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1   |   INTRODUCTION

Mitochondria produce energy through oxidative phos-
phorylation (OXPHOS) via the respiratory chain complex. 
Thirteen polypeptides make up the electron transport 
chain, they are encoded by the mitochondrial genome 
and are synthesized within the mitochondrial transla-
tion system. There are two rRNA and 22 tRNA molecules 
necessary for mitochondrial translation encoded by the 
mt-DNA. Other proteins used in mitochondrial transla-
tion are encoded by the nuclear genome. These include 
ribosomal proteins, tRNA modifying enzymes, translation 

factors, and aminoacyl-tRNA synthetases (mt-ARSs).1 
Specifically, mt-ARSs are involved in the biogenesis of 
mitochondrial tRNA by catalyzing amino acid attach-
ment to their corresponding tRNA to form an aminoacyl 
tRNA.2,3 There are 19 aminoacyl-tRNA synthetases, which 
have been implicated in human diseases.4–6 Among the 
mt-ARSs, pathogenic variants in IARS2 (Isoleucyl-tRNA 
synthetase 2), which encodes mitochondrial isoleucine-
tRNA synthetase (MIM #612801), have been known to 
result in neurological dysfunction as well as a spectrum 
of extra-neurological affects. The disease is comprised of 
a broad phenotypic spectrum. Pathogenic variants in the 
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Abstract
Isoleucyl-tRNA synthetase 2 (IARS2) encodes mitochondrial isoleucine-tRNA 
synthetase. Pathogenic variants in the IARS2 gene are associated with mitochon-
drial disease. We report a female with IARS2 compound heterozygous variants, 
p.Val499Glyfs*14 and p.Arg784Trp who presented with infantile spasms, Leigh 
disease and Wolff-Parkinson White (WPW) pattern. This report expands the phe-
notypic spectrum of IARS2-related disease.
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IARS2 gene have been reported to cause 2 distinct clini-
cal phenotypes including cataracts, growth hormone de-
ficiency, sensory neuropathy, sensorineural hearing loss, 
and skeletal dysplasia (CAGSSS) and Leigh syndrome 
with autosomal recessive inheritance.7,8

Isoleucyl-tRNA synthetase 2-related disease was 
first described in 1993 in two first cousins of French–
Canadian descent, who demonstrated clinical features 
consistent with the previously described CAGSSS pheno-
type.8  Pathogenic variants in IARS2 are rare, and fewer 
than 30 patients have been reported in the literature. 
CAGSSS has been described in seven patients from four 
families with broad clinical variability. Other reported 
clinical manifestations of CAGSSS include dysmorphic fa-
cial features (thick eyebrows, midface retrusion, progna-
thism, and deep-set eyes), brachydactyly, pes planus, and 
tapering fingers, adrenal insufficiency, and hypoglycemic 
episodes.7,8 From 2018 to 2021, eighteen individuals with 
pathogenic variants in IARS2 gene have been noted with 
a wide clinical spectrum.9–11 Among 26 reported patients 
from nineteen families with differing ethnic backgrounds, 
15 patients (58%) have neurologic manifestations, 12 pa-
tients (46%) have Leigh disease,7,9–12 4 patients (15%) have 
West syndrome,9,11 4 patients (15%) have sideroblastic 
anemia,9 3 patients (12%) have cardiomyopathy,9,12 and 3 
patients (12%) have isolated cataract.13 However, approx-
imately 27% of the patients with pathogenic variants in 
IARS2 have CAGSSS spectrum.7,14,15 Prognosis is favorable 
among CAGSSS individuals. All individuals with CAGSSS 
are alive at most recent follow-up, their ages range from 
6 yr to 35 yr, and no intellectual disability was reported in 
this group. Mortality is high among patients with neuro-
logical phenotype which is primarily attributed to progres-
sive neurologic disease; 4 patients died from neurologic 
regression, 1 patient died from cardiomyopathy, and 7 
patients have a range of disabilities from profound intel-
lectual disability, absent speech to non-ambulation.7,9,11,12 
Genotype–phenotype correlation has not been well estab-
lished due to the rarity of this disease.

We report a female infant with novel compound 
heterozygous pathogenic variants, c.1493dupA (p.Val-
499Glyfs*14) and c.2350C>T (p.Arg784Trp) in IARS2 gene 
detected by Exome Sequencing (ES), who presented with 
developmental regression, infantile spasms, hypotonia, 
abnormal brain MRI, and WPW pattern on EKG. This is 
the first report of WPW in IARS2-related mitochondrial 
disorder.

2   |   LITERATURE SEARCH

We perform a literature search through PubMed, Embase, 
and Google Scholar. The following search terms were 

used: IARS2, IARS2-related disorders, IARS2-related 
mitochondrial disease, aminoacyl-tRNA synthetases, 
CAGSSS, Leigh disease, cardiac diseases in mitochondrial 
disorder, WPW in mitochondrial disorder, and ventricular 
pre-excitation in mitochondrial disorder.

3   |   CLINICAL REPORT

The proband is a 41-month-old African American female 
patient who presented with infantile spasm, progressive 
neurological deterioration associated with Leigh syn-
drome. She was the first child of non-consanguineous par-
ents, a 21-year-old mother and a 22-year-old father. The 
family history was noncontributory. The pregnancy was 
uncomplicated. Birthweight was 3005 g (37th centile), and 
length was 53.3 cm (93rd centile). Post-natal period was 
uncomplicated. The patient began to roll over at 6 months 
of age and to sit without support at age 7 months. She was 
subsequently delayed in her development and began to 
exhibit regression including the loss of the ability to bab-
ble and sit unsupported around 8 months of age, 2 months 
prior to the onset of infantile spasms.

At 10  months of age, she presented with infantile 
spasms. Examination at age 10 months revealed normal 
growth parameters; weight 8.79 kg (60th centile), height 
74  cm (70th centile), and head circumference 45.4  cm 
(66th centile). She had no evidence of craniofacial dys-
morphic features. Her neurological examination was no-
table for marked axial and appendicular hypotonia with 
poorly elicitable deep tendon reflexes. EEG at this time 
demonstrated high-voltage, disorganized background 
activity with multifocal epileptiform discharges consis-
tent with hypsarrhythmia and two infantile spasms. She 
was treated with a course of high-dose oral methylpred-
nisolone which resolved her infantile spasms clinically 
and the hypsarrhythmia electrographically. Brain MRI at 
10 months of age revealed restricted water diffusion in the 
periaqueductal gray area of the midbrain and upper dorsal 
pons, medial thalamus and mamillary bodies as well as 
edema in the periaqueductal gray region consistent with 
Leigh syndrome (Figure 1A,B).

The patient's EKG was also abnormal with intermit-
tent ventricular pre-excitation (VPE) consistent with 
WPW (Figure  2). Echocardiogram showed normal car-
diac anatomy and function. Holter monitoring revealed 
pre-excited atrial tachycardia in the 230 bpm range. The 
patient was started on propranolol. She did not have any 
documented supraventricular arrhythmias on telemetry 
or on subsequent Holter monitor studies at 23  months 
of age. An ophthalmological examination was normal 
without retinal abnormalities. An audiological evalua-
tion was normal.
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Initial genetic testing including chromosome microar-
ray, plasma amino acid analysis, urine organic acid analy-
sis, MECP2 gene sequencing, and an epilepsy gene panel 
was non-diagnostic. However, urine organic acid analysis 
revealed elevated lactic acid, pyruvic acid, fumaric acid, 
2-ketoglutaric acid, methylmalonic acid, 3-OH-butyric 
acid, and acetoacetic acid. Plasma amino acid analysis 
demonstrated a mild elevation of alanine. Blood lactic 
acid and pyruvic acid were elevated at 4.6 mmo/L (0.5–
2.2 mmol/L) and 0.126 mmol/L (0.03–0.107 mmol/L), re-
spectively. Given the history of developmental regression, 
abnormal MRI brain findings, intermittent VPE, elevated 
blood lactic acid, pyruvic acid and persistent elevation of 
lactic acid and TCA cycle intermediates in the urine, a mito-
chondrial disorder was suspected. Exome Sequencing (ES) 
by next-generation sequencing method found compound 
heterozygous variants in the IARS2 gene, which included 
a pathogenic variant c.1493dupA (p.Val499Glyfs*14) in-
herited from her mother and a likely pathogenic variant 
c.2350C>T (p.Arg784Trp) inherited from her father. A 
frameshift variant, p.Val499Glyfs*14, predicted to result 

in protein truncation or nonsense-mediated decay and 
this variant is not observed in large population cohorts.16 
A likely pathogenic variant, p.Arg784Trp is not observed 
at a significant frequency in large population cohorts16 
and in silico analysis PROVEAN (Protein Variation Effect 
Analyzer) supports a deleterious effect. Mitochondrial ge-
nome sequencing and deletion/duplication analysis were 
normal.

Follow-up brain MRI at 16  months of age showed 
resolution of the diffusion-weighted imaging abnormali-
ties as well as improvement of the T2  signal abnormal-
ity in the periaqueductal region and upper dorsal pons 
(Figure 1C,D). A follow-up MRI of the brain at 34 months 
of age revealed new cytotoxic edema lesions within the 
putamen nuclei bilaterally (Figure 3A,B).

At her most recent follow-up at 41  months of age, 
her weight was 12.3 kg (9th centile), length was 94 cm 
(24th centile) and head circumference was 48 cm (26th 
centile). She has global developmental delay but was 
now cooing and babbling once again. She was able to sit 
unsupported and was able to pull to a stand but is not 

F I G U R E  1   Brain MRI of the patient 
at age 10 months. (A) Diffusion weighted 
imaging of the brain showing restricted 
diffusion within the mammillary bodies 
(short arrow) and periaqueductal gray 
region of the midbrain (long arrow). (B) 
Axial T2 weighted image of the brain at 
10 months of age demonstrating edema 
within the periaqueductal gray region 
of the midbrain (arrow). (C) Axial T2 
imaging demonstrating periaqueductal 
gray gliosis with residual increased signal 
(arrow). (D) Axial Diffusion Weighted 
Imaging demonstrating resolution of 
restricted diffusion changes seen at 
10 months of age

(A) (B)

(C) (D)
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walking without support. Her neurological examination 
was notable for good visual fixation and tracking with 
full extraocular movements. There was no nystagmus or 
ptosis. Bulbar function was intact. She continued to have 
axial and appendicular hypotonia along with quadriceps 
weakness. Her deep tendon reflexes were absent. EKG 
at 41 months showed sinus rhythm without evidence of 
atrial ectopic tachycardia.

Due to proximal leg weakness and absent deep tendon 
reflexes, nerve conduction studies and EMG were per-
formed. The results demonstrated mild conduction veloc-
ity slowing without reduced amplitude in both sensory 
and motor nerves of the upper extremities and normal ve-
locities and amplitudes in sensory and motor nerves of the 
lower extremities, possibly suggestive of a demyelinating 
sensory-motor neuropathy.

F I G U R E  2   12-lead ECG demonstrating intermittent centricular pre-excitation (several beats with short PR with delta-wave and wide 
QRS complexes) consistent with PWP pattern

F I G U R E  3   MRI of the Brain at 
34 months of age. (A) Axial T2 imaging 
demonstrating new areas of edema 
within the putamen nuclei (arrows). (B) 
Corresponding axial Diffusion Weighted 
images demonstrating cytotoxic edema in 
the bilateral putamen nuclei (arrows)

(A) (B)
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4   |   DISCUSSION

Isoleucyl-tRNA synthetase 2-related mitochondrial 
disease is a rare genetic disease impacting mitochon-
drial isoleucyl-tRNA synthase. Given the broad spec-
trum of phenotypes among 27 patients including our 
patient, it is indicative that allelic disorders linked 
to IARS2  may include isolated cataract, CAGSSS, and 
neurological phenotype which involves multiorgan sys-
tems with prominent neurological symptoms (Table 1). 
Here, we report an African American female patient 

with novel pathogenic and likely pathogenic variants 
in IARS2 gene, who has a neurological disorder. At the 
time of this publication, our patient is 41  months of 
age and is making slow developmental progress with-
out regression. Previously undescribed in other reports, 
our patient has VPE on EKG in addition to Leigh syn-
drome and West syndrome. Moreover, our patient has 
electrophysiological evidence for a mild sensorimotor 
demyelinating polyneuropathy that may become more 
progressive over time. Generally, mitochondrial dys-
function affects organs and tissues which are highly 

T A B L E  1   Summary of clinical characteristics in 27 patients with pathogenic/likely pathogenic variants in IARS2 gene categorized by 
phenotypes

Phenotype Characteristic features Frequency

CAGSSS
(N = 7)

Developmental delay in early life 5/7

Leigh syndrome 0/7

Seizure 0/7

Neuropathy 5/7

Normal intelligence at most recent follow-up 7/7

Cataract 7/7

Corneal opacification 6/7

Bilateral nystagmus 7/7

Adrenal insufficiency 2/7

GH deficiency 4/7

Short stature 7/7

SEMD 6/6

Scoliosis 4/7

Bilateral hip dislocation 4/7

Dysmorphic features 7/7

Hearing loss 5/7

Type 2 Achalasia 2/7

Neurological phenotype
(N = 17)

Developmental delay 16/16

Hypotonia 14/14

Leigh syndrome 14/17

Seizure 9/13

West syndrome 3/13

Cardiomyopathy 4/10

WPW 1/10

Sideroblastic anemia 5/7

Cataract 8/13

Hearing loss 8/8

Short stature 2/11

Scoliosis 2/11

Hypoparathyroidism 3/7

High serum lactate 11/11

High CSF lactate 5/5

Death 5/13
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metabolically active, including the heart and nervous 
system. Cardiac involvement is frequent in pediatric 
patients with mitochondrial disorders.17 Cardiovascular 
manifestations of mitochondrial disease often include 
cardiomyopathy (dilated cardiomyopathy and hyper-
trophic cardiomyopathy),18 conduction abnormalities 
(prolonged QT, right bundle branch block, supraven-
tricular tachycardia, ventricular tachycardia, VPE), and 
left ventricular dysfunction.19,20 Among cardiac conduc-
tion disturbances, VPE is more prevalent in patients 
with mt-DNA mutation, especially in patients MELAS 
syndrome (mitochondrial encephalomyopathy, lactic 
acidosis and stroke-like episodes).19,21–24 However, VPE 
has been described in a myriad of mitochondrial dis-
eases caused by pathogenic variants in both the nuclear 
and mitochondrial genome.18,25  Majority of children 
with VPE are asymptomatic.26  Nonetheless, asympto-
matic patients are still at risk of sudden cardiac death.27 
Among individuals with Leigh syndrome, sudden and 

unexpected death have been described.28,29 The cause of 
sudden death is complex including fulminant metabolic 
acidosis, cerebral necrosis, conduction defects, aspira-
tion etc.29 Among cardiac conduction disturbances, VPE 
is more prevalent in patients with mtDNA mutation, es-
pecially in patients MELAS syndrome (mitochondrial 
encephalomyopathy, lactic acidosis and stroke-like 
episodes).19,21-24 In addition, VPE is well recognized to 
contribute to development of a dilated cardiomyopathy 
as a result of the recurrent and sustained tachyarrhyth-
mia.30,31 Our case has been asymptomatic so far from 
cardiac standpoint. This is the first report of VPE in 
IARS2-related disease.

By integrating the genotypic and phenotypic informa-
tion from seven patients with CAGSSS, three patients with 
isolated cataract, as well as from seventeen patients with 
neurological manifestations, we were able to explore the po-
tential correlation between the domains affected by patho-
genic variants and the phenotypes (Figure  4). All seven 

F I G U R E  4   Distribution of reported pathogenic and likely pathogenic variants in IARS2 gene. The reported pathogenic and likely 
pathogenic variants of IARS2 gene are plotted around three functional domains in the schematic gene structure, including Isoleucyl-tRNA 
synthase domain (blue), Anticodon-binding domain (orange), and Zinc Finger domain (green). Twenty-seven reported patients in this 
figure are grouped into three phenotypic groups, including isolated cataract, CAGSSS, and neurological manifestation, in which all patients 
reported with cataract are highlighted in yellow. Each variant is listed in a box with the filled color corresponding to the functional domains. 
Homozygous variants are indicated with homo in the parenthesis, and the compound heterozygous variants are connected by dotted 
shadows for each patient. Frameshift and nonsense variants are highlighted in red font, and variants in the present case are underlined. 
NOTE: Likely due to a strong divergent feature of the anticodon-binding domain32 different sources characterize the size of this domain 
differently. To reflect the opinion from the original report14 of the variant Pro909Leu, Pro909Leu was orange color-coated as other variants 
in the anticodon-binding domain. To align towards our reference (Alamut Visual) used to unify the variant nomenclature, Pro909Leu was 
placed out of the light orange backdrop for the anticodon-binding domain. References are in brackets
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patients of CAGSSS where the result of homozygous mis-
sense pathogenic variants around the anticodon-binding 
domain, although one study also differentially included 
Pro909Leu/Pro909Ser in the anticodon-binding domain,14 
which might result from the strong divergence in this do-
main.32 Interestingly, SNP genotypes revealed regions of 
homozygosity of varying size involved in all variants of 
these CAGSSS individuals, including Pro909Leu (3 pa-
tients), Pro909Ser (1 patient), His761Arg (2 patients), and 
Gly874Arg (1 patient).7,14,15 The shared clinical phenotype 
(CAGSSS) and the variant/region homozygosity suggested 
that the homozygous IARS2 variants in anticodon-binding 
domain might be essential for the CAGSSS phenotype.7,14 
Aminoacyl-tRNA synthetases, such as IARS2, facilitate 
the pairing of tRNAs to its corresponding amino acid ac-
cording to the anticodon triplet on each tRNA.33 Since the 
above mentioned homozygous variants in the anticodon-
binding domain will introduce different protein structures 
to the tRNA synthetases through various amino acid alter-
ations over different mutation sites, we postulate that the 
spectrum of phenotypic presentations in CAGSSS could 
be the result of different structural variations of the tRNA 
synthetase. It is worth noting that at least one pathogenic 
variant in the anticodon-binding domain was detected in 
cataract cases including 3 cases with isolated cataract, 7 
cases with CAGSSS, and 5 cases with neurological man-
ifestation.7,13,14 It would be interesting to explore the 
correlation between pathogenic variants in the anticodon-
binding domain and cataracts in the future studies. In ad-
dition, seventeen cases with neurological manifestations, 
including the present case, were found to have at least 
one pathogenic variant in the aminoacyl-tRNA synthetase 
functional domain. Interestingly, one of these 17 cases re-
ported with two pathogenic variants shares an amino acid 
alteration with the present case, in which the missense 
variant Arg784Trp is identical to the one presented here. 
Additionally, another nonsense variant in the same case, 
Trp520*, is a similar truncation event to the frameshift 
variant Val499Glyfs*14 in present case.10 Conversely, a 
Pro67Ser homozygote was also reported with similar neu-
rological manifestations, it should be noted that codon 67 
is still proximal to aminoacyl-tRNA synthetase domain.9 
As it is characterized by the domain functions, mutations 
in the catalytic aminoacyl-tRNA synthetase domain likely 
affect the essential translation fidelity.9  This catalytic 
domain might primarily contribute to the more severe 
phenotypic presentation resulting in neurological mani-
festation than those pathogenic variants in other parts of 
the protein, which result in the less severe, isolated, and 
cataract CAGSSS cases. Further functional evaluation 
would confirm the potential mechanism observed in this 
case series. It is possible that clear genotype–phenotype 

correlations will emerge, as a larger number of patients 
are studied.

Our report describes a patient with Leigh syndrome 
caused by IARS2 variants. Our patient does not have fea-
tures of CAGSSS with the exception of a possible mild de-
myelinating sensory-motor neuropathy. This suggests that 
allelic disorders linked to IARS2 include CAGSSS, neuro-
logical disorder and also isolated cataracts. Furthermore, 
the intermittent VPE identified in this patient and hyper-
trophic cardiomyopathy described in other cases highlight 
the need to clinically evaluate cardiac conduction defect 
and cardiomyopathy in IARS2-related mitochondrial dis-
ease. Therefore, physicians should be aware of the poten-
tial for cardiac abnormalities and neuropathy in patients 
with similar MRI findings and suggestive metabolic ab-
normalities. Considering the risk of sudden cardiac death 
in the patients with Leigh syndrome, periodic EKG, and 
echocardiogram should be carried out for patients with 
IARS2-related mitochondrial disease.
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