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Abstract 10 

While wastewater is understood to be a critically important reservoir of antimicrobial 11 

resistance due to the presence of multiple antibiotic residues from industrial and agricultural 12 

runoff, there is little known about the effects of antibiotic interactions in the wastewater on the 13 

development of resistance. We worked to fill this gap in quantitative understanding of antibiotic 14 

interaction in constant flow environments by experimentally monitoring E. coli populations 15 

under subinhibitory concentrations of combinations of antibiotics with synergistic, antagonistic, 16 

and additive interactions. We then used these results to expand our previously developed 17 

computational model to account for the complex effects of antibiotic interaction. We found that 18 

while E. coli populations grown in additively interacting antibiotic combinations grew 19 

predictably according to the previously developed model, those populations grown under 20 

synergistic and antagonistic antibiotic conditions exhibited significant differences from predicted 21 

behavior.  E. coli populations grown in the condition with synergistically interacting antibiotics 22 

developed less resistance than predicted, indicating that synergistic antibiotics may have a 23 

suppressive effect on antimicrobial resistance development. Furthermore E. coli populations 24 

grown in the condition with antagonistically interacting antibiotics showed an antibiotic ratio-25 

dependent development of resistance, suggesting that not only antibiotic interaction, but relative 26 

concentration is important in predicting resistance development. These results provide critical 27 

insight for quantitatively understanding the effects of antibiotic interactions in wastewater and 28 

provide a basis for future studies in modelling resistance in these environments.  29 
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Importance 30 

Antimicrobial resistance (AMR) is a growing global threat to public health expected to impact 10 31 

million people by 2050, driving mortality rates globally and with a disproportionate effect on 32 

low- and middle- income countries. Communities in proximity to wastewater settings and 33 

environmentally contaminated surroundings are at particular risk due to resistance stemming 34 

from antibiotic residues from industrial and agricultural runoff. Currently, there is a limited 35 

quantitative and mechanistic understanding of the evolution of AMR in response to multiple 36 

interacting antibiotic residues in constant flow environments. Using an integrated computational 37 

and experimental methods, we find that interactions between antibiotic residues significantly 38 

affect the development of resistant bacterial populations.   39 
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Introduction 40 

Antimicrobial resistance (AMR) is a rapidly evolving critical threat to global health with the 41 

potential to lead to financial losses of as much as $100 trillion USD (1, 2). A recent systematic 42 

analysis of global AMR has predicted that there were an estimated 4.95 million deaths associated 43 

with bacterial AMR in 2019 (3).  Contributing factors to AMR in human medicine (i.e., 44 

prescription patterns, poor patient treatment adherence etc.) have been well documented (4–7); 45 

however, environmental distribution of antibiotics and its impact on AMR has received less 46 

attention (8, 9). Wastewater specifically has been shown to be a reservoir of resistant pathogens, 47 

often stemming from the antibiotic pollution present in runoff from industrial and agricultural 48 

sources (10). Furthermore, computational modeling of wastewater has shown that even low 49 

concentrations of antibiotic residues can lead to the development of AMR (11). This is 50 

particularly of concern in low-income communities which can often have open sewer systems 51 

and little access to wastewater treatment, putting them at particular risk for deadly drug-resistant 52 

outbreaks.  53 

Previously, we have developed a computational model of resistance acquisition in continuous 54 

flow environments based on known mechanisms of bacterial growth and mutation as well as 55 

experimental validation (11). However, experimental validation of the model was limited to 56 

systems with only one antibiotic residue. The interaction between two or more antibiotics is of 57 

particular interest, with combination therapy used both clinically to increase treatment efficacy 58 

and lower the risk of AMR development as well as prophylactically in livestock to prevent 59 

infections from developing and spreading across these large animal populations. The interaction 60 

between two antibiotics from different classes have previously been shown to affect resistance 61 

acquisition (12). Synergy is the interaction of multiple drugs to have a greater killing action than 62 

the sum of their parts while antagonism is the interaction of multiple drugs to have reduced 63 

killing action than the sum of their parts. Drugs that do not interact, or in other words have the 64 

killing action equal to the sum of their parts are said to have an additive interaction. Interestingly, 65 

synergy between two antibiotics has also been shown to increase the likelihood of resistance 66 

population development at subtherapeutic doses (12). However, the effects of antibiotic 67 

interaction on the growth of resistant populations in wastewater settings has not previously been 68 

observed. Wastewater can often have many antibiotic residues present, which have the potential 69 

to interact with each other either synergistically or antagonistically. For example, antibiotic 70 

residues found in water sampled from hospital sewage in Sweden included the drugs 71 

doxycycline, erythromycin, and ciprofloxacin among others (13). This is of note because 72 

doxycycline and erythromycin are known to have a synergistic interaction, while doxycycline 73 

and ciprofloxacin are known to have an antagonistic interaction (12). Antimicrobials in 74 

combination often have different mechanisms of action, so it is possible that interactions between 75 

the multiple antibiotic residues in wastewater will have unique effects on the development of 76 

antimicrobial resistance. However, quantitative data on these effects of antibiotic interactions on 77 

AMR in wastewater is lacking. We aim to fill this critical gap in knowledge about the effects of 78 

antibiotic interactions on AMR in continuous flow environments such as wastewater through an 79 

iterative approach to computational modeling and experimental validation.  80 
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 81 

Methods 82 

Model Development 83 

The model used in this paper is based on a previously developed model of the growth of 84 

antibiotic resistant bacterial populations in wastewater that builds on prior studies and extends to 85 

incorporate a variety of critical inputs which can be broadly classified into bacterial parameters, 86 

environmental parameters and antibiotic parameters (11). Bacteria specific input factors include 87 

the growth rates of antibiotic susceptible and resistant strains and mutation rates in response to 88 

subinhibitory concentrations of antibiotic. The antibiotic specific inputs, such as bactericidal 89 

activity, allow for the study of the effects of antibiotic pollution on the development of 90 

resistance.  Additionally, environmental inputs, including physical inflow and outflow rates and 91 

antibiotic residue concentrations, allow for the modelling of resistance development in a variety 92 

of settings of interest. Ordinary differential equations incorporating these input parameters were 93 

used to model an output of resistant bacterial populations over time, thus allowing for the 94 

prediction of resistant population development (Eq Set 1 and Table 1).  95 

Experimental Validation 96 

Experimental validation of the model was done using the eVOLVER system, which is an 97 

automated, highly flexible platform allowing for scalable continuous culture microbial growth 98 

and independent, precise and multiparameter control of growth conditions such as temperature 99 

and flow rate (14). Experiments were done with antibiotics which have been found to be present 100 

in wastewater with known interactions with one pair of antibiotics exhibiting additive interaction 101 

(12.5 mg/L Rifampicin + 4 mg/L Streptomycin), one pair of antibiotics exhibiting synergistic 102 

interaction (1.5 mg/L Doxycycline + 64 mg/L Erythromycin) and one pair of antibiotics 103 

exhibiting antagonistic interaction (1.5 mg/L Doxycycline + 0.0375 mg/L Ciprofloxacin) (12-13, 104 

15-17).  Drug interactions were confirmed using checkerboard assays and calculating fractional 105 

inhibitory concentration (FIC) values as described in Bellio et al. where combinations with an 106 

FIC less than 0.5 were considered synergistic, those with an FIC greater than 4 were considered 107 

antagonistic and those with an FIC between 0.5 and 4 were considered to have an additive 108 

interaction (18). Experiments were initialized with inoculation of LB media with E. coli 109 

MG1655 in static conditions at 37°C. Then, inflow and outflow of the antibiotic-containing LB 110 

media at two concentration combinations was started. During the course of the experiment, each 111 

culture condition was sampled daily, and the concentrations of total bacteria and resistant 112 

bacteria were calculated through plating on drug-free and selective LB agar containing 8X MIC 113 

Drug A and/or 8X MIC Drug B respectively.  114 

  115 
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Results  116 

 117 

Drugs with Additive Interaction Develop Resistance Predictably 118 

The first antibiotic combination tested was Rifampicin and Streptomycin at half of their 119 

respective MICs (12.5 mg/L Rifampicin + 4 mg/L Streptomycin). Checkerboard assays 120 

confirmed an FIC of 1 indicating additive interaction between these two drugs. Model prediction 121 

was made based on previously determined parameter values from eVOLVER experiments with 122 

each drug in isolation. The experimental results with the eVOLVER qualitatively verified the 123 

model prediction with dominant susceptible and Rifampicin-resistant populations as well as a 124 

significant population of bacteria resistant to both Rifampicin and Streptomycin (Figure 1). 125 

While a population of bacteria resistant to Streptomycin only was not observed experimentally, 126 

this may be due to the transient nature of this population not being captured in the sampling 127 

frequency. This confirmed the assumption that antibiotics with no interaction behave predictably 128 

in combination.  129 

Synergistic Interaction Show Lower than Expected Resistance 130 

The second antibiotic combination tested was Doxycycline and Erythromycin, which in addition 131 

to have been observed in wastewater sampling, have also previously found to interact 132 

synergistically (13, 17). Checkerboard assays confirmed an FIC of 0.375 indicating synergistic 133 

interaction. Initial model prediction was made based on previously determined parameter values 134 

from eVOLVER experiments with each drug in isolation and assuming no effect from antibiotic 135 

interaction, showing dominant Doxycycline resistant and combination resistant populations 136 

(Figure 2a). Experimental results showed lower levels of resistance than predicted, particularly in 137 

the bacterial population resistant to both drugs (Figure 2b). In order to reproduce the 138 

experimental behavior, a synergy parameter, equal to the FIC value for the given antibiotic 139 

combination, was then introduced as a multiplying factor to the mutation parameter to account 140 

for reduced resistance levels (Eq set 1). The results of this change are shown in Figure 2c. These 141 

results suggest that synergy may have a suppressive effect on the development of resistance due 142 

to a decrease in the mutation rates proportional to the degree of synergy. This is of particular 143 

interest because previous studies done in non-flow conditions saw increased resistance in 144 

synergistic conditions compared to antibiotics with no interaction, indicating that environments 145 

with constant flow cannot be adequately predicted with only data from standard non-flow culture 146 

conditions (17).  147 

Drugs with Antagonistic Interaction Exhibit Ratio-Dependent Resistance Development 148 

The third antibiotic combination tested was Doxycycline and Ciprofloxacin which have been 149 

observed as residues in wastewater samples and have previously found to interact 150 

antagonistically (13, 17). Checkerboard assays confirmed an FIC of 4 indicating antagonistic 151 

interaction. Initial experimental results showed lower levels of resistance than predicted, and no 152 

observable bacterial population resistant to both drugs (Figure 3a). However, previous studies 153 

indicated that unlike in additive and synergistic combinations, resistance development in 154 
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Doxycycline and Ciprofloxacin combinations may differ depending on the relative 155 

concentrations of the two (17). Additional experiments were conducted with differing ratios of 156 

Doxycycline and Ciprofloxacin (0.9 MIC Dox: 0.1 MIC Cip; 0.7 MIC Dox: 0.3 MIC Cip; 0.5 157 

MIC Dox: 0.5 MIC Cip; 0.3 MIC Dox: 0.7 MIC Cip; 0.1 MIC Dox: 0.9 MIC Cip). These 158 

experiments found an antibiotic-ratio dependent effect. Several changes were made to the 159 

previous model to account for the ratio dependency of the resistant population behavior (Table 160 

2). First, the growth term was adjusted to include an antibiotic concentration dependent growth 161 

rate function rather than a constant growth rate parameter. Additionally, the bacterial killing rate 162 

parameter was similarly adjusted to include a resistant population-dependent killing rate function 163 

rather than a constant killing rate. The results of the adjusted model for the 50% MIC Dox and 164 

50% MIC Cip condition are shown in Figure 3b, demonstrating the model’s ability to capture the 165 

dominant susceptible population as well as the lower Doxycycline resistant population and the 166 

absence of the combination resistant population as seen in Figure 3a. 167 

This adjusted model was able to capture the relative behaviors of the different resistant 168 

populations for differing ratios of Dox and Cip, notably the transient Doxycycline-resistant 169 

population giving way to the combination resistant population (Figure 4). Furthermore, the 170 

model successfully captures the increased time the Doxycycline-resistant population was present 171 

in the condition with 0.9X MIC Dox (Figures 4c-d) compared to the condition with 0.7X MIC 172 

Dox (Figures 4a-b).  However, it failed to capture the sustained drug-susceptible population in 173 

the high Cip concentration conditions. We hypothesize that this may be due to a separation of the 174 

drug susceptible populations from the resistant population between the planktonic bacteria and 175 

the bacteria in the biofilm that form at walls of the eVOLVER vials. Biofilm has been seen to 176 

have different resistance profiles than planktonic bacteria which may explain why the model, 177 

which only accounts for the bacteria under constant flow conditions, does not fully capture the 178 

susceptible population (19). Though the current model is limited in its ability to model bacteria 179 

in biofilm, it still succeeds in being able to predict the resistance development occurring in the 180 

continuous liquid culture. Thus, it still can have use as a predictive tool for understanding AMR 181 

in wastewater.  182 

Discussion and Conclusions 183 

Overall, through our integrated computational and experimental approach, we were able 184 

to model the development of antibiotic resistance in response to subinhibitory combinations of 185 

antibiotics exhibiting additive, synergistic and antagonistic interactions. We demonstrated E. coli 186 

populations grown in additively interacting antibiotic combinations grew predictably according 187 

to the previously developed model. This confirmed our assumption that in the absence of 188 

antibiotic interaction, resistance to each antibiotic will develop independently. We also found 189 

that E. coli populations grown under synergistic and antagonistic antibiotic conditions exhibited 190 

significant differences from predicted behavior.  E. coli populations growing in subinhibitory 191 

concentrations of synergistically interacting antibiotics showed the development of less 192 

resistance than predicted. Interestingly, this indicated that synergistic antibiotics have a 193 

suppressive effect on antimicrobial resistance development in continuous flow conditions. This is 194 
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in contrast to previous studies in non-flow conditions which found that synergy increased 195 

resistance acquisition (12, 20). Thus, our novel finding suggests that differing flow conditions 196 

significantly alter resistance acquisition patterns and studies in continuous flow conditions are 197 

necessary for understanding environments like wastewater. Additionally, we found that E. coli 198 

populations grown with antagonistically interacting antibiotics showed an antibiotic ratio-199 

dependent development of resistance. This behavior has previously been observed in non-flow 200 

conditions, though only with single-resistant populations (17). Our studies further this finding to 201 

multi-resistant populations and also find that not only antibiotic interaction, but relative 202 

concentration is important in predicting resistance development in continuous flow 203 

environments. 204 

Though we have been able to draw a number of conclusions about the effects of 205 

antibiotic interaction on resistance development in wastewater, we note that our studies do have 206 

limitations. Primarily, we only studied a limited number of antibiotic combinations and as such 207 

cannot conclude the effects of all antibiotic interactions. Future studies investigating a wider 208 

array of antibiotics could elucidate further findings on specific combinations in constant flow 209 

conditions. Additional studies looking at three or more antibiotics in combination with varying 210 

interactions or media conditions better approximating wastewater than the LB broth used here 211 

would also be a step forward in modelling the types of complex conditions that would be found 212 

in wastewater. Another major area of interest in developing the model would be to further 213 

integrate the role of biofilm in resistance development. While biofilm has been observed in 214 

samples both up- and downstream from wastewater treatment plants and is a known 215 

environmental reservoir of resistance, there is limited quantitative understanding of how this 216 

resistance develops, particularly in response to antibiotic residues present in wastewater (21, 22). 217 

In order to develop quantitative models of resistance development in wastewater incorporating 218 

both planktonic bacteria and biofilm, experimental methods for controllably maintaining both 219 

populations in continuous flow conditions will need to be developed. 220 

Despite these limitations, experimental validation demonstrated our ability to model 221 

resistance development in subinhibitory antibiotic concentrations of antibiotics with varying 222 

interactions. We were able to determine that synergistic interaction have a suppressive effect on 223 

resistance development. Additionally, more complex resistance development patterns were 224 

observed in the case of antagonistic interaction where we found an antibiotic ratio-dependent 225 

behavior. This has important implications for understanding the effects of industrial and 226 

agricultural antibiotic runoff in wastewater and determining acceptable antibiotic concentrations 227 

and combinations when treating wastewater.  These findings can be used as a basis for public 228 

health policy makers and the developed model can be utilized to predict resistant population 229 

emergence in different sewage and wastewater conditions where multiple antibiotic residues may 230 

be present.  231 

  232 
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Tables and Equations 315 

Eq Set 1.  Sensitive and resistant populations under selective pressure from antimicrobial 316 

combination therapy, adapted from Sutradhar et al. 202111 317 

  318 

1) 
𝑑𝐶1

𝑑𝑡
= 𝐸1 − 𝑘𝑒𝐶1 

2) 
𝑑𝐶2

𝑑𝑡
= 𝐸2 − 𝑘𝑒𝐶2 

3) 
𝑑𝑆

𝑑𝑡
= 𝛼𝑆 (1 −

𝑅𝑚+𝑅1+𝑅2+𝑆

𝑁𝑚𝑎𝑥
) S + 𝑔𝑠 − 𝑘𝑇𝑆 − 𝑠𝑦𝑛 ∗ 𝛿𝑚𝑎𝑥,1 (

𝐶1

𝐶1+𝐶𝑆
50) 𝑆 −

𝑠𝑦𝑛 ∗ 𝛿𝑚𝑎𝑥,2 (
𝐶2

𝐶2+𝐶𝑆
50) S 

4) 
𝑑𝑅𝑚

𝑑𝑡
= 𝛼𝑅 (1 −

𝑅𝑚+𝑅1+𝑅2+𝑆

𝑁𝑚𝑎𝑥
)𝑅𝑚 + 𝑔𝑅𝑚 − 𝑘𝑇𝑅𝑚 − 𝑠𝑦𝑛 ∗ 𝛿𝑚𝑎𝑥,1 (

𝐶1

𝐶1+𝐶𝑅,1
50 )𝑅𝑚 −

𝑠𝑦𝑛 ∗ 𝛿𝑚𝑎𝑥,2 (
𝐶2

𝐶2+𝐶𝑅,2
50 )𝑅𝑚 + 𝑠𝑦𝑛 ∗  𝑚𝑇(𝐶1, 𝐶2)𝑆 + 𝑅1𝑚2(𝐶2) + 𝑅2𝑚1(𝐶1) 

5) 
𝑑𝑅1

𝑑𝑡
= 𝛼𝑅,1 (1 −

𝑅𝑚+𝑅1+𝑅2+𝑆

𝑁𝑚𝑎𝑥
)𝑅1 + 𝑔𝑅1 − 𝑘𝑇𝑅1 − 𝑠𝑦𝑛 ∗ 𝛿𝑚𝑎𝑥,1 (

𝐶1

𝐶1+𝐶𝑅,1
50)𝑅1 −

𝑠𝑦𝑛 ∗ 𝛿𝑚𝑎𝑥,2 (
𝐶2

𝐶2+𝐶𝑆
50)𝑅1 +𝑚1(𝐶1)𝑆 

6) 
𝑑𝑅2

𝑑𝑡
= 𝛼𝑅,2 (1 −

𝑅𝑚+𝑅1+𝑅2+𝑆

𝑁𝑚𝑎𝑥
)𝑅2 + 𝑔𝑅2 − 𝑘𝑇𝑅2 − 𝑠𝑦𝑛 ∗ 𝛿𝑚𝑎𝑥,1 (

𝐶1

𝐶1+𝐶𝑆
50)𝑅2 −

𝑠𝑦𝑛 ∗ 𝛿𝑚𝑎𝑥,2 (
𝐶2

𝐶2+𝐶𝑅,2
50 )𝑅2 +𝑚2(𝐶2)𝑆 
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Variable Definitions 

C1 Antibiotic 1 Concentration (ug/mL) 

C2 Antibiotic 2 Concentration (ug/mL) 

S Susceptible (cells) 

Rm Resistant to both Antibiotic 1 and Antibiotic 2 from Chromosomal Mutation (cells) 

R1 Resistant to only Antibiotic 1 from Chromosomal Mutation (cells) 

R2 Resistant to only Antibiotic 2 from Chromosomal Mutation (cells) 

𝐸 Environmental Concentration of Antibiotic((ug/mL)/hr) 

syn Synergy Parameter (non-dimensional) 

𝑘𝑒 Antibiotic Clearance (1/hr) 

𝛼𝑆 Growth Rate of Susceptible Bacteria (1/hr) 

𝛼𝑅𝑚 Growth Rate of Bacteria Resistant from Mutation (1/hr) 

𝑁𝑚𝑎𝑥 Carrying Capacity (cells/mL) 

𝑔𝑠, 𝑔𝑅𝑚, 

𝑔𝑅1, 𝑔𝑅2, 𝑔𝑅𝑝 

Bacterial Influx Rates (cells/hr) 

𝑘𝑇 Bacterial Efflux Rate (1/hr) 

𝛿𝑚𝑎𝑥,1 , 𝛿𝑚𝑎𝑥,2 Bacterial Killing Rate in Response to Antibiotic 1 and Antibiotic 2 (1/hr) 

𝐶𝑆
50, 𝐶𝑅,1

50 ,

𝐶𝑅,2
50  

Antibiotic Concentration where the Killing Action is Half its Maximum Value 

(ug/mL) 

𝑚1(𝐶1)  Mutation Frequency under Antibiotic 1 (1/hr) 

𝑚2(𝐶2)  Mutation Frequency under Antibiotic 2 (1/hr) 

 319 

Table 1. Model variables and definitions 320 

  321 
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 322 

Parameter Description 

𝑠𝑢𝑝1 Cip Suppression Variable 1  

𝑠𝑢𝑝2 Cip Suppression Variable 2 

𝛼𝑆 Growth Rate of Susceptible Bacteria (1/hr) 

𝛼𝑅, 

𝛼𝑅,1, 𝛼𝑅,2 

Growth Rate of Bacteria Resistant from Mutation 

(1/hr) 

𝑁𝑚𝑎𝑥 Carrying Capacity (cells/mL) 

𝑀𝐼𝐶1 MIC in response to Cip 

𝑀𝐼𝐶2 MIC in response to Dox 

𝛿𝑚𝑎𝑥,1 , 

𝛿𝑚𝑎𝑥,2 

Bacterial Killing Rate in Response to Antibiotic 1 

and Antibiotic 2 (1/hr) 

Table 2: Model adjustment for antibiotic-ratio dependent antagonistic behavior 323 

  324 

Base Model Adjusted Model for Antagonism 

Growth Term: 

 𝛼𝑅,2 ∗ (1 −
𝑅𝑚+𝑅1+𝑅2+𝑆

𝑁𝑚𝑎𝑥
)𝑅2 

Growth Term: 𝛼𝑅,2(𝑀𝐼𝐶1,  𝑀𝐼𝐶2) ∗ (1 −
𝑅𝑚+𝑅1+𝑅2+𝑆

𝑁𝑚𝑎𝑥
)𝑅2 

Where : 𝛼𝑅,2(𝑀𝐼𝐶1,  𝑀𝐼𝐶2)= 𝛼𝑅,2 ∗ 𝑠𝑢𝑝1 ∗ (
𝑀𝐼𝐶1

𝑀𝐼𝐶2
) 

Bacterial Killing from Dox: 

 𝑠𝑦𝑛 ∗ 𝛿𝑚𝑎𝑥,2 (
𝐶2

𝐶2+𝐶𝑅,2
50 )𝑅2 

Bacterial Killing from Dox: 𝑠𝑦𝑛 ∗ 𝛿𝑚𝑎𝑥,2(𝑅1, 𝑅2) ∗

(
𝐶2

𝐶2+𝐶𝑅,2
50)𝑅2 

Where: 𝛿𝑚𝑎𝑥,2(𝑅1, 𝑅2) = 𝛿𝑚𝑎𝑥,2 ∗ 𝑠𝑢𝑝2 ∗ (
𝑅1

𝑅2
) 
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Figures 325 

Figure 1: a.) Experimental results for combination of 0.5X MIC Rifampicin and 0.5X MIC 326 

Streptomycin in eVOLVER. b.) Model prediction for combination of 0.5X MIC Rifampicin and 327 

0.5X MIC Streptomycin in eVOLVER 328 

  329 

 b. 
a.

a. 
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 330 

 331 

 332 

Figure 2: a.) Model prediction for combination of 0.5X MIC Doxycycline and 0.5X MIC 333 

Erythromycin in eVOLVER in absence of interaction b.) eVOLVER results for combination of 334 

0.5 MIC Doxycycline and 0.5 MIC Erythromycin c.) Model prediction for combination of 0.5X 335 

MIC Doxycycline and 0.5X MIC Erythromycin in eVOLVER with synergy parameter 336 

  337 

a.

a. 

c. 

b. 
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Figure 3: a.) eVOLVER results for combination of 0.5 MIC Doxycycline and 0.5 MIC 338 

Ciprofloxacin b.) Model prediction for combination of 0.5 MIC Doxycycline and 0.5 MIC 339 

Ciprofloxacin in eVOLVER with antibiotic ratio dependent model adjustments 340 

  341 

a. b. 
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 342 

Figure 4: a.) eVOLVER results for combination of 0.3 MIC Doxycycline and 0.7 MIC 343 

Ciprofloxacin in eVOLVER in absence of interaction b.) Model prediction for combination of 344 

0.3 MIC Doxycycline and 0.7 MIC Ciprofloxacin in eVOLVER with antibiotic ratio dependent 345 

model adjustments c.) eVOLVER results for combination of 0.1 MIC Doxycycline and 0.9 MIC 346 

Ciprofloxacin in eVOLVER in absence of interaction d.) Model prediction for combination of 347 

0.1 MIC Doxycycline and 0.9 MIC Ciprofloxacin in eVOLVER with antibiotic ratio dependent 348 

model adjustments 349 

a. b. 

c. d. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2023. ; https://doi.org/10.1101/2023.02.10.528009doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.10.528009
http://creativecommons.org/licenses/by-nc-nd/4.0/

