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Abstract

Regulation of inflammation is necessary to balance sufficient pathogen clearance with excessive tissue damage. Central to
regulating inflammation is the switch from a pro-inflammatory pathway to an anti-inflammatory pathway. Macrophages are
well-positioned to initiate this switch, and as such are the target of multiple therapeutics. One such potential therapeutic is
methylthioadenosine (MTA), which inhibits TNFa production following LPS stimulation. We found that MTA could block
TNFa production by multiple TLR ligands. Further, it prevented surface expression of CD69 and CD86 and reduced NF-KB
signaling. We then determined that the mechanism of this action by MTA is signaling through adenosine A2 receptors. A2
receptors and TLR receptors synergized to promote an anti-inflammatory phenotype, as MTA enhanced LPS tolerance. In
contrast, IL-1b production and processing was not affected by MTA exposure. Taken together, these data demonstrate that
MTA reprograms TLR activation pathways via adenosine receptors to promote resolution of inflammation.
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Introduction

Inflammation is one of the first lines of defense against

pathogens. However, excessive or poorly regulated inflammation

can itself lead to pathology. To avoid these problems, the immune

system has developed a number of checkpoints that indicate when

inflammation needs to be halted and resolution needs to begin.

Understanding the molecular determinants and interplay of

inflammatory and anti-inflammatory processes will increase our

ability to limit or promote inflammation therapeutically. The

inflammatory response begins upon recognition of pathogens by

cells. Pathogens are recognized by pattern-recognition receptors,

such as Toll-like receptors (TLRs) that recognize certain pathogen-

associated molecular patterns (PAMPs). TLRs can be categorically

divided into those which signal through MyD88 or Trif adaptors.

In addition, TLRs differ in whether they encounter their ligands at

the cell surface or internally, and whether they can induce

secretion of Type I interferons [1]. In all cases, TLRs induce NF-

KB signaling, and there is a common set of inflammatory genes

upregulated by multiple TLRs, including cytokines like TNFa [1].

Surface expression of proteins, such as the costimulatory protein

CD86, and the activation receptor CD69, are also upregulated

following TLR ligation [1,2]. Although TLR signaling is highly

complex, one consequence of TLR ligation is activation of adaptor

molecules such as Trif or MyD88, which in turn leads to the

activation of IRAK4, TRAF6, IRAK1 and other molecules [1].

This activation cascade culminates in propagation of signals to the

nucleus, including via NF-KB [1].

TLR signaling must be suppressed or redirected to halt

inflammation. Although removal of the TLR ligand is one aspect

of terminating inflammation, there are situations where this does

not occur, such as during chronic infections. In cell culture

systems, macrophages can retain the TLR4 ligand lipopolysac-

charide (LPS) for days following treatment [3]. To balance and

resolve inflammation, there are a number of receptors that

promote anti-inflammatory responses and blunt the TLR-induced

responses. One such set of receptors are the adenosine receptors,

which are G protein-coupled receptors that respond to adenosine

and related analogs. There are four adenosine receptors, A1, A2a,

A2b and A3, of which A2 receptors have been best studied in

macrophages [4]. Following activation, adenosine receptors

promote robust anti-inflammatory responses. Adenosine receptors

block pro-inflammatory cytokines including TNFa, MIP1, while

inducing anti-inflammatory cytokines like IL-10 [4–6]. In macro-

phages, it is primarily the A2a and to a lesser extent A2b receptors

that reduce inflammation [4]. A2 receptors promote alternative

activation of macrophages [6–8]. Adenosine receptors can interact

with TLR signaling to promote resolution of inflammation,

including upregulation of VEGF [9]. Both MyD88 and A2a

receptor signaling is necessary to promote this switch from an

inflammatory to a wound-healing phenotype [8]. Independently of

MyD88, A2a receptors can reduce NF-KB signaling via cAMP

production following receptor activation [10]. This suggests

adenosine receptors may serve as part of the cellular resolution

phase. There are several lipid species, termed resolvins and

protectins, that exert pro-resolving action [11]. Pro-resolving
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action is local immunosuppression that allows a return of the

locally inflamed tissue to homeostasis. Resolvins and protectins

lead to removal of neutrophils and promotes phagocytosis of

apoptotic neutrophils by macrophages along with inducing anti-

inflammatory phenotypes in macrophages [11]. However, it is

likely that compounds other than lipids may also exert pro-

resolving action.

One possible pro-resolving compound is 59-deoxy-59-

(methylthio)adenosine (MTA), which plays a number of roles.

MTA can serve as a metabolite that can be converted to

methionine and is present at 11 mM in plasma [12–14]. MTA

enhances cell death following infection with Salmonella, which is

attributed to its role as a methionine precursor [13]. MTA also has

a well-known role as a methyltransferase inhibitor [15,16]. In this

capacity, MTA can alter histone modifications and influence gene

expression [15]. Similarly, MTA can inhibit Stat1 methylation

during the interferon response [17]. Finally, MTA has a well-

known, but poorly-characterized, ability to block TNFa produc-

tion following LPS stimulation [15,18,19]. MTA has been used as

an immunosuppressive drug to block colitis, liver disease and

autoimmunity in rodent models [14,18,20]. Taken together, MTA

has the capacity to serve in many roles, though the mechanism of

immunosuppression is not known.

MTA has as its backbone, adenosine. This, along with the

finding that MTA can inhibit LPS-induced TNFa production,

suggests that MTA may also serve as an adenosine receptor

agonist. Here we examined the mechanism by which MTA block

TNFa production and macrophage activation. We found that

MTA blocked macrophage activation. We found that inhibition of

adenosine receptors A2a and A2b were sufficient to relieve this

inhibition, indicating that MTA acts through adenosine receptors.

Finally, we found that MTA modulates the TLR response by

enhancing LPS tolerance without altering IL-1b production,

maturation or secretion. Taken all together, we demonstrate a

novel mechanism by which MTA modulates inflammation.

Results

Since MTA can inhibit LPS-induced TNFa production in

RAW cells and in human PBMC [15,18,19], we asked whether

MTA could inhibit TNFa production in mouse bone marrow

derived macrophages (BMDM) in response to LPS and other TLR

ligands. We treated BMDM with TLR2, 3, 4, 7, and 9 agonists

overnight in the presence of either DMSO or MTA and measured

levels of secreted TNFa (Fig. 1A). We found that MTA inhibited

TNFa production due to various TLR ligands (Fig. 1A). We next

tested whether MTA altered other inflammatory and regulatory

cytokines by testing IL-6 and IL-10 production. We found that

TLR4 and TLR2, but not TLR3, stimulation induced IL-6 and

IL-10 (Fig. 1B, C). MTA inhibited IL-6 secretion following both

TLR2 and TLR4 stimulation (Fig. 1B). As previously reported

[19], we found that co-incubation of MTA and LPS increased IL-

10 expression (Fig. 1C). However, MTA did not increase IL-10

following TLR2 stimulation (Fig. 1C). To measure the activation

status of the BMDM, we used FACS to measure the expression of

the activation receptor CD69 [2] and the costimulatory protein

CD86 (Fig. 1D–F). We found that MTA inhibited LPS and

polyI:C- dependent CD69 and CD86 upregulation (Fig. 1D, E).

We found similar results with CD80 (data not shown). MTA did

not inhibit Pam3CSK4, CpG or Imiquimod activation because

these ligands did not strongly induce either CD69 or CD86 in our

assay (Fig. 1D, F and data not shown). Taken together, these data

indicate that MTA can specifically suppress the activation of

macrophages by ligation of TLRs.

To further explore the effect of MTA on macrophage

activation, we tested whether MTA altered TNFa mRNA levels.

MTA decreased TNFa mRNA 5-fold and 12-fold following LPS

and Pam3CSK4 stimulation respectively (Fig. 2A). This is similar

to Adenosine (Ado) mediated suppression of TNFa mRNA [21].

This suggested that MTA exerted transcriptional, rather than

translational or post-translational, control on cytokine production.

We next tested whether MTA altered TLR signaling to the

nucleus. We examined NF-KB activation using RAW macro-

phages that stably express the Metridia secretable luciferase under

the control of NF-KB response elements [22]. These cells do not

respond to TLR3 ligands (data not shown), but produce a 10-fold

increase in luciferase activity following LPS or Pam3CSK4

stimulation (Fig. 2B). When TLR-stimulated cells were co-

incubated with either Ado or MTA, NF-KB induction was

reduced to a 5-fold increase over DMSO-treated cells (Fig. 2B).

Importantly, Ado and MTA themselves did not promote

detectable NF-KB signaling (Fig. 2B). Since TLRs and A2

receptors synergize to produce an anti-inflammatory phenotype

and both require IRAK4 and TRAF6 signaling [8], it is not

surprising that Ado and MTA did not completely inhibit NF-KB

responses. We conclude that MTA and Ado alter TLR-induced

transcriptional responses and NF-KB signaling.

We next asked how MTA suppresses TLR-induced signaling.

Adenosine receptors are known to alter TLR signaling, including

suppressing TNFa [6,8,9]. Since MTA is structurally very similar

to adenosine, we asked whether adenosine receptors could mediate

the inhibitory effect of MTA. A2a and A2b receptors are the

primary adenosine receptors responsible for inducing an anti-

inflammatory phenotype in macrophages [4]. Although macro-

phages express A3 adenosine receptor, the A3 inhibitor MRE

3008F20 did not relieve MTA-inhibition of TNFa production

(data not shown). We treated BMDM with or without LPS, MTA,

adenosine (Ado) in the presence or absence of specific A2a and

A2b inhibitors (SCH442416 and PSB1115) overnight at 37uC. We

found that BMDM treated with increasing concentrations of either

MTA or Ado produced less TNFa than BMDM treated with

DMSO alone (Fig. 3A). A2a and A2b inhibitors alone did not alter

the amount of TNFa produced by macrophages (Fig. 3A), though

these inhibitors alter NF-KB induction and block CD69 upregula-

tion (data not shown). A2 inhibitors did reverse the TNFa
inhibition observed with either MTA or Ado, implicating A2

receptors in the mechanism of MTA-mediated inhibition of TLR

responses (Fig. 3A). Similarly, we find that A2 receptor inhibitors

reverse the effects of MTA or Ado on CD86 expression (Fig. 3B).

Taken together, these data indicate that MTA triggers A2

receptors, which are responsible for inhibition of these TLR

responses.

We next tested whether MTA had a durable effect on TLR

induced responses, an important consideration for potential use as

a therapy. Prolonged LPS signaling induces a phenomenon

termed ‘‘LPS tolerance’’ whereby cells become desensitized to

the effects of LPS [23,24]. We tested whether MTA altered LPS

tolerance in BMDM. We first treated BMDM with LPS in the

presence or absence of MTA, rested the cells, and then

rechallenged them with or without LPS. When cells were

pretreated with LPS, they were desensitized to subsequent LPS

challenges, failing to produce TNFa (Fig. 4A). Pretreatment with

MTA alone did not block subsequent LPS-induced TNFa
production (Fig. 4A). MTA also did not block LPS-induced

tolerance, as shown by lack of ability to restore TNFa production

upon LPS re-exposure (Fig. 4A). We next examined CD69

expression. We found that pretreatment with LPS induced

CD69 upregulation which persisted through the second stage of
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LPS treatment independently of the second LPS treatment

(Fig. 4B). Interestingly, MTA did inhibit this CD69 expression,

confirming that the MTA was active during this pretreatment

(Fig. 4B). However, when LPS was absent during pretreatment,

MTA did not affect subsequent CD69 expression, suggesting that

MTA must exert its effect on cells at the same time as delivery of a

TLR signal (Fig. 4B). We found a distinct effect on CD86

expression. Pretreatment with MTA alone did not alter CD86

levels, and subsequent exposure to LPS-induced CD86 expression

normally (Fig. 4C). However, when cells were exposed to MTA in

the presence of LPS, subsequent treatment with LPS was unable to

up-regulate CD86 (Fig. 4C). We next tested whether MTA altered

LPS tolerance in an adenosine receptor dependent fashion. We

found that A2 inhibitors prevented MTA-induced suppression of

CD86 (Fig. 4D). These findings lead us to hypothesize that

synergy between adenosine receptors and TLRs promotes anti-

inflammatory signaling. In addition, we conclude that MTA

requires concomitant TLR signaling to promote a tolerogenic

phenotype.

We also tested whether MTA could alter TLR signaling

required for IL-1b protein synthesis and secretion. TLR ligation is

the first of two steps necessary for IL-1b processing and release

[25]. Complete inhibition of TLR signaling should block synthesis

of IL-1b protein. In addition, it is possible that MTA could block

the second step in IL-1b release, a caspase-1 dependent cleavage

dependent on inflammasome activation. To test this, we primed

Figure 1. MTA inhibits TLR responses. BMDM were incubated overnight with DMSO or 200 mM MTA in the absence or presence of the following
TLR ligands: 10 ng/mL LPS, 10 mg/mL polyI:C, 1 mg/mL Pam3CSK4, 6.67 mM CpG or 2 mg/mL Imiquimod. Supernatants were assayed for TNFa (A), IL-6
(B) or IL-10 (C) production by ELISA while cells were harvested, stained and analyzed for surface CD69 (D,E) or CD86 (D, F) expression by FACS. Graphs
represent mean 6sem of 3 (A, E, F), 4 (C) or 5 (B) experiments. * p,0.05, ** p,0.01, *** p,0.001.
doi:10.1371/journal.pone.0104210.g001
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BMDM with LPS in the presence or absence of MTA and then

challenged the BMDM with NLRP3 inflammasome agonists ATP,

nigericin or streptolysin O (SLO) (Fig. 5A). Surprisingly, we found

that inclusion of MTA during the LPS priming stage did not alter

IL-1b secretion (Fig. 5A). To ensure that MTA had no effect on

the NLRP3 agonists, we LPS-primed BMDM and then challenged

them with ATP, nigericin or SLO in the presence or absence of

MTA (Fig. 5A). We found no significant differences in the amount

of IL-1b secreted by control untreated cells and those exposed to

MTA. Treatment with the Caspase-1 inhibitor YVAD or NLRP3

inhibitor KCl abolished IL-1b secretion (Fig. 5A). We next

examined IL-1b release by western blot to test whether MTA

had any effect on IL-1b processing. We primed BMDM with LPS

and either DMSO, 200 mM or 500 mM MTA for 4 hours, washed

the cells and challenged them with nigericin for 30 minutes. We

found that MTA did not impair the processing and release of IL-

1b or the release of the proinflammatory cytokine HMGB1

(Fig. 5B). We conclude that MTA does not alter IL-1b processing

or secretion.

Discussion

Here we have examined the effects of MTA on TLR

stimulation. We find that MTA blocks TNFa and IL-6 production

and activation receptor expression through adenosine A2 recep-

tors. This tolerogenic effect does not block TLR signaling, so much

as redirect it to a different signaling pathway. To this end, we

observe that TLR-induced NF-KB signaling is reduced but not

ablated, and that LPS tolerance is altered to show a reduction in

activation markers. However, we observed no change in IL-1b
processing and secretion, indicating that this altered phenotype is

the result of a specific cellular program to promote resolution of

inflammation.

Although MTA has been described both as a metabolic

intermediate and as a methyltransferase inhibitor, we ascribe a

novel function to this compound: adenosine receptor activator.

MTA may act indirectly by inhibiting adenosine uptake or by

directly binding A2 receptors. Either way, we find that MTA

exerts its TNF-suppressive effects through A2a and A2b receptors,

similarly to the effects Ado can play. This finding adds a caveat on

studies that wish to ascribe MTA function entirely to direct

methyltransferase activity or role as methionine precursor. A2

receptor signaling will be active under these conditions. The

amount of MTA needed to impair TNFa production was 50 mM,

Figure 2. MTA inhibits TLR-induced TNFa mRNA production
and NF-KB induction. (A) BMDM were incubated for 4 h with either
DMSO or 200 mM MTA in the absence or presence of either 100 EU/mL
LPS or 1 mg/mL Pam3CSK4. Total RNA was extracted from cells. TNFa
expression relative to b-actin was determined by D(DCT) method using
real-time PCR. (B) RAW NF-KB reporter cells were treated with DMSO,
200 mM MTA or 200 mM adenosine (Ado) in the absence or presence of
the indicated TLR ligands for 4 h at 37uC. Supernatants were assayed for
luciferase, which was normalized to DMSO-treated cells that received
no TLR stimulation. The graphs represent mean 6sem of 4 (A) or 5 (B)
experiments. ** p,0.01, *** p,0.001.
doi:10.1371/journal.pone.0104210.g002

Figure 3. MTA inhibition of TLR ligands acts via Adenosine
Receptors. BMDM were incubated overnight with DMSO, the
indicated concentrations of MTA or adenosine (Ado), presence or
absence of 10 mM SCH442416 and 10 mM PSB1115 and the presence or
absence of 10 ng/mL LPS. Supernatants were analyzed for TNFa
production by ELISA (A) while cells were harvested, stained and
analyzed for surface CD86 (B) expression by FACS. Data represent mean
6sem of at least 3 experiments. * p,0.05, ** p,0.01, *** p,0.001.
doi:10.1371/journal.pone.0104210.g003
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and similar to previous results [19], TNFa was blocked in a dose-

dependent fashion. Since MTA is typically present at five-fold

lower levels in the serum, the body could potentially modulate the

inflammatory response by increasing MTA locally or systemically.

This would also represent one link between methionine metab-

olism and innate immunity. Interestingly, all of the MTA

treatment effects observed here required concurrent TLR

signaling. One possibility for this requirement is feedback between

A2a receptor expression and LPS and/or TNFa signaling. In

human cell lines, both LPS and TNFa induce A2a receptor

mRNA expression, which potentiates the anti-inflammatory effects

of the A2a receptor [26–28]. Taken all together, these results

suggest that MTA may act as a pro-resolving compound.

The anti-inflammatory phenotype described here for MTA is

consistent with established adenosine receptor functions. There is

a growing body of evidence showing that adenosine receptors

induce an anti-inflammatory phenotype [6,7,9,21]. Adenosine

receptors can induce T regulatory cell generation [29]. A2

receptors promote the M2 phenotype of macrophages [7,8],

consistent with the suppression of activation markers observed

here. A2 receptor signaling interacts with the TLR pathway at the

level of IRAK4 and TRAF6, providing a molecular basis for the

synergistic anti-inflammatory activity [8]. These data are consis-

tent with our findings that NF-KB induction is reduced, but not

eliminated by either MTA or Ado treatment. Adenosine receptors

can reduce NF-KB independently of IRAK1 signaling via

downstream signaling following cAMP production [10]. Adeno-

sine receptors can also act independently of NF-KB to regulate

TNFa levels [21,30,31].

We further found that MTA enhanced LPS tolerance.

Specifically, MTA prevented the expression of an activation

receptor that persisted following initial stimulation and blocked

upregulation of the costimulatory molecule CD86. These are new

examples of how adenosine receptor signaling can enhance and

alter the effects of TLR signaling. It is known that adenosine

receptor signaling reprograms the inflammatory response [4,8].

Generally inflammation moves from a pro-inflammatory response

to an anti-inflammatory response. This anti-inflammatory phase is

an important part of the resolution phase of the innate immune

response [11]. Adenosine receptors may represent part of the

switch from pro- to anti-inflammatory response. Enhancing this

pathway may lead to novel therapeutics for resolving chronic

inflammatory diseases.

Interestingly, MTA failed to inhibit IL-1b. As a switch that also

requires TLR signaling, adenosine receptors may represent one of

the earliest steps in transitioning from a pro-inflammatory

phenotype to an anti-inflammatory one. In this case, certain

pro-inflammatory cytokines would be expected to persist during

this phase of the switch. At a molecular level, it has recently been

shown that IRAK1 is necessary for promoting NLRP3 inflamma-

some action [32]. Since adenosine receptors require MyD88,

IRAK4 and TRAF6 signaling from TLRs for the anti-inflamma-

tory signaling [8], they may not directly influence inflammasome

activation. How resolution proceeds after adenosine receptors

synergize with TLRs remains to be determined.

Figure 4. MTA alters LPS tolerance. BMDM were treated overnight
with either 0 ng/mL, 10 ng/mL, or 100 ng/mL (A–C) or 100 EU/mL (D)

LPS in the presence or absence of 200 mM MTA, and 10 mM SCH442416
with 10 mM PSB1115, washed and rested for 6 h. BMDM were then
restimulated with either 0, 10 ng/mL, or 100 EU/mL LPS overnight.
Supernatants were collected and analyzed for TNFa (A) by ELISA while
cells were harvested, stained and analyzed for surface CD69 (B) or CD86
(C, D) expression by FACS. Data represent mean 6sem of 3 (A) or 4 (B–
D) experiments. * p,0.05, ** p,0.01, *** p,0.001.
doi:10.1371/journal.pone.0104210.g004
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Materials and Methods

Reagents
All reagents were from Thermo Fisher Scientific (Waltham,

MA) unless otherwise noted. Nigericin, adenosine and MTA were

from Sigma-Aldrich (St Louis, MO), while SCH442416, PSB1115

and MRE 3008F20 were from Tocris (Minneapolis, MN) and

TLR ligands were from Invivogen (San Diego, CA). Anti-HMGB1

rabbit monoclonal antibody (mAb) EPR3507 was from Genetex

(Irvine, CA), anti-actin mouse mAb AC-15 was from Sigma-

Aldrich, anti-IL-1b mouse mAb 3ZD was from Frederick National

Laboratory for Cancer Research (Frederick, MD), IL-1b ELISA

antibodies were from eBioscience (San Diego, CA), TNFa, IL-6

and IL-10 ELISA antibodies were from BioLegend (San Diego,

CA), FITC-conjugated anti-CD69 and APC-conjugated anti-

CD86 mAb were from BD Biosciences (San Jose, CA), and anti-

mouse and anti-rabbit antibodies conjugated to HRP were from

Jackson Immunoresearch (West Grove, PA). Bone marrow was

either a generous gift from Lisa Borghesi or obtained from

C57BL/6 mice (Jackson Labs, Bar Harbor, ME) maintained in

accordance with the Texas Tech Institutional Animal Care and

Use Committee.

Cell culture
BMDM were isolated and cultured as previously described [33].

All procedures and use of mice in this study were approved by the

University of Pittsburgh IACUC committee and conform to

national guidelines. Bone marrow was collected from mice after

asphyxiation using carbon dioxide by Dr. Peter Keyel, as

approved in an IACUC protocol granted to Dr. Lisa Borghesi,

University of Pittsburgh. Dr. Keyel is listed in the personnel

section of the IACUC protocol and is approved to perform this

procedure in our laboratory. Briefly, the bone marrow of C57BL/

6 mice was from femora and tibiae, and the cells cultured at 37uC
for 7–21 days on bacterial grade plates in 20% fetal calf serum

(FCS), 30% L929 cell supernatant, 16 sodium pyruvate, 16 L-

glutamine and 16 penicillin/streptomycin in DMEM. The cells

were plated into 10% FCS, 16 L-glutamine and 16 penicillin/

streptomycin in DMEM (D10) one day prior to experiments.

RAW cells stably transfected with the NF-KB reporter have been

previously described [22] and were cultured in D10 supplemented

with 0.2 mg/mL G418.

MTA functional assays
BMDM were plated at 2.56105 cells/well in a 12-well plate one

day prior to the experiment. Cells were treated with 200–500 mM

Figure 5. IL-1b secretion is independent of MTA. BMDM were primed for 4 h with 10 ng/mL LPS in the absence or presence of 200 mM or
500 mM MTA, then washed and treated in the presence (MTA in Sig 2) or absence of 200 mM MTA, inflammasome inhibitors YVAD or KCl and NLRP3
agonists 3 mM ATP, 2000 U/mL SLO or 20 mM nigericin for 30 min. Supernatants were collected and analyzed by ELISA (A) or TCA-precipitated,
resolved by SDS-PAGE along with cell lysates, and transferred to PVDF (B). Blots were sequentially probed with 3ZD anti-IL-1b mAb, EPR3057 anti-
HMGB1 rabbit mAb and anti-actin mAb coupled with relevant HRP-conjugated secondary antibodies. The graph is the mean 6 sem of 4 experiments
while the blot is a representative blot from 3 independent experiments.
doi:10.1371/journal.pone.0104210.g005

MTA Alters Macrophage Activation

PLOS ONE | www.plosone.org 6 August 2014 | Volume 9 | Issue 8 | e104210



MTA or adenosine in the presence or absence of 10 ng/mL LPS,

10 mg/mL polyI:C, 1 mg/mL Pam3CSK4, 6.67 mM CpG or

2 mg/mL Imiquimod along with the presence or absence of

10 mM A2a receptor inhibitor SCH442416 and 10 mM A2b

receptor inhibitor PSB1115 overnight at 37uC. Supernatants were

collected for evaluation by ELISA, while cells were harvested,

stained with FITC-conjugated anti-CD69 and APC-conjugated

anti-CD86 and analyzed by flow cytometry. Percent maximal

values of median fluorescent intensity was used to normalize

results across experiments.

LPS tolerance
BMDM were plated at 2.56105 cells/well in a 12-well plate one

day prior to the experiment. Cells were treated with or without

200 mM MTA in the presence or absence of 10 ng/mL or

100 ng/mL LPS overnight at 37uC. The following morning, the

cells were washed 36 in PBS, rested in D10 for 6 hours at 37uC,

washed, and restimulated with 0 or 10 ng/mL LPS overnight at

37uC. Supernatants were collected for evaluation by TNFa
ELISA, while cells were harvested, stained with FITC-conjugated

anti-CD69 and APC-conjugated anti-CD86 and analyzed by flow

cytometry. Alternatively, cells were tolerized with 100 endotoxin

units (EU)/mL LPS in the presence or absence of 200 mM MTA,

10 mM SCH442416 and 10 mM PSB1115 prior to restimulation

with 100 EU/mL LPS. The change from ng/mL to EU/mL

reflects changes to how Invivogen measured LPS quantities during

the course of the study.

Real-time PCR
BMDM were plated at a density of 26106 in a 6 well plate and

stimulated for 4 h with nothing, 100 EU/mL LPS, or 1 mg/mL

Pam3CSK4 along with either DMSO or 200 mM MTA. Total

RNA was extracted using TRI-Reagent (Life Technologies) and

cDNA produced using Superscript III (Life Technologies). TNFa
and b-actin was measured on a 7300 Real-time PCR system using

SybrGreen (Life Technologies). Primer sequences are available

upon request.

NF-kB induction
RAW NF-kB cells were plated at a density of 26105 in a 24 well

plate and allowed 2 hours at 37uC to settle. The cells were then

stimulated with nothing, 10 ng/mL LPS, or 1 mg/mL Pam3CSK4

in the presence or absence of 200 mM MTA or adenosine in

RPMI for 4 hours at 37uC. The supernatants were collected and

assayed for luciferase activity according to manufacturer’s

instructions (Clontech, Mountain View, CA). Values were

normalized to untreated cells to give fold-induction.

IL-1bassays
Assays to determine IL-1b production were performed as

previously described with slight modifications [33]. 105 (ELISA) or

106 (blot) BMDM were primed with 10 ng/mL LPS in the

absence or presence of 200–500 mM MTA for 4 hours at 37uC.

BMDM were washed and treated with 20 mM nigericin, 3 mM

ATP or 500 U/mL SLO in the presence or absence of 200 mM

MTA, 100 mM YVAD or 50 mM KCl for 30 min at 37uC. For

ELISA, supernatants were collected and analyzed as previously

described [33]. For western blots, samples were prepared and

resolved by SDS-PAGE as previously described [33]. PVDF

membranes were probed with anti-IL-1b 3ZD mAb or anti-

HMGB1 mAb, anti-mouse or anti-rabbit-HRP secondary anti-

body, and visualized with enhanced chemiluminescent reagent

(Santa Cruz Biotechnologies, Santa Cruz, CA). Blots were stripped

and reprobed with AC-15 anti-actin mAb and anti-mouse-HRP

secondary antibody.

Statistics
Two-way ANOVA followed by Bonferroni post-testing was

performed using Prism (Graphpad, La Jolla, CA).
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