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Background: Numerous studies suggest a relationship between depression and

metabolic syndrome, which is likely influenced by age. Interestingly, functional imaging

analysis has shown an association between functional connectivity in the default mode

network (DMN-FC) and components of metabolic syndrome, which is explored in

this study.

Methods: From a larger longitudinal cohort study on healthy aging, 943 individuals

were extensively characterized for mood and cognition. Among these, 120 individuals

who were selected for displaying extreme cognitive performance within the normal range

(good and poor performers) were further studied. Here, in a cross-sectional design, using

confirmatory factor analysis (CFA), the association between metabolic dysfunction and

depressive mood as a function of age and its relationship with DMN-FC was studied.

Results: Metabolic dysfunction was modeled as a second-order latent variable using

CFA. First-order latent variables were obesity, glucose dysmetabolism, lipids imbalance,

and blood pressure. Using multiple linear regression models, this study observed

that metabolic dysfunction, glucose dysmetabolism, and lipids imbalance were linearly

associated with depressive mood, and the association with obesity was U-shaped.

The association of metabolic dysfunction, obesity, and glucose dysmetabolism with

depressive mood is positive for the younger individuals in our sample and vanishes with

aging. The FC of the right superior temporal gyrus with the DMN correlated with both

obesity and depressive mood. In participants with higher obesity scores, FC increased

with higher GDS scores, while in those with lower GDS scores, FC decreased. Age and

blood pressure were associated with a more complex pattern of association between FC

of the right supramarginal gyrus and GDS score.

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2021.618623
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2021.618623&domain=pdf&date_stamp=2021-08-02
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:joaobessa@med.uminho.pt
https://doi.org/10.3389/fnagi.2021.618623
https://www.frontiersin.org/articles/10.3389/fnagi.2021.618623/full


Portugal-Nunes et al. Metabolic Dysfunction and Mood in the DMN

Conclusion: The association of metabolic dysfunction with depressive mood is

influenced by age and relates with differential patterns of DMN-FC. The combination of

the effects of age, mood, and metabolic dysfunction is likely to explain the heterogeneity

of DMN-FC, which deserves further investigation with larger and longitudinal studies.

Keywords: metabolic dysfunction, mood, age, functional connectivity, default mode network

INTRODUCTION

Depression is a highly prevalent mood disorder, affecting an
estimated 300 million people worldwide (Patel et al., 2016;
Herrman et al., 2018). It is projected to become the leading
cause of burden of disease by 2030 (Mathers et al., 2008).
Symptoms of depression can be present even in the absence
of formal criteria to diagnose major depression. Depressive
symptoms are widespread in the elderly. Their impact on
cognitive and physical decline are similar to those resulting
from a variety of other medical and psychiatric conditions
(Meeks et al., 2011).

Metabolic syndrome (MetS) is a cluster of metabolic
abnormalities associated with high risk of developing type
2 diabetes and/or cardiovascular disease. According to the
International Diabetes Federation, it is defined by the presence
of visceral adiposity and at least two of the following conditions:
hyperglycemia, dyslipidemia (high triglycerides and/or low HDL
cholesterol), and hypertension (Alberti et al., 2005). Aging is
associated with an increased deposition of body fat in the
abdominal region (St-Onge and Gallagher, 2010) and several
components of the MetS are more prevalent in older than
younger adults.

Several cross-sectional studies have associated depression
or depressive symptoms with various components of MetS.
Specifically, depression and/or depressive mood have been
associated with obesity (de Wit et al., 2010; Luppino et al., 2010),
poor glycemic control (Lustman et al., 2000), insulin resistance,
(Pearson et al., 2010) and blood pressure has been associated with
depressive mood (Paterniti et al., 2000; Lenoir et al., 2008). Data
are inconsistent on the relation of dyslipidemia components with
mood (Huang, 2005; van Reedt Dortland et al., 2010; Vargas et al.,
2014; Beydoun et al., 2015).

Of notice, the association between MetS and depression
seems to be bidirectional. Pan et al. (2012), in a meta-analysis
that included 155,333 subjects, demonstrated that MetS was
associated with depression, that baseline MetS could predict
the risk of developing depression, and that the reverse is also
true. Analyses were influenced by MetS definitions [National
Cholesterol Education Programs Adult Treatment Panel III
(NCEP ATP-III) versus International Diabetes Federation (IDF)]
and depression measures (diagnostic interview versus self-
reported symptom scale).

MetS constitute a heterogeneous metabolic group and
the contribution of each of its components differs between
individuals. CFA has been used to construct a hierarchical four-
factor model that represents MetS by insulin resistance, obesity,
lipids, and blood pressure, which may help to determine the

contribution of each component to the overall syndrome (Shen
et al., 2003, 2006; Levin et al., 2014).

Since MetS and its components are measures of peripheral
metabolic dysfunction and depression is an abnormality of
the central nervous system, it is important to explore the
impact of peripheral metabolic alterations on brain function and
connectivity. The DMN has been well-studied, both in general
and in the context of depressive symptomatology. There have
been several reports of higher functional connectivity (FC) within
the DMN, as well as between the DMN and other brain regions
in patients with depression (Whitfield-Gabrieli and Ford, 2012;
Kaiser et al., 2015). In contrast, age-associated reduction in
DMN-FC has been frequently reported in the population over
60 years of age (Damoiseaux et al., 2008; Soares et al., 2017).
Several lines of evidence suggest that individuals with metabolic
disorders display alterations in DMN activity and FC (Cha et al.,
2014) and that multiple factors, such as age, mood, and metabolic
abnormalitymay interact with one another to produce alterations
on DMN-FC.

The present study proposes to (1) utilize the latent variable
model of MetS, referred to as metabolic dysfunction; (2) explore,
in a cross-sectional investigation, the potential association of
metabolic dysfunction and its components with depressive mood
in older individuals; (3) assess the impact of advancing age in
the strength of those associations; and (4) evaluate the impact
of the interaction between metabolic dysfunction, age and mood
upon DMN-FC.

MATERIALS AND METHODS

Ethics Statement
The study was conducted in accordance with the Declaration of
Helsinki (59th Amendment) andwas approved by the Portuguese
national ethical committee (Comissão Nacional de Proteção
de Dados) and by the local ethics review boards (Hospital de
Braga, Braga; Centro Hospitalar do Alto Ave, Guimarães). The
study goals and the psychological and clinical assessments were
explained to the participants, of whom all gave informed consent.

Characterization of the Cohort
The cohort was composed of 1,051 participants randomly
selected from two cities in the north of Portugal (Guimarães
and Vizela) using the local area health authority registries as
described elsewhere (Santos et al., 2013, 2014) (Figure 1). The
cohort is representative of the older Portuguese population
with respect to gender (females, n = 560; 53.3%) and
age (range: 50–97 years; M = 67.2, SD = 9.24). All the
participants were local community-dwellers. Most were retired
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FIGURE 1 | Flow diagram of recruitment and study procedure.

(n = 763, females 51.8%) and located in the medium socio-
economic stratum of the Graffar scale (Class III; 61.6%,
females 47.3%). For age and gender, the distribution of this
database differs in <2% of that of the distribution for the
Portuguese population, as estimated by the Portuguese authority
on statistics (the “Instituto Nacional de Estatística”) (Instituto
Nacional de Estatística IP, 2011). Exclusion criteria included
the inability to understand informed consent, participant choice
to withdraw from the study, inability to attend the clinical
and neuropsychological assessment session(s), dementia and/or
diagnosed neuropsychiatric, and/or neurodegenerative disorder
(medical records). A team of experienced clinicians performed
a standardized clinical interview, which also determined current
medication use and was designed to detect and exclude
disorders of the central nervous system (e.g., epilepsy and
neurodegenerative disorders) as well as overt thyroid pathology
(Santos et al., 2013, 2014). As shown in Figure 1, 108 participants
were excluded due to missing data, leaving a total of 943
participants to be included in the baseline analysis.

From the initial cohort, 120 participants [matched for gender
and age—overall “good” cognitive performance (n = 60) and
overall “poor” performance (n = 60) group, based on their,
within normal range, neuropsychological testing (including
mood)] were selected for amore comprehensive characterization,
including a functionalMRI (fMRI) session. Of those, nine refused
to have an MRI, four were excluded due to brain lesions, three
were excluded due to excessive head motion during the scan,

TABLE 1 | Study sample characterization for the participants included in the

cross-sectional analysis and fMRI analysis.

Cross-sectional analysis fMRI analysis

n = 943 n = 101

Variable (M; SD)

Age (years) 67; 9.17 64; 8.46

GDS score 10.92; 6.38 10.63; 6.63

BMI (kg/m2) 28.42; 4.38 27.9; 3.62

Waist circumference (cm) 98.87; 10.42 97.4; 9.06

Fasting glucose (mg/dL) 94.88; 29.5 92.32; 30.13

HOMA2-IR 1.29; 1.2 1.36; 1.33

Triglycerides (mg/dL) 123.14; 70.09 132.96; 100.94

HDL (mg/dL) 54.51; 13.74 53.9; 13.6

Systolic BP (mmHg) 143.82; 19.76 141.95; 18.03

Diastolic BP (mmHg) 80.12; 10.3 81.56; 8.27

Gender (n; %)

Female 492; 52.2 47; 46.5

Male 451; 47.8 54; 53.5

Formal education (n; %)

4 years or less 792; 84 74; 73.3

More than 4 years 151; 16 27; 26.7

Smoking status (n; %)

Nonsmoker 659; 69.9 66; 65.3

Former smoker 222; 23.5 26; 25.7

Smoker 62; 6.6 9; 8.9

Alcohol consumption (n; %)

None 279; 29.6 30; 29.7

≤50 g/day 441; 46.8 41; 40.6

> 50g/day 223; 23.6 30; 29.7

Physical activity (n; %)

None 593; 62.9 68; 67.3

≤3 times/week 143; 15.2 12; 11.9

>3 times/week 207; 21.9 21; 20.8

and five were excluded due to missing data. Following exclusions,
101 participants ultimately were included in the fMRI analysis. A
detailed characterization of both samples is presented in Table 1;
Supplementary Table 1.

Metabolic and Mood Evaluation
The participants were presented in the morning after
overnight fasting and underwent a standardized evaluation
that included medical history, anthropometric assessment,
blood collection, and blood pressure measurements. The
anthropometric measures included weight (Kg), height (m),
and abdominal perimeter (cm). Weight and height were
subsequently used to calculate body mass index (BMI). Fasting
blood glucose, fasting insulin, triglycerides, and high-density
lipoproteins were measured using standard methods in a
certified laboratory. Blood pressure was assessed three times
during the evaluation and the mean value was used. The
Geriatric Depression Scale (GDS, long-version) was used to
assess mood.
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Resting State fMRI Data Acquisition,
Preprocessing and Identification of DMN
The participants were scanned on a clinically approved Siemens
Magnetom Avanto 1.5 T (Siemens Medical Solutions, Erlangen,
Germany) MRI scanner in Hospital de Braga using a Siemens
12-channel receive-only head coil. During the resting-state fMRI
acquisition, using gradient echo-weighted echo-planar images
(EPIs), the participants were instructed to keep their eyes closed
and to attempt to think about nothing. The imaging parameters
were: 180 volumes, Repetition Time (TR) = 2s, Echo Time (TE)
= 30ms, Flip Angle (FA) = 90◦, in-plane resolution = 3.5 ×

3.5 mm2, 30 interleaved slices, slice thickness = 4mm, imaging
matrix 64× 64, and field of view (FOV)= 224mm. T1-weighted
structural images for anatomical reference were obtained using
a magnetization-prepared rapid acquisition by gradient echo
(MPRAGE) sequence with voxel resolution 1.0 × 1.0 × 1.0mm,
FoV = 234 × 234 mm2, FA of 7◦, 176 slices, and TE/TR
of 3.48/2730ms. Before any data processing and analysis were
undertaken, all acquisitions were inspected by an experienced
neuroradiologist who confirmed that they were not affected by
critical head motion and that participants had no brain lesions.

Preprocessing of fMRI data was done using FMRIB Software
Library (FSL v5.07) tools. The first five volumes of the
acquisition were removed to exclude possible magnetic field
inhomogeneities. After this, the data underwent slice timing
correction followed by head motion correction. Next, motion
scrubbing (Power et al., 2012) was performed to identify and
further exclude time-points where head motion could be
critical. For motion scrubbing, the standard FSL suggested
parameters (REFRMS) and the standard thresholds of exceeding
the 75th percentile + 1.5 times the InterQuartile Range
were used, meaning that individuals presenting more than
15 motion-contaminated time-points would be excluded.
Data on the number of motion-contaminated time-points
by subject is presented in Supplementary Figure 1. The
functional dataset of each subject was then normalized to
Montreal Neurological Institute (MNI) standard space through
a procedure that included: (i) skull stripping of the mean
image of the functional acquisition and of the structural
acquisition, allowing the isolation of brain signal; (ii) rigid-body
registration of the mean functional image to the skull-stripped
structural scan; (iii) affine registration of the structural scan
to the MNI T1 template; (iv) non-linear registration of the
structural scan to the MNI T1 template using the affine
transformation previously estimated as the initial alignment;
(v) nonlinear transformation of the functional acquisition to
MNI standard space through the sequential application of
the rigid-body transformation and non-linear warp, followed
by resampling to 2mm isotropic voxel size. On the final
step, a linear regression of motion parameters, mean white
mater and cerebrospinal fluid signal, and motion outliers
was performed, and the residuals of the regression were
smoothed using a Gaussian kernel smoother with a full width
at half maximum of 6mm (σ = 2.55mm), were band-pass
temporal filtered (0.01–0.08Hz), and were then used for the
subsequent analysis.

Probabilistic independent component analysis (PICA) was
performed with Multivariate Exploratory Linear Optimized
Decomposition into Independent Components (MELODIC),
distributed with FSL. ICA is a data driven analysis that isolates
components or non-overlapping spatial maps corresponding
to regions that manifest coherent time-courses. The software
estimated group-wise spatial maps that correspond primarily to
Resting State Networks (RSNs) and automatically estimated the
number of independent components. A dual regression analysis
was used to study subject-specific components.

Statistical Analysis
Data are presented in mean (M) and standard deviation (SD) for
continuous variables and in frequency (n) and percentage (%)
for categorical variables. Pearson correlations were calculated to
measure the strength of the association between the quantitative
variables studied. Structural equation models (SEM) were used
to model metabolic dysfunction in a fashion similar to that
reported by Shen et al. (2003), using MPlus software version 7.
The MLR estimator (maximum likelihood parameter estimates
with standard errors and a chi-square test statistic that are
robust to non-normality and non-independence of observations)
was used for parameter estimations and tests of significance.
Model fit was assessed using χ², comparative fit index (CFI),
Tucker-Lewis index (TLI), and root mean square error of
approximation (RMSEA). To determine the cross-sectional
associations of the GDS score with each of the composite scores
previously calculated (metabolic dysfunction, obesity, glucose
dysmetabolism, lipids imbalance, and blood pressure), Multiple
Linear Regression Models (MLRM) were performed controlling
for age, gender, years of formal education, smoking habits,
alcohol consumption, and physical activity. Besides regression
coefficients (and confidence intervals), betas and measures of
model fit (R2, R2

adjusted) are also presented. The interaction of age,

and metabolic dysfunction (including components) with GDS
score was tested using PROCESS 3.0 for IBM SPSS Statistics v25,
adjusted for the variables above mentioned. Heatmap plots were
obtained using the syntax provided on PROCESS output.

DMN-FC testing was performed using the second-level
random effect analyses in SPM12. Multiple regression analysis
was performed, and results were considered significant at
p < 0.001, corrected for multiple comparisons using cluster
correction (minimum cluster size of 70 voxels). Minimum cluster
size was estimated using 3DClustSim (https://afni.nimh.nih.gov/;
AFNI version 17.0.13; National Institute of Mental Health)
with the DMN template mask and a significance level of 0.05
(http://findlab.stanford.edu/functional_ROIs.html). Anatomical
labeling was performed by a combination of visual inspection and
anatomical automatic labeling (AAL) atlas (Tzourio-Mazoyer
et al., 2002).

Several independent multiple regressions were performed to
test the effect of metabolic dysfunction (or components), the
interaction of metabolic dysfunction (or components) with age,
the interaction of metabolic dysfunction (or components) with
GDS score, and the interaction of metabolic dysfunction (or
components) with age and GDS score. The requirements for
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multiple linear regression analysis were met and the variables
were mean-centered to avoid multicollinearity issues. Age,
gender, and GDS score were used as covariables when not used
as interest variables. For each participant, the mean Z score of
the clusters with significant interactions were extracted and the
values were used to generate heat maps that allowed visualization
of the interaction of the moderator with the association between
the focal predictor and the dependent variable.

RESULTS

Characterization of Participants
Demographic, metabolic, and lifestyle characterization of
participants are presented in Table 1. Information regarding
lifestyle variables is presented in the Supplementary Material.
Ages of participants ranged from 50 to 97 years (M = 67
years and SD = 9.17, 47.8% females). The exclusion of the 107
participants with missing data did not significantly change the
composition of the original cohort.

Information on the prevalence of significant depressive
symptoms and metabolic risk factors according to the IDF
classification for MetS (Alberti et al., 2005) are described
in Supplementary Material. Bivariate correlations between
GDS score and metabolic parameters are presented in
Supplementary Table 2. GDS score was significantly correlated

with BMI (r = 0.106, p < 0.01), but not with the other
parameters. Metabolic parameters were significantly associated
among themselves, with the exception of systolic blood pressure
with HDL cholesterol, and diastolic blood pressure with fasting
glucose and HDL cholesterol.

Modeling of Metabolic Dysfunction and
Components
Metabolic dysfunction was modeled as a second-order latent
variable similar to the procedure used in Shen et al. (2003, 2006)
and Levin et al. (2014) (Figure 2). All indicators were treated
as continuous variables. First-order latent variables (obesity,
glucose dysmetabolism, lipids imbalance, and blood pressure)
were measured by their respective indicators. Specifically, obesity
was measured by BMI and waist circumference (WC), glucose
dysmetabolism by fasting glucose and HOMA-IR, triglycerides
and HDL cholesterol were the indicators for lipid imbalance
and systolic and diastolic blood pressure were the measures
of blood pressure. A higher-order latent variable, metabolic
dysfunction, was created with the first-order latent variables
enumerated above.

Three pairs of residual variances were correlated, first between
BMI and triglycerides, second between WC and triglycerides,
and third between BMI and diastolic blood pressure. The

FIGURE 2 | Model of the metabolic dysfunction at baseline. χ2
(13) = 40.762; p < 0.001, comparative fit index (CFI) = 0.981, Tucker Lewis Index (TLI) = 0.958 and root

mean square error approximation (RMSEA) = 0.048; p = 0.564. Standardized parameter estimates representing factor loadings are shown on paths. All coefficients

are significant at p > 0.01 for the two-tailed test. To maintain presentation clarity, residual terms are not shown. BMI, body mass index; WC, waist circumference;

HDL, high density lipoprotein; BP, blood pressure.
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FIGURE 3 | Association of metabolic dysfunction (and components) with GDS score controlled for age, gender, education, smoking status, alcohol consumption, and

physical activity. Graphical representation of standardized coefficients (standardized beta) and respective confidence intervals for the independent variables used in the

multiple regression linear models (A,C,E,G,I). Male gender, higher formal education (measured in school years), higher physical activity, and lower metabolic

dysfunction score were significantly associated with a lower score in the GDS (A). Male gender, higher formal education, and higher physical activity were significantly

associated with a lower score in the GDS (C,I). Male gender, higher formal education, higher physical activity, and lower glucose dysmetabolism score were

significantly associated with a lower score in the GDS (E). Male gender, higher formal education (measured in school years), higher physical activity, and lower lipids

imbalance score were significantly associated with a lower score in the GDS (G). Graphical representation (heat maps) of the variation of standardized coefficients

(standardized beta) for the association between metabolic dysfunction (and components) with GDS score across age (B,D,F,H,J). Warm colors represent a positive

(Continued)
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FIGURE 3 | association and cool colors represent a negative association. A positive association between GDS score and metabolic dysfunction or obesity or glucose

dysmetabolism was observed in the younger individuals of our sample and became negative at the older ages (B,D,F). The association between GDS score and lipids

imbalance was always positive across the age range (H). No association between GDS score and blood pressure was observed across the age range (J). Gender

(0 = females; 1 = males), smoking (reference—non-smoker), alcohol consumption (g/day), and physical activity (0 = sedentary; 1 = <3 times/week; 2 = over 3

times/week). *p < 0.05; **p < 0.01; ***p < 0.001.

FIGURE 4 | Global patterns of default mode network functional connectivity (t > 3.1667; p <0.001; df = 109).

incorporation of these correlations was justified by the known
influence of obesity upon triglycerides and blood pressure.

The fit of the model was confirmed by CFI= 0.981,
TLI= 0.958 and RMSEA= 0.048. The model demonstrated that
metabolic dysfunction could be summarized by four components
defined by metabolic risk factors. Metabolic dysfunction was
strongly a function of glucose dysmetabolism, moderately of
lipid imbalance and obesity, and modestly of blood pressure.
Specifically, metabolic dysfunction was explained by glucose
dysmetabolism (78%, p < 0.001), lipid imbalance (52%, p <

0.001), obesity (42%, p < 0.001), and blood pressure (10%,
p= 0.001).

Associations of Metabolic Dysfunction and
Components With Mood Across Later Life
To test the association of metabolic dysfunction and its
components with depressive mood, MLRM (Figures 3A,C,E,G,I;
Supplementary Table 3) was used. GDS score was used as
dependent variable, while metabolic dysfunction and its
components as independent variable in different models,
controlling for age, gender, education, smoking status,
alcohol consumption, and physical activity. All the models
significantly predicted the GDS score (p < 0.001) and explained
approximately 18% (R2 = 0.179 to 0.185) of the variance of the
GDS score.

In all the models, male gender, higher education (>4 years
of formal education), alcohol consumption, and physical activity
higher than three times per week were significantly associated
with a lower GDS score.

In the respective models, metabolic dysfunction (β = 0.066,
p = 0.029), glucose dysmetabolism (β = 0.062, p = 0.039),
and lipids imbalance (β = 0.076, p = 0.011) were significantly
associated with a higher GDS score. Furthermore, no linear
association between depressive mood and obesity was observed,

but a significant association between depressive mood and the
quadratic term for obesity (Obsety2) was observed (β = 0.081,
p= 0.007—Supplementary Table 4).

The effect of age on the association between metabolic
dysfunction (or its components) and mood was tested
through moderation analysis in MLRM (Figures 3B,D,F,H,J;
Supplementary Table 3). A significant moderation effect of age
was observed in the association of GDS score with metabolic
dysfunction (metabolic dysfunction x age—β = −0.096, p =

0.047), obesity (obesity x age—β = −0.065, p = 0.032), and
glucose dysmetabolism (glucose dysmetabolism x age—β =

−0.066, p = 0.028). This moderating effect of age reflects a
positive correlation between the measured variables in younger
participants, but one which diminishes with advancing age. The
association of the quadratic term of obesity with the GDS score
(Supplementary Table 4) was not influenced by age.

The association between GDS score and the lipids
imbalance component was not moderated by age (lipids
imbalance x age—β = −0.017, p = 0.592) indicating
that lipids imbalance is positively associated with GDS
score regardless of age. Also, no moderating effect of
age was observed upon the association of blood pressure
and GDS score (blood pressure x age—β = −0.050, p =

0.098), indicating that blood pressure and mood are not
significantly associated with one another at any age in the
study population.

Impact of Metabolic Dysfunction (and
Components) in the Association Between
GDS Score and DMN FC
First, the pattern of FC of the classical DMN regions during the
resting state was visually confirmed (Figure 4). The effects of
metabolic dysfunction (or its components) and the interaction of
age with metabolic dysfunction (or components) in the DMN-FC
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FIGURE 5 | Functional connectivity between a focal region of the right superior temporal gyrus and the other components of the DMN reflected GDS-obesity

interaction. DMN regions presenting significant interactions of GDS x Obesity (A). Association of the GDS score with the FC of the right superior temporal gyrus

across obesity score; colors represent standardized coefficients (β) (B).

TABLE 2 | Effect of the interaction between GDS x obesity and between age x

GDS x blood pressure on the default mode network FC (multiple regressions,

cluster correction, p <0.001).

Effect Region Peak MNI

coordinates

Cluster size

(voxels)

Maximum

Z score

GDS x Obesity Superior

Temporal

Gyrus (Right)

44, −54, 12 81 4.98

Age x GDS x

Blood pressure

Supramarginal

Gyrus (Right)

60, −50, 24 234 4.19

were evaluated, in independent MLRM, and the results did not
survive to the significance threshold here employed.

Next, the moderating effect of metabolic dysfunction (and its
components) in the association between GDS score and DMN-
FC was tested. An interaction between obesity and GDS score
was observed in the right superior temporal gyrus (Figure 5A;
Table 2). The FC of the right superior temporal gyrus increased
with higher GDS score in the participants that have higher obesity
scores. Individuals with lower obesity scores, however, manifest
decreased FC with increasing GDS (Figure 5B). No other
interaction between metabolic dysfunction or its components
with GDS was significant at the defined threshold.

The Moderating Effect of Age Upon the
Interaction Between Metabolic Dysfunction
and GDS Score With Respect to DMN-FC
The influence of age on the interaction of metabolic dysfunction
with GDS score upon DMN-FC was also assessed. A significant
moderating effect of age was observed on the interaction of
blood pressure with the GDS score in the level of FC of
the right supramarginal gyrus with the other components of
the DMN (Figure 6A; Table 2). For the younger participants
(mean age −1 SD), the FC of the right supramarginal gyrus
with the DMN increased with higher GDS score in those with
lower blood pressure (mean blood pressure −1 SD) (conditional
effect, B = 0.021, p = 0.02), but was not significant for those
with higher blood pressure (mean blood pressure + 1 SD)
(conditional effect, B = −0.009, p = 0.359). Also, in the group
of older participants (mean age + 1 SD), a decrease in the FC
accompanied the GDS score increase in those with lower blood
pressure (mean blood pressure −1 SD) (conditional effect, B =

−0.054, p < 0.001), while the opposite pattern was observed
for those with higher blood pressure (mean blood pressure +

1 SD) (conditional effect, B = 0.025, p = 0.012) (Figure 6B).
No other moderating effect of age upon the interactions of
metabolic dysfunction and components with GDS score was
statistically significant.
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FIGURE 6 | Significant age x GDS x blood pressure interaction within the default mode network in the right supramarginal gyrus. Colors represent standardized

coefficients (β). DMN regions presenting significant interactions of age x GDS x blood pressure (A). Association of the GDS score with the FC of the right

supramarginal gyrus across age and blood pressure score; colors represent standardized coefficients (β) (B).

DISCUSSION

In this study, the association between metabolic dysfunction and
depressive mood in community-dwellers aged 50 years and older
was investigated, and the relationship between those factors with
DMN-FC. This study showed that depressive mood is linearly
associated with metabolic dysfunction, glucose dysmetabolism,
and lipid imbalance. Conversely, the association of obesity with
depressive symptomatology was U-shaped. The influence of age
upon the strength of the association of depressive mood with
metabolic dysfunction, obesity, and glucose dysmetabolism was
substantial. Of notice, obesity can modify the association of GDS
score with FC in the DMN, and the interaction of age with blood
pressure also affect the association of GDS score with the FC in
the DMN.

Glucose dysmetabolism appears to be the essential feature
of metabolic dysfunction, in accordance with other cross-
sectional and longitudinal models (Shen et al., 2003, 2006).
Insulin resistance is the most widely accepted hypothesis for the
pathophysiology of the MetS (Eckel et al., 2005), which would
tend to support the large contribution of glucose dysmetabolism
to metabolic dysfunction. The blood pressure component made
a significant weaker contribution to metabolic dysfunction in all
models. Shen et al. (2003) reported a similar finding and argued
that blood pressure may be related to metabolic dysfunction
only secondarily.

As expected, it was observed that metabolic dysfunction
was associated with depressive mood. However, the analytic
strategy of the study does not allow inference about the
direction of this association. In a meta-analysis, Pan et al. (2012)
observed that baseline depression predicts the risk of MetS
and baseline MetS predicts the risk of depression, indicating
a bidirectional association. Since MetS is a constellation of
metabolic abnormalities, the association of MetS with depressive
mood is likely to be mediated by its components. As previously
stated, age plays an important role in moderating the association
between metabolic dysfunction and depressive mood. It was
shown that the expression of MetS varies with age and that
different combinations of MetS components are differentially
associated with mortality risk (Kuk and Ardern, 2010). It is also
possible that the age variation in the expression of metabolic
dysfunction influences its association with depressive mood.

There is strong evidence for a bidirectional association
between obesity and mood disorders (Luppino et al., 2010),
but, a linear association between obesity and GDS score was
not observed. One possible explanation may be reflected in the
U-shaped association between BMI and depressive mood (de
Wit et al., 2009). In fact, a significant association of depressive
mood with the quadratic term of the obesity factor was observed,
which is consistent with a U-shaped relationship. Accumulating
evidence suggests that obesity and depression may mutually
influence and reinforce one another (Taylor andMacqueen, 2010;
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Mansur et al., 2015; Lee et al., 2016). The observed effect of
age upon the association between depressive mood and obesity
could potentially mask a linear association between them. In
the present study, it was observed that an association of obesity
with depressive mood was positive for the younger participants
and vanished with increasing age. Low BMI in older age can
be a surrogate marker of chronic illness (illness-related weight
loss) and it is well-established that late-life depression frequently
occurs in the context of medical illness (Fiske et al., 2009; Flegal
et al., 2011). Furthermore, it has previously been hypothesized
that higher BMI could indicate a greater physiologic and
functional reserve (due to higher muscle mass), which then
protects against depressive mood in later life (Ho et al., 2008).

A significant interaction between obesity and GDS score with
the FC of the right superior temporal gyrus with the other
identified components of DMN was also observed. The FC of the
right superior temporal gyrus was positively associated with GDS
score in individuals with the higher obesity scores. Conversely,
an opposite effect was observed for the individuals with lower
obesity scores. In older adults, higher BMI has been associated
with a decrease in FC of the posterior DMN (Beyer et al.,
2017). DMN activity and connectivity has been demonstrated to
be involved in one’s own thoughts and feelings, self-referential
thinking, recall the past, and in planning for the future. One
possible explanation for the hyperactivity and connectivity of
DMN in patients with depression might be that it represents an
inability to navigate away from their internal emotional states
(Whitfield-Gabrieli and Ford, 2012; Kaiser et al., 2015). The
results presented in this study are suggestive of a more resilient
pattern of FC within the DMN in older individuals with low
obesity score.

Another endocrine mediator associated with depressive mood
is insulin resistance (Lustman et al., 2000; Kan et al., 2013).
Data from epidemiological studies indicate that depression is
twice as common among those with diabetes than in the
general population, and that having diabetes doubles the risk
of depression (Anderson et al., 2001). Furthermore, it seems
that while the association is bidirectional, it is stronger in the
direction of depression to type 2 diabetes (Mezuk et al., 2008).
Here, a positive correlation between glucose dysmetabolism and
depressive mood was observed. Depression is associated with the
activation of the HPA axis and production of pro-inflammatory
cytokines, which can induce insulin resistance (Silva et al., 2012;
Yokoyama et al., 2015). Another hypothesis put forward to
explain this association is that the inadequate glucose utilization
that results from central insulin resistance is responsible for
change at the neuronal level in vulnerable brain regions (e.g.,
limbic system) observed in patients with depressive disorders
(Rasgon and Kenna, 2005). Data from animal models show
that brain-specific knockout of insulin receptor (NIRKO) in
mice promotes age-related anxiety and depressive-like behavior
through an alteration in dopamine turnover (Kleinridders et al.,
2015). The relationship between depressive mood and glucose
dysmetabolismwas significantlymoderated by age, similar to that
was observed for metabolic dysfunction and obesity. In younger
participants, the association was positive but lost strength with
increasing age. A reasonable explanation for such a pattern is not

evident, but it is recognized that selection bias may be present.
It is more likely that older individuals with higher levels of
depression and higher comorbidities refused to participate in
the study.

A significant positive association between depressive
symptoms and lipid metabolism which was not moderated
by age was also observed. Greater lipid imbalance factor is
manifest in higher values of triglycerides and lower levels of
HDL cholesterol. Research on the association between serum
lipids and depression has generated conflicting results and has
focused primarily on total cholesterol (Beydoun et al., 2015).
Lower HDL cholesterol was reported to be associated with
depression (Sagud et al., 2009; Kim et al., 2011). While high
triglyceride levels were found in patients with bipolar depression
when compared with healthy controls (Sagud et al., 2009).
In persistent-severe depression, the odds ratio for low HDL
cholesterol and hypertriglyceridemia were significantly increased
in males, and a similar association was observed for women with
respect to hypertriglyceridemia (Kim et al., 2015). Higher levels
of triglycerides and lower HDL cholesterol in ongoing major
depression, compared to remitted depression and controls, also
has been reported (van Reedt Dortland et al., 2010).

Blood pressure was the only component of metabolic
dysfunction, which was not linked to depressive mood, as seen
by others. The association of blood pressure with depression
is controversial. Some cross-sectional studies reported an
association between depression and low blood pressure (Hildrum
et al., 2007; Lenoir et al., 2008), while other longitudinal studies
found that depressive symptoms predicted low blood pressure
(Hildrum et al., 2008) and that low blood pressure was a risk
factor for higher levels of depression (Paterniti et al., 2000).
Other publications reported a significant association of late-life
depression with hypertension (Lavretsky et al., 1998). Additional
studies are therefore needed to test the Vascular Depression
hypothesis (Taylor et al., 2013), which posits that cerebrovascular
disease, of which hypertension is one element, may predispose,
precipitate, or perpetuate certain geriatric depressive syndromes.

Interestingly, a significant interaction between blood pressure,
age, and GDS score was observed in the FC of the supramarginal
gyrus. Recently, Gu et al. (2019) reported that, compared to
controls, hypertensive patients with normal cognitionmanifested
increased FC in the core subsystem of the DMN, including that
of the right supramarginal gyrus. Furthermore, Zhang et al.
(2011) found increased node centrality in drug-naive, first-
episode major depressive disorder patients in components of
the DMN, including the right supramarginal gyrus. Similarly,
decreased FC in the DMN has been widely reported in older
subjects (Andreescu et al., 2011; Wu et al., 2011; Soares et al.,
2017). Collectively, these multiple studies suggest that the pattern
of the FC of the right supramarginal gyrus is complex and is
influenced by multiple factors.

This study is original in the use of structural equation
models to explore the association of metabolic dysfunction with
depressive mood, the impact of age upon those associations,
and in the combined influence of those multiple factors upon
connectivity patterns in the DMN. The age composition of
the sample is representative of the Portuguese population and
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represents a strength of this study. A number of reports have
addressed the association of MetS and depressive mood (Pan
et al., 2012). It is important to refer that theMetS is not uniformly
classified, which likely justifies discrepant findings (Kuk and
Ardern, 2010). It is important to acknowledge that medication
usage and duration may impact on DMN-FC (Yan et al., 2019).
In this study, the impact of medication in the DMN-FC was
not controlled and therefore the results should be interpreted
with caution. Another limitation, inherent to the use of the IDF
classification for MetS, is that it excludes individuals who have
metabolic risk factors but not central obesity (Oda, 2012). To
overcome those limitations, structural equation modeling was
used, more specifically confirmatory factor analysis, to replicate
the hierarchical four-factor model first proposed by Shen et al.
(2003, 2006) and later replicated by Levin et al. (2014). The use
of structural equation modeling allowed to consider the separate
contribution of each component to metabolic dysfunction.
Additionally, it allows the use of continuous variables rather
than employing a dichotomous classification, which relies upon
a proxy to assess severity of metabolic dysfunction. As a
measure of depressive mood, the GDS that measures depressive
symptomatology rather than depression was used. The inclusion
of subjects that have a finite GDS score but are not clearly
depressed can weaken the association observed here, yet there
is evidence that in older adults, even depressive symptoms are
associated with adverse outcomes and morbidity (Meeks et al.,
2011). The analysis of the moderating effects on the FC of the
DMN adds to the analysis of the association between mood
and metabolic dysfunction by exploring the central nervous
system impact of peripheral mechanisms. Better understanding
of the complex associations between metabolic dysfunction and
depressive mood will be dependent upon detailed analysis of the
multiple interactions between the variables studied here.
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