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ABSTRACT

MicroRNAs (miRs) are short non-coding regulatory RNAs that control gene 
expression at the post-transcriptional level and play an important role in cancer 
development and progression, acting either as oncogenes or as tumor suppressors. 
Identification of aberrantly expressed miRs in patients with hematological 
malignancies as compared to healthy individuals has suggested that these molecules 
may serve as novel clinical diagnostic and prognostic biomarkers.

We conducted a systematic literature review of articles published between 2007 
and 2017 and re-analyzed experimentally-validated human miR expression signatures 
in diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL) from various 
biological sources (tumor tissue, peripheral blood, bone marrow and cell lines). A 
unique miR expression pattern was observed for each disease. Compared to healthy 
individuals, 61 miRs were aberrantly expressed in DLBCL and 85 in FL; 20-30% of 
aberrantly expressed miRs overlapped between the two lymphoma subtypes.

Analysis of integrative positive and negative miRNA-mRNA relationships using 
the Ingenuity Pathway Analysis (IPA) system revealed 970 miR-mRNA pairs for 
DLBCL and 90 for FL. Through gene ontology analysis, we found potential regulatory 
pathways that are deregulated in DLBCL and FL due to improper expression of miR 
target genes. By comparing the expression level of the aberrantly expressed miRs 
in DLBCL to their expression levels in other malignancies, we identified seven miRs 
that are aberrantly expressed in DLBCL tumor tissues (miR-15a, miR-16, miR-17, 
miR-106, miR-21, miR-155 and miR-34a-5p). This specific expression pattern may 
be a potential diagnostic tool for DLBCL.

INTRODUCTION

Diffuse Large B-cell Lymphoma (DLBCL) and 
Follicular B-cell Lymphoma (FL) are the most common 
subtypes of non-Hodgkin lymphoma (NHL) [1]. FL is the 
most common indolent form, accounting for approximately 

20% to 30% of all NHLs [2]. FL can become resistant 
to most conventional chemotherapies and may transform 
into the more aggressive DLBCL [2], which is the most 
common fast-growing NHL. DLBCL shows clinical, 
pathological and molecular heterogeneities. Presumably 
due to this molecular heterogeneity, about 30% to 40% of 
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DLBCL patients do not respond well to common therapy 
regimens [2–4]. Recent advances in gene expression 
profiling and genome-sequencing analyses have led to 
the identification of distinct molecular DLBCL and FL 
subtypes that are distinguished by altered gene expression, 
DNA mutations or chromosomal translocation.

MicroRNAs (miRs) are short (19–24 nucleotides) 
non-coding RNAs that affect the regulation of gene 
expression by binding to the 3′-untranslated region (3′ 
UTR) within target messenger RNAs (mRNAs). MiRs 
regulate critical cell processes such as metabolism, 
apoptosis, development and cell-cycle [5, 6]. MiRs are 
very stable in most types of tissues and in extracellular 
fluids such as plasma, serum, saliva, and urine [7, 8].

Precise regulation by miRs is essential for 
proper lineage decision during the development of the 
hematopoietic system [9] while its disruption leads to 
malignant transformation [10]. Many cancers, including 
hematological malignancies, display aberrant miR 
levels. Similar patterns of expression were observed in 
tissue, cell-free, and circulating tumor cell-associated 
miRs [11]. These observations suggest that circulating 
miRs may serve as useful biomarkers for the diagnosis 
and monitoring of disease progression [12]. However, 
published miR expression profile data are variable and 
require further examination in order to improve the 
accuracy of lymphoma diagnosis and subsequent therapy 
selection.

In the present study, we aimed to identify, through a 
literature search and bioinformatics analysis, specific miR 
expression profiles of DLBCL and FL and to compare 
between them. In addition, we performed an integrative 
analysis of the identified miRs and their mRNA targets in 
order to find functional associations amongst them.

RESULTS AND DISCUSSION

Study identification

Our systematic search identified 155 studies on 
DLBCL and 350 studies on FL that were published 
between 2007 and 2017 and screened according to the 
flowchart presented in Figure 1A. Overall, 18 articles were 
included in the final analysis, ten papers on DLBCL, four 
papers on FL, and four that were common to both diseases. 
MiRs that were significantly up- or downregulated in 
DLBCL or FL patients as compared to healthy individuals 
were selected for further analysis.

Analysis of the publications retrieved in the 
literature search

Molecular techniques of miRNA detection

Our analysis of the publications that were retrieved 
in the literature search showed that the most common 

methods for identifying miR expression signature in 
samples from patients were miR microarray (58% for 
DLBCL and 40% for FL) and real-time quantitative 
polymerase chain reaction (RT-qPCR) (29% for DLBCL 
and 60% for FL), (Figure 1B). These techniques are 
widely used and suitable for accurately quantifying miRs. 
Other methods for miR identification included miR 
sequencing and invader miRNA assays. The majority of 
miRs (69%) were further validated by a second method, 
the most common of which was RT-qPCR.
Mapping of identified miRs in DLBCL and FL

Our literature search revealed 61 aberrantly 
expressed miRs in DLBCL and 84 in FL, as compared to 
healthy controls. High variability of miR expression levels 
and contradictory results were observed among some 
of the studies. In order to increase the accuracy of our 
findings, we collected only 20 of the most differentially 
expressed miRs as defined by the authors of the selected 
studies for further analysis as potential biomarkers of 
DLBCL and FL (Supplementary Tables 1 and 2).

To that end, we compared the miR expression 
profile of DLBCL and FL. We observed a distinct pattern 
of abnormally expressed miRs in these lymphoma 
subtypes: 15 unique miRs were upregulated and 24 were 
downregulated in DLBCL. In FL, 46 unique miRs were 
upregulated and 17 were downregulated. In addition, 
DLBCL and FL had seven common upregulated miRs 
and seven common downregulated miRs (Figure 2A 
and Supplementary Tables 1 and 2). MiRs identified in 
this analysis include miR-320, 34a, 155, 21 and miR-
210, which have been previously reported as potential 
biomarkers in other cancers such as osteosarcoma, lung 
cancer, breast cancer, myeloid leukemia, high-grade 
glioma, colon cancer and hepatoma [13–19]. MiR-494 
was upregulated in DLBCL and downregulated in FL, 
while miR-181a showed an opposite expression pattern, 
suggesting that these miRs may serve as potential specific 
biomarkers for both DLBCL and FL.

Several other miRs considered as biomarkers for 
DLBCL (miR-17-5p, 145-5p and miR-15a, Figure 2A, 
2e) and FL (miR-17-3p and miR-202, Figure 2A, 2f) 
showed opposite expression levels in different biological 
sources. For example, in patients with DLBCL miR-15a 
was upregulated in blood serum [20] and downregulated in 
tumor lymph nodes [21] possibly due to distinct regulatory 
mechanisms. MiRs-16, 19b and miR-29a (Figure 2A, 2C-
2D), were also detected in both lymphoma subtypes either 
with low or high expression levels.

To better characterize the types of miRs identified 
in various biological tissues in each lymphoma subtype 
and to define unique tissue-specific miRs, we compared 
their reported distribution in biological samples (Figure 
2B and 2C). In DLBCL, most of the aberrantly expressed 
miRs (42 miRs, 57%) were purified from tumor tissue 
(lymph nodes). Twenty-four miRs (33%) were purified 
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from cell lines, and only seven miRs (10%) were purified 
from peripheral blood (miRs-155, -21, 15a, 210 34a-5p, 
16-1 and miR-29c). Of them, six were also found in lymph 
node tissue and cell lines (Figure 2C and Supplementary 
Table 1). Only miR-29c is uniquely overexpressed in 
blood. The miR-29 family is downregulated in peripheral 
blood of mantle cell lymphoma (MCL) patients [22] and 
may be used as a diagnostic and prognostic biomarker for 
MCL. Patients with significant downregulated miR-29 
had shorter survival compared with those that expressed 
relatively high levels of miR-29c. Notably, miR-29c is 
expressed differently in MCL as compared to DLBCL and 
FL.

In FL, the most aberrantly expressed miRs were 
purified from tumor tissues. These included 35 miRs 
(40%) - 31 of which were specific - that were purified 
from lymph node tumor tissues during early stages (I-III) 
of the disease, and 39 miRs (44%) - 37 of which were 
specific - from bone marrow smears containing bone 
marrow tissue infiltrated by lymphoma cells at a more 
progressive stage (IV) of the disease [23]. Fifteen miRs 

(16%) were purified from cell lines (11 of which were 
specific).

Only two aberrantly expressed miRs (miR-17-
3p and miR-202) overlapped among biological sources. 
Eleven unique miRs were aberrantly expressed in cell 
lines. The low number of overlapping miRs observed 
among biological sources of DLBCL and FL (Figure 2C) 
suggests that different tissues and biological sources have 
different regulatory networks that generate a particular 
set of expressed miRs. Moreover, the low number of 
overlapping miRs among cell lines and tumor tissues 
indicates that cell lines may not be the most useful source 
for assessing miRs for diagnostic purposes, probably 
because cell lines lack microenvironmental factors. 
Consequently, cell line models may be used mainly for 
understanding the molecular mechanism of the regulation 
of miRs-mRNA interactions.

Since most of the screened miRs were identified in 
tumor tissue, we further analyzed overlapping aberrantly 
expressed miRs that were detected in tumor tissue 
of DLBCL and FL patients. We found 16 up- and 19 

Figure 1: (A) Flow diagram of the article selection process. (B) Main molecular techniques used for miR detection in the literature. 
DLBCL = diffuse large B-cell lymphoma; FL = follicular lymphoma.
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downregulated unique miRs in DLBCL tumor tissue and 
27 unique upregulated miRs in FL tumor tissue. To our 
surprise, no unique, downregulated miRs were observed 
in FL tumor tissue (Figure 2D and Supplementary Table 
2), suggesting that a large number of genes regulated by 
these miRs are probably downregulated in the disease. 
The corresponding gene expression profiles were 
reported in several publications in the past [24, 25]. 
Altogether, both lymphoma subtypes had only eight 
common miRs: three that were upregulated (miR-210, 
155 and miR-106a), and five that were downregulated 
(miR-139, 150, 149, 320 and miR-34a-5p) (Figure 2D). 
These results imply that each lymphoma subtype has 
a unique miR expression profile that may be used for 
differential diagnosis.

Integrative analysis of miR and mRNA 
expression

To identify functional miR-mRNA relationships, we 
investigated associations between positive and negative 
miR-mRNA expression profiles. To that end, we utilized 
the GEO database (GSE12195) to examine inverse 
expression between the miRs retrieved by our literature 
search, and their targeted mRNAs using the Ingenuity 
Pathway Analysis (IPA) analysis. In DLBCL, 970 miR-
mRNA pairs with opposite expression patterns were 
identified (Supplementary Tables 3A and 3B include data 
of miRs, genes and their generated pairs). Of 56 aberrantly 
expressed miRs identified in DLBCL, 45 showed mRNA-
miR interactions using IPA.

Figure 2: Experimentally validated MicroRNAs (miRs) found in diffuse large B-cell lymphoma (DLBCL) and Follicular 
lymphoma (FL) retrieved in the literature search. (A) A Venn diagram representing overlapping up- and downregulated miRs 
in DLBCL and FL. (a) miR-494 is upregulated in DLBCL and downregulated in FL; (b) miR-181a is downregulated in DLBCL and 
upregulated in FL; (c) miR-16 and miR-19b that are up- and downregulated in DLBCL and upregulated in FL; (d) miR-29a is up- and 
downregulated in FL and downregulated in DLBCL; (e) miR-17-5p, miR-145-5p and miR-15a are up- and downregulated in DLBCL; (f) 
miR-17-3p and miR-202 are up- and downregulated in FL. (B) The percentage of aberrantly-expressed miRs in each biological source of 
DLBCL and FL. No evidence of miR expression data in the bone marrow of DLBCL patients and in the blood serum in FL patients were 
found. (C) A Venn diagram representing the number of overlapping miRs among biological sources. (D) A Venn diagram representing the 
number of overlapping up- and downregulated miRs in tumor tissue from DLBCL (n=43) and FL (n=35). *miR-145-5p was counted twice 
in DLBCL according to evidence of up- and downregulation.
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Next, we performed a gene ontology (GO) analysis 
to establish associations between miRs and the biological 
processes they regulate (Figures 3A-3B and Supplementary 
Tables 4A-4B). After GO enrichment analysis, 43 miRs 
remained, most of them identified in tumor tissues. Figure 
3A presents the most statistically significant functional 
biological processes regulated by these miRs. The genes 
targeted by most of the miRs in Figure 3A are involved in 
the regulation of gene transcription and DNA replication; 
the most common processes relate to positive and 
negative transcription regulation of the RNA polymerase 
II promoter. Although it was initially suggested that most 
miR genes are transcribed by RNA Pol II [26], RNA Pol 
III-dependent transcription of miRs also occurs [27] and 
the transcriptional requirements of other miRs remains 
untested. In addition, some selected miRs regulate genes 
that are involved in cell cycle regulation, proliferation and 
division.

In FL, 90 miR-mRNA pairs with opposite 
expression patterns were identified using IPA. Only 31 
out of 84 aberrantly expressed miRs showed significant 
involvement in specific biological processes. In contrast 
to DLBCL, it was difficult to find enriched biological 
processes for FL, possibly due to the small number 
(60) of down-expressed genes that were used for IPA 
compared to DLBCL, for which 845 downregulated 
genes were analyzed. In addition, because the regulatory 
role of miRs and their targets was less investigated in FL, 
fewer data were found in the literature and databases. 
MiRs that were over-expressed in FL, were associated 
with negative regulation of leukemia inhibitory factor 
signaling pathway, cell chemotaxis, organ regeneration, 
activation of phospholipase C activity, positive regulation 
of cyclin-dependent protein serine/threonine kinase 
activity involved in G1/S transition of the mitotic cell 
cycle, interleukin-10 biosynthetic process, natural killer T 
cell differentiation and Interleukin-4 production (Figure 
3B). Although in both analyses – that of DLBCL and that 
of FL - we observed common biological processes such 
as cell proliferation and signal transduction pathways, the 
molecular basis of this regulation was different.

Interaction network analyses in DLBCL

To better understand the molecular mechanism 
of DLBCL malignancy regulation, we utilized the IPA 
tool to generate a miR-mRNA interaction network 
of positively-regulated transcription by the RNA 
Polymerase II promoter pathway (GO:0045944). Using 
the STRING software, we created a protein network of 
39 functionally related genes (Supplementary Table 4A), 
whose mRNA expression level was altered in DLBCL, 
which were paired with 43 miRs retrieved in the literature 
search (Supplementary Table 1). The network showed a 
statistically significant strong interaction between the 
proteins with a high confidence score (>0.7), suggesting 

that these proteins are biologically related (Figure 4A). 
MiRs recorded in our previous analyses (Supplementary 
Table 3A) were manually added to the network. Although 
some interactions of miRs with their targets were expected 
based on previous studies, the network suggests a new 
mechanism that may be involved in the development of 
DLBCL.

Most of the proteins in this network are transcription 
factors that participate in various processes in several 
tissue types such as angiogenesis, DNA damage response, 
development, morphogenesis, differentiation and survival.

In the network A single gene may be regulated by 
several miRs (Figure 4A). For example, IGF1 is regulated 
by nine miRs, RORA is regulated by twelve miRs and 
MYBL1 is regulated by six miRs. Conversely, several 
genes may be regulated by a single miR. For example, 
miR-17-5p regulates four genes, IGF1, RORA, KATB2 
and TNFSF11. Hence, we suggest that this group of 
genes is commonly regulated. These findings may be 
explained by different temporary and spatial interactions 
among mRNAs and miRs. For example, the v-maf 
musculoaponeurotic fibro-sarcoma oncogene homolog 
(MAF) is a transcriptional activator or repressor that 
increases T-cell susceptibility to apoptosis by interacting 
with MYB and decreasing the expression of the anti-
apoptotic protein BCL2 [28, 29]. According to our 
analysis MAF mRNA is downregulated by four miRs: 
miR-145-5p, 143-3p, 155 and 494, suggesting that if 
protein expression is reduced, BCL-2 gene expression is 
subsequently upregulated [30] leading to anti-apoptotic 
effects and contributing to the maintenance of abnormal 
cells and tumor development. This effect may also 
occur when one of the central network proteins, YAP1, 
is downregulated by miR-16. YAP1 is a transcriptional 
regulator that plays a pivotal role in tumor suppression 
by inhibiting proliferation and promoting apoptosis [31].

Another interesting protein in this network is 
KAT2B, which interacts with five other proteins and 
activates two of them (MEF2C and NCOA2). This protein 
has histone acetyltransferase activity. It inhibits cell-
cycle progression and counteracts the mitogenic activity 
of the adenoviral oncoprotein E1A [32]. We suggest that 
downregulation of KATB by miR-17-5p may disrupt cell 
cycle control, increasing neoplasm development.

Some of the proteins in this network are associated 
with B-cell development. For example, MYBL1, a v-myb 
myeloblastosis viral oncogene homolog, has a role in the 
proliferation and/or differentiation of B-lymphoid cells 
[33, 34]. As seen in Figure 4A, miRs-155, 19b, 221, 222, 
15a and miR-16 downregulate its expression. Furthermore 
MYBL1 is a Myb-related protein A, whereas MYB is a 
transcriptional activator that acts in a dose-dependent 
manner in early B-lymphocyte development, stressing 
the importance of properly balanced regulatory networks 
in cell differentiation [35]. Therefore, downregulation of 
MYBL1 may disrupt B-cell differentiation.
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Figure 3: Ingenuity Pathways Analysis (IPA) pairing of miRs and gene groups that were significantly altered in 
DLBCL and FL were paired using gene ontology (GO) annotations associated with related miRNAs classified by their 
biological sources. (A) GO analysis based on 970 miR-mRNA pairs (291 unique proteins) in DLBCL and (B) 90 miR-mRNA pairs (22 
unique proteins) in FL were significantly enriched (p<0.01). (C) The steps and the number of miRs used for IPA and GO analyses. MiRs 
were removed from the analysis if they were duplicated or unrecognized by IPA or by miRbase version 20.
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Figure 4: Network interaction between miRs and their target genes involved in RNA Polymerase II Promoter regulation 
in DLBCL. (A) Positive regulation network. The gene group (GO:0045944) was taken from Gene Ontology annotations analysis. The 
STRING interaction database used high confidence interaction (0.7) between closed genes to create the network of targets in DLBCL. (B) 
Negative regulation network. The gene group (GO:0000122) was taken from Gene Ontology annotations analysis. The STRING interaction 
database used high confidence interaction (0.8) to generate the network targets in DLBCL. Up and downregulated updated miRs were 
added to the network.
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IKZF1 is regulated by miR-92a and miR-145-5p. 
It is one of the proteins associated with the GO process 
(GO:0045944) which was the basis of this network. Its 
relation to other proteins in the network has not yet been 
established, but because it is a key regulator of normal 
B-cell development [35], it may play a role in DLBCL 
development.

To complete our understanding regarding the 
role of miRs in the regulation of genes that participate 
in polymerase II promoter regulation, we built a miR-
target network of negatively-regulated transcription of 
the RNA Polymerase II promoter that was based on the 
significant enrichment of genes belonging to this pathway 
(GO:0000122) in DLBCL (Figure 4B). For this analysis, 
we used 26 genes (Supplementary Table 4B), whose 
mRNAs are targeted by 38 miRs that were retrieved by 
our literature search (Supplementary Table 2) to build a 
strong-interaction network with a high confidence score 
(≥0.8). Twelve of the proteins also participate in positive 
regulation of the RNA Polymerase II promoter. The main 
protein complex used for this network (FOXM1-MEF2C-
NCOA2-DDX5-MYOCD-SMARCA4) is conserved 
between DLBCL and FL. This group of transcription 
factors plays an important role in B cell maturation and 
proliferation. For example, FOXM1 is a master regulator 
of proliferation in the germinal center and is known as 
a human proto-oncogene. Upregulation of FOXM1 is 
involved in the oncogenesis of germinal center B cells 
(centroblasts) derived from naive B cells, from which the 
cells differentiate for the activation of genetic programs 
controlling DNA metabolism and pro-apoptotic programs 
and for the repression of anti-apoptotic pathways [36]. 
FOXM1 is targeted by miR-1260 and miR-320, which 
were downregulated in our analysis, suggesting abnormal 
(increased) FOXM1 expression in DLBCL. Furthermore, 
in the negative regulation network FOXM1 also activates 
aurora kinase B (AURKB) which is part of a complex 
that is a key regulator of mitosis [37, 38]. Consequently, 
increased expression of activated AURKB could lead to 
enhancement of mitotic events and uncontrolled tumor 
growth. Interestingly, overexpression of AURKB is 
similarly regulated by miRs that have low expression 
levels in DLBCL (miR-let-7d and miR-let-7e). Our results 
suggest that polymerase II transcriptional factors are 
regulated by a large group of miRs, some of which play 
an important role in both positive and negative regulation 
of this pathway.

HHEX, a hematopoietically-expressed homeobox 
protein that is a transcriptional repressor with a role in 
hematopoietic differentiation [39, 40] is involved in both 
positive and negative regulation of the RNA Polymerase 
II promoter. Loss of HHEX in mice resulted in progressive 
loss of B lymphocytes in the circulation [39]. This was 
accompanied by the complete loss of B-cell progenitors 
in the bone marrow and loss of transitional B-cell 
subsets in the spleen. Xu et. al. have shown that HHEX 

is downregulated by miR-145-5p, suggesting that it could 
disrupt the differentiation process and consequently 
increase the probability of DLBCL development [41].

Interaction networks in FL

Unlike DLBCL, we did not find large control 
networks for FL (Figure 3B and Supplementary Table 
3B). Nevertheless, we found a number of interesting 
connections that have a potential to be key factors in the 
development of the disease. One of the most prominent 
pathways found was the “Leukemia inhibitory factor 
signaling pathway” (GO:0048861) (Figure 3B), which is 
regulated by six overexpressed miRs (miRs-9, 21, 26b, 
27a, 30a and 30d) and one downregulated miR (miR-26a) 
(Figure 5A). One of these miRs’ target belongs to leukemia 
inhibitory factor receptor (LIFR), which is a member of 
the cytokine receptor family that affects hematopoiesis 
as well as differentiation, survival, and proliferation 
of a wide variety of cells in adults and embryos. LIFR 
binds three additional proteins in this pathway: Leukemia 
inhibitory factor (LIF), interleukin 6 signal transduce 
(IC6GT) and cardiotrophin1 (CTF1) [42–44] (Figure 5A). 
LIF binds LIFR on the surface of the target cell, leading 
to downstream cellular processes such as transcription. 
Recently, LIFR was found to be associated with tumor 
maintenance by the MYC oncogene [45]. We hypothesize 
that this gene, whose expression is regulated by seven of 
our selected miRs, may be downregulated in FL similar 
to what was shown by Piccaluga [24], hence playing an 
important role in development of the disease.

Another interesting biological process detected by 
our GO analysis (highest score, 14.73, Supplementary 
Table 3B) is “Positive Regulation of Cyclin-dependent 
Protein Serine/threonine Kinase Activity Involved in G1/S 
Transition of Mitotic Cell Cycle” (GO:0031659). Our 
analysis revealed that miRs-374a, 27a, 7 and 16 regulate 
two genes that are involved in this pathway: regulator of 
cell cycle (RGCC) and endothelial growth factor receptor 
(EGFR). These two factors, together with the murine 
thymoma viral oncogene homolog (AKT1) bind cyclin-
dependent kinase 1 (CDK1). Moreover, phosphorylation-
dependent activity was also found between the proteins 
in the complex [46–50]. This complex plays an important 
role in cell cycle control, whereas its deregulation could 
accelerate tumor growth [51].

Potential biomarkers of DLBCL

One of our goals was to identify groups of miRs 
that could be used as universal biomarkers for DLBCL 
and FL. We found a large group of unique miRs aberrantly 
expressed in DLBCL that are completely distinct from 
those expressed in FL (Figure 2), and chose seven unique 
miRs (miRs-15a, 16, 17-5p, 106, 21, 155 and 34a-5p) 
based on their overexpression in major bio-sources and 
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Figure 5: Interaction network pathways of miRs-mRNAs involved in FL. (A) Leukemia inhibitory factor signaling pathway. 
The gene group (GO:0048861) was taken from Gene Ontology annotations analysis and related miRs from our screening. (B) Positive 
Regulation of Cyclin-dependent Protein Serine/threonine Kinase Activity Involved in G1/S Transition of Mitotic Cell Cycle. The gene 
group (GO:0031659) was taken from Gene Ontology annotations analysis. Up- and down regulated miRs were added to the network based 
on our screening. The charts are based on the STRING interaction database using all genes in these GO biological processes.

Figure 6: Distinct miR expression in DLBCL as compared to other types of malignancies. The expression levels of seven 
miRs were compared between DLBCL and 31 other tumor types. The data was downloaded from the Cancer Genome Atlas through the 
UCSC XENA hubs [61]. The graph represents the expression of miRs in log2(RPM+1) values across 9405 samples (47 DLBCL and 9358 
other tumor types). RPM = Read per million base pairs, **p<0.01, ***p<0.0001 using Welch’s t-test.
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their involvement in most of the biological processes that 
we analyzed in DLBCL (Figure 3A). Because these miRs 
have been suggested as potential biomarkers in several 
other cancer types [14, 16, 17], for example, miR-21 
or miR-155 may be used as biomarkers for lung, brain, 
colon, prostate and bladder cancer, one miR alone cannot 
be used as a biomarker candidate for DLBCL diagnosis. 
We therefore compared the expression level of the selected 
miRs with the expression level of the same miRs in other 
cancers from the Pan-Cancer project (A total of 9405 
patient samples). Because no relevant miR expression 
data were available on other hematological malignancies, 
we compared their expression levels to those of other 
malignancies. As shown in Figure 6, the expression levels 
of these miRs were statistically significantly higher in 
DLBCL compared with 31 other types of tumors (p<0.01 
for miR-34a, p<0.0001 for miRs-155, 15a, 106a 16-
1, 17 and 21). Thus, the specific expression profile of 
these miRs may be used as a possible diagnostic tool 
for DLBCL. Future studies are necessary in order to 
validate this miR signature in DLBCL compare to other 
hematological malignancies.

MATERIALS AND METHODS

Data sources and searches

We searched the online database, Medline, for 
scientific articles published between 2007 and 2017 that 
reported experimentally validated miR expression data 
from various human biological sources (tumor tissue, 
peripheral blood, bone marrow, and cell lines) and 
information on aberrantly regulated miRs in patients with 
DLBCL or FL as compared to healthy individuals. Articles 
were identified by the following key words in “All fields”: 
(1) DLBCL or FL; (2) microRNA or miRNA.

Study selection

First, we screened all retrieved titles and abstracts 
for further review by verifying that the study contained 
original data and was relevant to the research question. 
From the initial title and abstract screening, articles 
were identified for full text review if the study was in 
humans, focused on DLBCL or FL malignancy, used 
healthy individuals as controls, and measured the 
expression of miRs in cells. We excluded from further 
analysis any letters, abstracts, editorials, and reviews, 
articles that were not in English, duplicate publications, 
articles containing information on prognosis and/or 
describing treatment of DLBCL or FL, and articles 
describing studies of lymphomas that included patients 
with the Epstein Barr virus (EBV) without comparisons 
to healthy individuals because DLBCL is rarely EBV-
related [52, 53].

Data extraction

From the selected publications we extracted the 
following information: authors, publication year, country, 
disease, miRs whose expression showed significant 
changes (up or downregulation) and their biological 
source. In the case of high throughput screening analysis, 
we collected only the information for 20 miRs, whose 
expression level was the most extensively altered in 
DLBCL or FL patients as compared to healthy individuals. 
Note that some of the aberrantly expressed miRs were 
reported to be upregulated in some studies, while in 
other studies the same miRs were downregulated, or vice 
versa. We did not classify such controversial miRs as 
“upregulated” or “downregulated”. As a result, the total 
number of up- and downregulated miRs is different than 
the total number of aberrantly expressed miRs that we 
found in the literature.

Microarray gene analysis

The microarray dataset of purified miRs from tissue 
samples of DLBCL, FL and healthy individuals published 
by Piccaluga et al [24] was downloaded from the Gene 
Expression Omnibus database (http://www.ncbi.nlm.nih.
gov/geo/, accession number GSE12195). A total of 131 
samples were included in the dataset: 73 DLBCL, 38 
FL and 20 controls. Gene expression data of all samples 
were preprocessed via background correction, quantile 
normalization and probe summarization using the Robust 
Multi-Array Average (RMA) algorithm in Affy software 
package of Bioconductor [54]. Probe annotation was 
performed using the annotate Bioconductor package [55]. 
Linear Models for Microarray Data (LIMMA) package 
[56] of Bioconductor was used to identify genes that were 
differentially expressed between the three groups DLBCL, 
FL and control. Only genes having adjusted p-value <0.05 
and fold change >2 were chosen as differentially expressed 
and included in the downstream analysis.

Ingenuity pathways analysis (IPA)

IPA (Ingenuity System Inc, USA, http://www.
ingenuity.com) enables finding interactions between 
miRs and their mRNA targets. Using the “Core 
Analysis’ function included in IPA, we built a graphical 
representation of the molecular relationships between 
mRNAs whose expression significantly changed in 
DLBCL or FL compared to healthy controls. The sources 
of the validated miR data were TarBase, miRecords, 
and the peer-reviewed biomedical literature, as well as 
predicted miR-mRNA interactions from TargetScan [57]. 
The selected interactions between miRs and mRNAs 
were those with high confidence (predicted) or those with 
confirmed experimental observations.
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Gene ontology enrichment analysis

Gene ontology (GO) analysis of the genes detected 
by IPA as miR targets was done using Gene Analytics 
[58]. GO terms (e.g., super-pathways and GO-biological 
function) were given a score calculated by the software 
that was based on transformation of the binomial p-value, 
which is equivalent to a corrected p-value, with a 
significance defined at p <0.05.

Network analysis

We used the STRING software [59] (version 10.0) 
to establish an interaction network between miRs and 
their targets in two high-scored GO biological processes: 
GO:0045944 and GO:0000122. The input consisted of 
two lists of proteins related to mentioned GO biological 
processes, 31 for GO:0045944 and 25 for GO:0000122 
(Supplementary Table 3). To create the networks, we used 
the “enter multiple proteins” option, and chose “Homo-
sapiens” as the organism. Proteins were selected based 
on their relation to “molecular action”. Next, the exiting 
target networks were combined with the miRs from the 
articles retrieved in the literature search and the direction 
of regulation (up- or downregulated) was determined.

Data presentation

Pivot-tables were created using data paring between 
miRs and their targets retrieved by IPA. Each pair was 
marked by the biological source of its miR. Then, a script 
was written which automatically searched for all GO 
annotations related to the gene target of each miR-mRNA 
pair. This formed a new match between the GO index and 
the miRs. The data were then organized in pivot tables that 
marked the miRs by their biological source.

Analysis of miR expression patterns using the 
UCSC XENA cancer genome browser

Expression levels of selected miRs in DLBCL were 
compared with expression levels of miRs defined in other 
common cancers. The analysis was performed using the 
UCSC XENA cancer genome browser [60] based on the 
Cancer Genome Atlas (TCGA) Pan-Cancer Cohort. A 
total of 9405 patient samples were used. MiR expression 
profiles as detected by miR-seq experiments in different 
tumors were visualized.

CONCLUSIONS

In this work, we collected and analyzed data 
published between 2007 and 2017 on aberrantly expressed 
miRs from different biological sources in FL and DLBCL 
patients and in human cell lines. Based on these data, 
distinct patterns of abnormally expressed miRs were 

found for each disease, implying different molecular 
mechanisms.

Integrative analysis of abnormal miR and mRNA 
expression showed that each of these lymphoma subtypes 
has a unique set of miRs suggesting that distinct pathways 
are disrupted in FL and DLBCL.

To understand the functional associations between 
miRs, genes and processes that they regulate in DLBCL, 
we built an interaction network of the genes related to 
biological processes of “positive and negative regulation 
of transcription from RNA Polymerase II promoter”. Our 
results showed that each gene may be regulated by one 
or more miRs. Moreover, one miR can regulate a group 
of genes with related functions. Our results suggest that 
RNA polymerase II transcriptional factors are regulated 
by a large group of miRs, where some of them play an 
important role in both positive and negative regulation of 
this process.

Based on this analysis we chose seven miRs 
(miR-15a, 16, 17, 106, 21, 155 and miR-34a-5p) whose 
significant higher expression is specific to DLBCL then 
observed in other malignancies, suggesting that these 
miRs may be used as potential candidates’ biomarker for 
DLBCL diagnosis.

We were not able to analyze miRs by stages and 
subtypes, since there is not enough evidence to provide 
a statistically significant analysis yet. In order to provide 
clinical validity for this analysis future studies are needed. 
Moreover, only a few studies analyzed miR profiles in 
blood of DLBCL patients and we did not find any studies 
that examined miR signatures in the blood of FL patients.

The standard diagnostic protocol of many cancer 
types, including lymphoma, entails a histopathological 
inspection of tumor material obtained by invasive biopsy. 
Such a procedure is often expensive, uncomfortable and 
sometimes risky for patients. Therefore, we believe that, 
in the near future, circulating miRs from bio-fluids may 
be used as non-invasive cancer biomarkers. Moreover, 
miRs are much more stable than other RNA types such 
as long non-coding RNAs and mRNAs [61]. Hence, miRs 
may increase the ability to perform screening and repeat 
sampling on patients undergoing therapy or monitor 
disease progression, and allow for the development of a 
personalized approach to cancer patient treatment.

Further studies are required in order to explore 
possible circulating miRs as potential universal biomarkers 
for DLBCL and FL.
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