens are created by repeating the unit cells
40, 30 and 20 times along three major crystallographic axes (a-,
b-, and c-axes, respectively). CIFs were thus prepared to include
information about defects by modifying the numbers, types,
and coordinates of component atoms, and lattice parameters.
Depending on the types of defects, appropriate calculations
were initially carried out to nd the equilibrium unit cell
geometry and positions of atoms caused by defects.16,17 The
calculation methods are summarized in Table 1 and detailed in
the ESI.† Using the calculation results, the CIFs, initially ob-
tained from amaterials data repository Materials Project,18 were
© 2024 The Author(s). Published by the Royal Society of Chemistry



Table 1 Summary of the calculation methods applied to the model systems of Al and Fe to obtain information on the lattice geometries
undergone changes by the presence of various types of defects

Type of defect Calculation method Output

Lattice strain Solution of constitutive equation following
Hook's law for anisotropic materials

Lattice parameters for deformed unit cell

Thermal vibration Ab initiomolecular dynamic (AIMD) simulations
over 3 × 3 × 3 super cells

Disordered positions of lattice atoms

Point defect First principles geometry optimizations over 2×
2 × 2 and 3 × 3 × 3 super cells

Displaced positions of lattice atoms

Edge dislocation Lattice manipulations to insert extra half planes
above a slip plane

Displaced positions of lattice atoms

Twin boundary Lattice manipulations to invert stacking
sequences with respect to a twin plane

Mirrored positions of lattice atoms with respect
to the twin plane

Paper RSC Advances
modied manually to include the changes in unit cell shapes,
dimensions, and atomic positions. These CIFs were subse-
quently fed into the SADP generation code to obtain SADPs for
materials having various types of defects (noisy SADPs). Details
about the SADP generation code and the space group classi-
cation scheme can be found in the previous work.13 The ResNet
architecture, trained and validated only with the SADPs from
defect-free materials (clean SADPs), was then evaluated for the
classication accuracies over these noisy SADPs. Since the unit
cell optimization processes are computationally intensive and
costly, the study has been carried out for two materials, namely
Al (space group 225) and Fe (space group 229), as model
systems. The overall workow and organization of this study are
shown in Fig. 1.
3. Classification accuracy of ResNet
against noisy SADPs containing defect
information
3.1 Uniform lattice strains

The rst type of crystal defect to consider is lattice strains which
cause cooperative displacements or rotation of lattice planes in
specic directions. Notable examples of strains include lattice
Fig. 1 Schematic showing the data flow structure to verify the classificati
pristine defect-free materials.

© 2024 The Author(s). Published by the Royal Society of Chemistry
mismatch strain along the lm/substrate interface.19 Fig. 2
shows how the classication accuracies of the ResNet 101
architecture change with varying strains. As for the axial strain
along the a-direction, viz. [100] direction, it is seen in Fig. 2a
that the strain up to about 2.5% does not have noticeable effect
on the classication accuracy. Further increasing the strain in
magnitude results in a rapid decrease in the classication
accuracy which becomes lower than 80% when the strain is
higher than 3.5%. In the case of shear strain, as seen in Fig. 2b,
it does not affect the classication accuracy up to themagnitude
of 0.015 rad, equivalent to the distortion of the angle g between
the a- and b-axes from 90° to 89.14°, but the accuracy decreases
rapidly with further increasing strains. At the strain level of 0.03
rad (decrease in g from 90° to 88.28°), the accuracy is lower than
70% (69.8%).

These changes in the test accuracy with varying strain can be
understood by referring to the test SADPs for the model system
of Al shown in Fig. 3 for the BD aligned with the [001] zone axis,
i.e. BD = [001]. When the axial strain along a-direction, 3xx, is
small (2.0% in this case), the SADP in Fig. 3a is hardly distin-
guishable from the SADP for 3xx = 0 in that the four-fold
symmetry with respect to the [001] axis appear to be main-
tained to human eyes. Once the strain is increased (5.0% in this
case), elongation between the diffraction spots is noticed along
on performance of the ResNet architecture pre-trained with SADPs for

RSC Adv., 2024, 14, 18489–18500 | 18491



Fig. 2 Changes in the classification accuracy of the ResNet 101 architecture with increasing magnitude of (a) the normal strain and (b) the shear
strain.

Fig. 3 Simulated diffraction patterns for Al under uniform strains of: (a) 3xx = 2.0%, (b) 3xx = 5.0%, (c) gxy = 0.015 rad and (d) gxy = 0.035 rad. In the
case of normal strains ((a) and (b)), distance between the nearest diffraction spots along the vertical direction (b*) is longer than that along the
lateral direction (a*) in accordance with the major strain along the a-direction. In the case of shear strains ((c) and (d)), a parallelogram can be
drawn by connecting four neighbouring diffraction spots as an indication of the changes in the angle between a- and b-axes due to shear strain.

18492 | RSC Adv., 2024, 14, 18489–18500 © 2024 The Author(s). Published by the Royal Society of Chemistry
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the b*-direction (vertical direction in the gure) in Fig. 3b.
Concerning the shear strain, it is noticed in Fig. 3c and d that
the angle between a*- and b*- directions become noticeably
smaller than 90° with increasing shear strain (gxy) from 0.015 to
0.035 rad. In a strict sense, cooperative displacements, or
rotations of lattice planes along specic crystallographic direc-
tions accompany changes in the lattice symmetry. However,
small changes in symmetry are hardly reected in the SADPs.
Thus, human materials scientists can nd proper symmetry of
the material under investigation even when it is strained.
Likewise, the ResNet architecture assigned proper symmetry to
the strained SADPs when the strains are not large. In fact,
normal strain of 1% would be reected in the SADPs as the shi
of the diffraction spot by 1 pixel in every 100 pixels while the
SDAPs for the training and validation datasets had the dimen-
sion of 256 × 256 pixels. In this respect, it is expected that small
magnitude of strains will not make signicant change to the
pixel information to be handled by the ResNet architecture.

Decreasing accuracies at higher strains on the other hand
may suggest that the ResNet 101 architecture adopted in the
previous study encounter problems when treating SADPs from
strained specimens. However, the ResNet 101 architecture has
been trained only to classify 5 space groups in the cubic system
in the previous study.13 The training datasets thus lack repre-
sentations for the space groups that share similarities with the
strained test SADPs. Consequently, it is expected that the
ResNet architecture would try to assign the strained SADPs to
one of these 5 space groups, leading to a notable decrease in
classication accuracy at higher strains. Any lattices with an
elongation along the a-direction is represented by the lattice
parameters of as b= c and a= b= g= 90°, which corresponds
to a tetragonal system. It is therefore expected that the ResNet
architecture herein would have distinguished between cubic
and tetragonal symmetry, had it been trained with the diffrac-
tion dataset for the tetragonal system as well. In a similar
manner, a shear strain with respect to the c-axis results in the
deformed lattice with the lattice parameters of a= b= c and a=

b = 90° s g, which correspond to a special case of triclinic or
monoclinic system. Hence, the ResNet architecture would have
assigned the SADPs for higher shear strains to monoclinic or
triclinic systems like that reported by Ziletti et al.11
3.2 Thermal lattice vibrations

Strain in a lattice structure is a systematic and collaborated shi
of atomic positions. Therefore, any basic repeating unit (unit
cell) in a strained lattice can be perfectly matched to other unit
cells by translational transforms. In comparison, thermal
vibration causes random motions of the lattice atoms which
shi off the sites of perfect periodic lattice. Unless the system
temperature is 0 K, lattice atoms always have thermal energy,
and the resulting thermal vibrations of lattice atoms cause their
dynamic and random displacements in random directions.16

The instantaneous positions of Al atoms in the 3 × 3 × 3
supercell were predicted to be displaced randomly as shown in
Fig. 4a and b for 100 K and 300 K, respectively by the AIMD
simulations described in the ESI S2.† The distribution of the
© 2024 The Author(s). Published by the Royal Society of Chemistry
displacements in atomic positions along the x-direction
(displacement distribution in the other two directions were
similar) are also shown in Fig. 4c and d, in which it is seen that
disordering by thermal energy is more pronounced at 300 K
compared to that at 100 K. While the largest displacement of the
atomic position at 100 K was 0.086 Å, 85 out of 108 atoms in the
supercell had displacements smaller than 0.04 Å (about 1% of
the unit cell length of 4.05 Å). At 300 K, the largest displacement
increased to 0.15 Å and 88 out of 108 atoms showed displace-
ments smaller than 0.08 Å (about 2% of the unit cell length). In
TEM, electrons in the beams travel at speeds in the order of
108 m s−1, while the lattice vibration frequency is in the order of
1012 s−1. Hence, an SADP from a TEM specimen, typically much
smaller than 100 nm in thickness, will be the result of an
average over the different ‘instantaneous’ positions of the
thermally displaced lattice atoms and consequently consists of
diffuse diffraction spots with decreased intensities.5,20 This is
also visible in the simulated SADPs shown in Fig. 5, obtained
from Al virtual specimen at the temperatures of 0, 100, 300 K,
respectively, which were generated from the CIFs containing the
atomic positions affected by thermal disorder except the case of
0 K, for BD = [001]. It is seen that the brightnesses (intensities)
of the diffraction spots especially for the higher index planes
(those located around the inner brighter spots) decreases
slightly with increasing temperatures.

Although lattice structures were predicted to be disor-
dered due to thermal vibrations causing diffuse scattering of
the electron beams as revealed in the resulting simulated
SADPs, the classication capability of the ResNet architecture
was not signicantly inuenced by the changes in the
intensities of the diffraction signals. It exhibited the classi-
cation accuracy of 94.57 and 90.13% for the Al superlattices
with simulated thermal disordering at 100 and 300 K,
respectively. These accuracies are not much different from
that for the diffraction patterns obtained at 0 K which was
98.65% demonstrating the robustness of the ResNet archi-
tecture in classifying the diffraction data having thermal
noises originating from disordering. Gradual decrease in the
accuracy with increasing temperature is the result of an
increasing degree of disorder16 which resulted in more noises
in the diffraction signals.

If lattice atoms are randomly displaced in direction, the
crystal structure will have P1 symmetry (space group 1).
However, such random displacements can be averaged over
many atoms. Further, these displacements are only very small
fractions of lattice lengths as mentioned above and shown in
Fig. 4c and d. Hence, random changes in the atomic positions
due to thermal vibration will not affect the lattice symmetry
reected in the SADPs. They only cause small changes in the
intensities (brightness) of the diffraction spots5,20 that could be
handled by the ResNet architecture without signicant loss of
accuracies. This is similar to the human perception process in
which the geometric arrays of the diffraction spots are rst
recognized to assign the SADP of concern to an appropriate
space group and then the diffuse diffraction spots are ascribed
to the presence of some defects.5,20,21
RSC Adv., 2024, 14, 18489–18500 | 18493



Fig. 4 Instantaneous positions of Al atoms due to thermal lattice vibrations in the 3× 3× 3 supercell predicted by the AIMD simulation at (a) 100
K and (b) 300 K and histograms showing the corresponding distribution of the displacements in atomic positions along the x-direction at (c) 100 K
and (d) 300 K.
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3.3 Point defects

Another cause of deviation from the perfect ordering of lattice
structures is the presence of point defects such as vacancies and
impurities. Vacancies exist in materials unless the temperature
of the system is 0 K while no material is free of impurities in
accordance with the laws of thermodynamics of solutions.17

Existence of a point defect at a lattice site to empty (like
a vacancy) or occupy (like substitutional impurity) it changes
Fig. 5 Simulated SADPs from an Al virtual specimen at the temperature of
positions of the lattice atoms due to thermal vibrations.

18494 | RSC Adv., 2024, 14, 18489–18500
the energy state in its vicinity. New equilibrium is then estab-
lished by displacing the neighbouring atoms from their original
lattice points.20,21 Such displacements are larger near a defect
than away from it, which results in a local strain eld. If the
defect concentration is high, these local strain elds would
overlap leading to global lattice deformations. In a material at
equilibrium, one vacancy occurs in about every 1015 atoms at
room temperature,22 too small to have any effect on the electron
diffraction process in TEM. Meanwhile, there are solubility
(a) 0 K, (b) 100 K, and (c) 300 K using the CIFs containing the disordered

© 2024 The Author(s). Published by the Royal Society of Chemistry
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limits of impurities (solutes) and many practical alloy systems
contain them in the range of only a few %. Alloys with high
impurity (solute) concentrations oen assume new lattice
structures (new phases), another equilibrium state.17

The classication capability of the ResNet architecture with
respect to the point defects was veried with rather high defect
concentrations of 1/32 (3.1 at%, 2 × 2 × 2 supercell) and 1/108
(0.93 at%, 3 × 3 × 3 supercell) for Al and 1/54 (1.8 at%, 3 × 3 ×

3 supercell) and 1/128 (0.78 at%, 4 × 4 × 4 supercell) for Fe,
respectively. Lattice deformations caused by the point defects of
these concentrations, as predicted from the rst principles
geometry optimization, are visualized as projections of lattice
points onto the x–y plane (viewing direction is [001]) in Fig. 6. It
is seen that the lattice distortions are higher for higher defect
concentrations while the vacancy tends to deform lattices more
than substitutional impurities, which are more pronounced in
Fe than in Al lattices. For instance, in 2 × 2 × 2 Al superlattice,
among 31 lattice atoms, 8 atoms around a vacancy showed the
largest displacement of the atomic position of 0.036 Å in the
rst principles geometry optimization while the remaining 23
atoms showed almost zero displacements. In 3 × 3 × 3 Fe
superlattice, among 53 lattice atoms, 10 atoms around the
vacancy were displaced by 0.14 Å, 26 atoms in the surrounding
regions were displaced by 0.045 to 0.12 Å and the remaining 17
atoms showed almost zero displacements. In these deformed
superlattices, locations of the defects were chosen arbitrarily,
but these deformed lattices are repeated along the x, y, and z
directions 10 times to create virtual specimens resembling
nanoparticles to generate SADPs in the TEM SAD simulations.
Hence, in these virtual TEM specimens, the defects themselves
Fig. 6 Disordered positions of lattice atoms due to the presence of: a vac
× 2 supercell, and (d) Fe 3 × 3 × 3 supercell; or a substitutional impurity
supercell and (h) Fe 3 × 3 × 3 supercell.

© 2024 The Author(s). Published by the Royal Society of Chemistry
form another ordered array affecting the diffraction process,
which would provide severer conditions with respect to causing
‘noises’ in the SADPs than defects with completely random
distributions.

Fig. 7 shows the simulated SADPs from Fe with point defects
for [001] zone axis. In these diffraction patterns the relative
intensities of the diffraction spots for higher index planes
(smaller dots around the inner brighter ones) becomes weaker
with the introduction of defects to the lattice, which is more
prominent for the case of vacancy. Such changes in the
diffraction patterns subsequently result in the changes in the
classication accuracy as summarized in Table 2 regarding the
vacancies and substitutional impurities. As expected, presence
of point defects in materials at low concentrations do not have
noticeable effect on the classication accuracy. Once the defect
concentrations increase, the accuracy becomes lower. Especial-
ly when the defect type is vacancy which caused large lattice
distortion in substantial volume of the Fe supercell (Fig. 6d),
decrease in the accuracy is somewhat noticeable, although
83.24% seems to be still acceptable. This indicates that large
non-uniform deformation in lattice structure and resulting
diffuse scattering of electrons as reected in the degraded
quality of the SADPs has detrimental effect on the classication
accuracy, although it is still acceptable when the defect
concentration within practical ranges.

In some materials systems, foreign atoms smaller than the
hosting lattice atoms may occupy the interstitial sites. Since the
interstitial sites do not provide enough volume to accommodate
the impurity atom, neighbouring lattice near the impurity is
distorted. Depending on the size of the impurity, the extent of
ancy in (a) Al 3 × 3 × 3 supercell, (b) Fe 4 × 4 × 4 supercell, (c) Al 2 × 2
in (e) Al 3 × 3 × 3 supercell, (f) Fe 4 × 4 × 4 supercell, (g) Al 2 × 2 × 2

RSC Adv., 2024, 14, 18489–18500 | 18495



Fig. 7 SADPs obtained from (a) pristine Fe lattice, (b) Fe 3 × 3 × 3 supercell with one vacancy and (c) Fe 3 × 3 × 3 supercell with one Au atom
substituting one lattice Fe atom.
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distortions may differ. In the case of C impurity taking a tetra-
hedral site in Al lattice, the rst principles geometry optimiza-
tion for a 3 × 3 × 3 supercell (one C atom in 108 Al atoms)
predicted that the lattice distortion is limited only to the rst
neighbouring lattices as shown in Fig. 8a. This highly localized
lattice deformation did not have a noticeable effect on the
diffraction process when the SADP in Fig. 8b is compared with
that for a defect-free Al in Fig. 5a. The classication accuracy for
the SADPs for this system was 95.48%, close to the accuracy of
98.65% for the SADPs from a pristine Al single crystal.
3.4 Dislocation and twin boundary

Considerations of lattice defects so far suggest that the ResNet
101 architecture, as trained and validated with simulated SADPs
for defect-free materials in the previous study, retains its clas-
sication accuracy within acceptable range while it deteriorates
with increasing degree of lattice disordering attributable to
defects. However, this is not the case for the defects of higher
dimensions such as edge dislocations (linear defects) and twin
boundaries (planar defects). Edge dislocation is introduced
when an extra half plane exists normal to a slip plane resulting
in mismatched arrangements of lattice atoms along the slip
plane. Consequently, the lattice around a dislocation core is
distorted.23 In some cases, edge dislocations may form a peri-
odic array to have a long-range ordering. In simulating the
Table 2 Comparison of the classification accuracies of the ResNet
concentrations

Type of defect Defe

Vacancy Al 3
Fe 4
Al 2
Fe 3

Substitutional impurity (si in Al/Au in Fe) Al 3
Fe 4
Al 2
Fe 3

18496 | RSC Adv., 2024, 14, 18489–18500
electron diffraction process through a virtual Al single crystal
specimen in this study, an array of four edge dislocation with
the line vector of [112] and the Burgers vector of [110]/2 was
considered,23 and the resulting SADPs are shown in Fig. 8a–c for
the [112], [111], and [110] zone axes, respectively. The array of
diffuse disk-like diffraction spots with some streaks in Fig. 9a
and double spots in Fig. 9b are the footprints of the dislocation
array and associated lattice strains.22 Additional features found
in this simulated SADP are a rotational symmetry of order 2 in
Fig. 9a and mirror symmetry in Fig. 9b, which is attributed to
the presence of an extra half plane.

Unlike the cases of lattice strain, thermal vibration, and
point defects, the ResNet architecture failed to classify these
SADPs showing the classication accuracy only of 7.97%. The
image features included in the SADPs from specimens con-
taining dislocations are diffuse disks with streaks. These
features are obviously different from diffraction spots included
in the SADPs for training the ResNet, viz. SADPs from defect-free
specimens.13 A human materials scientist will resort to knowl-
edge and experiences to assign the SADPs in Fig. 9 to the space
group 225 for the zone axes of [112], [111], and [110], respec-
tively from the overall arrangements of the diffraction spots.
Those specic features such as diffuse disks and streaks will
then be ascribed to the dislocation array.22 On the other hand,
the ResNet architecture tries to match the image to the closest
model (function) that has been established during the training
for the SADPs from materials having point defects with varying

ct concentration in supercells
Classication
accuracy

× 3 × 3 supercell: 1/108 97.79%
× 4 × 4 supercell: 1/128
× 2 × 2 supercell: 1/32 83.24%
× 3 × 3 supercell: 1/54
× 3 × 3 supercell: 1/108 97.55%
× 4 × 4 supercell: 1/128
× 2 × 2 supercell: 1/32 94.90%
× 3 × 3 supercell: 1/54

© 2024 The Author(s). Published by the Royal Society of Chemistry



Fig. 8 (a) Predicted atomic positions when a C atom occupies a tetrahedral interstitial site in an Al 3 × 3 × 3 supercell and (b) corresponding
simulated SADP for BD = [001].
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process. If the features in the test image are substantially
different from those in the training image dataset such that the
‘noises’ are essentially new features, then the ResNet will fail to
classify the image properly.

Failure of the ResNet in classifying SADPs is further expected
when a TEM specimen contains a twin boundary which forms
a mirror plane between two crystals having the same crystal
structure but inverted stacking sequences. Hence, the SADPs
from a specimen having a twin boundary will appear as a super-
position of two diffraction patterns reected with respect to each
other if the beam direction is normal to both the twinning
direction and twinning plane normal. SADPs from specimens
containing one twin boundary are shown Fig. 10a and b for the
model systems of Al and Fe, respectively. In Al, the twin plane is
(111) and the twinning direction is [112]24 and Fig. 10a was ob-
tained for BD = [110]. As for Fe, the twin plane is (121) and the
twinning direction is [111]20 and Fig. 10b was obtained for BD =

[101]. These SADPs differ substantially from the standard
Fig. 9 SADP from Al having an array of fours edge dislocations having the
= [112], (b) BD = [111] and (c) BD = [110], respectively.

© 2024 The Author(s). Published by the Royal Society of Chemistry
diffraction patterns as exemplied by the double or quadruple
diffraction spots with large separations which are the traces of
twins. For the SADPs from the twinned crystals, the ResNet
architecture showed the classication accuracy of 33.80%. In the
case of SADPs from materials with twin boundaries, difficulty
arises even to a humanmaterials scientist unless the overlapping
of two inverted patterns is noticed by analysis or intuition based
on experiences. Since an SADP from a material containing twin
boundary is essentially a superposition of two reected SADPs, it
can be treated as an SADP of different kind containing new
features like SADPs from textured structures. In the latter case,
several essentially identical SADPS are superposed with small
rotations around an axis normal to the centre of the incident
electron beam. Such a feature was not included in the training
dataset,13 and therefore the SADPs from a twin system would be
treated as unknown type rather than noisy patterns. It would
then be natural to expect that the ResNet is unable to classify an
SADP like the case of dislocations.
Burgers vector of [110]/2. The virtual specimen was aligned with (a) BD

RSC Adv., 2024, 14, 18489–18500 | 18497



Fig. 10 Simulated diffraction patterns for (a) Al (BD = [110]) and (b) Fe (BD = [101]) single crystals with one twin boundary.
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3.5 Remarks on the classication of crystal structures using
noisy SADPs due to lattice defects

In machine learning and deep learning, a classication task
involves dening regions in a multi-dimensional feature space,
where each region is associated with a specic label. This
ensures that every input, such as SADPs, falls within one of the
predened categories (labels). Consequently, there are no
undened regions, and all data points are assigned to one of the
ve space groups for which the ResNet architecture has been
trained and validated with clean SADPs from defect-free virtual
specimens. This scenario, known as a closed-set problem,
characterizes the proposed ResNet SADP analysis system.25

While inferring a space group from SADPs is itself a closed-set
problem with a potential of expansion to all 230 space groups,
the classication system used at this stage is limited to ana-
lysing only ve specic space groups. Inevitably, the system
must confront the challenge of dealing with unknown labels
when noisy SADPs containing defect information, especially
regarding lattice strains, dislocations, and twin boundaries, are
input for the classication. How to effectively handle such
unfamiliar data remains an ongoing area of investigation.
Incorrect label inferences may result from improperly shaped
decision boundaries generated by the trained deep learning
model. Throughout the training phase, the model aims to
minimize a loss function, prioritizing high classication accu-
racy.26 As a result, the ne-tuning of decision boundaries is not
directly within the control of the human user. Instead, adjust-
ments are made indirectly through modications to the
training data and loss function for example.27,28 Consequently,
system failures may not align perfectly with human perception.
Therefore, the development of a suitable loss function tailored
for analysing SADP will be another subject for future research.

Considering the theoretical foundations of deep learning,
the ResNet architecture's robustness against defects demon-
strated in this study, be it strong as in the case of lattice disorder
and point defects or weak as in the case of dislocations and twin
18498 | RSC Adv., 2024, 14, 18489–18500
boundaries, may hinge on two key factors. One is the dimen-
sions of the SADPs utilized during training and the other is
composition of the dataset, which includes the data augmen-
tation technique.29,30 Concerning the dataset dimension, it was
found in a preliminary investigation that the ResNet became
more sensitive to even smaller defect-related noises in the
dataset if the simulated SADPs for training have resolution
exceeding 256 × 256 pixels. This susceptibility arises from the
detailed changes present in the simulated SADPs due to the
defects themselves. On the contrary, decreasing the image
resolution would result in the loss of details in the lattice
structure information, leading to degradation of general clas-
sication capability even over the pristine (clean) SADPs.

Meanwhile, most of the limitations in the ResNet architec-
tures performance encountered in this study stem from the
dataset characteristics. Despite the exceptional performances of
recent deep learning applications, their success oen depends
on vast quantity training data that comprehensively covers
various real-world scenarios. On the other hand, tasks such as
SADP classication pose challenges in acquiring datasets that
encompass nearly all real-world cases, an almost impossible
work. Therefore, employing appropriate data augmentation
techniques and/or more comprehensive SADP simulations
becomes crucial in overcoming such limitations. As demon-
strated in this study as well as in the previous studies else-
where,11,12 the DL architectures are robust against noisy SADPs
originating from low dimensional defects since the ‘noises’ in
this case are small changes in the brightness of the diffraction
spots. On the other hand, as seen in this study, defects of higher
dimensions introduce new features in the SADPs that are not
included in the ‘clean’ training SADP datasets, which leads to
substantial decrease in the classication accuracies. Hence, one
possible strategy of dataset augmentation for improved classi-
cation accuracy over the noisy SADPs would be the preparation
of training and validation datasets having these new features
due to dislocations and twin boundaries. At this stage, however,
© 2024 The Author(s). Published by the Royal Society of Chemistry
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it is a challenging task to prepare noisy SADPs for these defects
for numerous materials systems in large quantity. One possible
alternative method to tackle this problem would be the use of
image translation strategies such as cycle-GAN31 by which the
test SADPs containing high dimensional defect information can
be transformed into those resembling the ‘clean’ training
dataset. Considering these factors for enhancing the perfor-
mance of deep learning models would stand as a key direction
for future developments.

4. Conclusions

From the results for the classication accuracies regarding the
defects in this study, a general trend in the classication
capability of the ResNet architecture for the SADPs containing
defect information can be summarized as follows. A uniform
lattice deformation incurs cooperative displacements of lattice
plane and will accompany changes in lattice symmetries. It is
therefore natural for ResNet architectures to assign the strained
SADP to other space groups corresponding to new symmetries.
However, the ResNet architecture adopted in this study has
some tolerance to lattice deformation such that it classies the
SADP to the space group of original symmetry if the strain was
low in magnitude, like human materials scientists. If the lattice
distortion is random as in the case of thermal vibration, there
would be many variations in the distortions of lattice structures.
Such ‘disordering’ was revealed as small changes in the SADPs,
but the ResNet architecture could classify these patterns prop-
erly with slight decreases in the accuracies demonstrating some
tolerance to the noises in the SADPs. Pertaining to the point
defects, the performance of the ResNet architecture depended
on the extent of the lattice distortion due to the defects. If the
distortion is small and/or localized to the vicinity of the defect,
the classication accuracy did not suffer much, but it deterio-
rated substantially, although still acceptable, once the lattice
deformation was large or extended over long ranges. However,
the ResNet failed to recognize the SADPs from materials con-
taining edge dislocations and twin boundaries, since the
pattern included ‘new’ features that could not be handled
within the ‘knowledge’ of the ResNet due to lack of training. The
results in this study place a question on the dataset preparation
for training DCNN architecture in general. One possible direc-
tion would be to include all possible cases revealed in the image
features due to defects as well as equipment conditions in real
microscopy by extensive and comprehensive diffraction simu-
lations and dataset augmentations, which is another challenge
to the application of computer vision to materials
characterizations.
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