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Interactive sonification of biomechanical quantities is gaining relevance as a motor

learning aid in movement rehabilitation, as well as a monitoring tool. However, existing

gaps in sonification research (issues related to meaning, aesthetics, and clinical effects)

have prevented its widespread recognition and adoption in such applications. The

incorporation of embodied principles and musical structures in sonification design has

gradually become popular, particularly in applications related to human movement. In

this study, we propose a general sonification model for the sit-to-stand (STS) transfer, an

important activity of daily living. The model contains a fixed component independent

of the use-case, which represents the rising motion of the body as an ascending

melody using the physical model of a flute. In addition, a flexible component concurrently

sonifies STS features of clinical interest in a particular rehabilitative/monitoring situation.

Here, we chose to represent shank angular jerk and movement stoppages (freezes),

through perceptually salient pitch modulations and bell sounds. We outline the details

of our technical implementation of the model. We evaluated the model by means of a

listening test experiment with 25 healthy participants, who were asked to identify six

normal and simulated impaired STS patterns from sonified versions containing various

combinations of the constituent mappings of the model. Overall, we found that the

participants were able to classify the patterns accurately (86.67 ± 14.69% correct

responses with the full model, 71.56% overall), confidently (64.95± 16.52% self-reported

rating), and in a timely manner (response time: 4.28 ± 1.52 s). The amount of sonified

kinematic information significantly impacted classification accuracy. The six STS patterns

were also classified with significantly different accuracy depending on their kinematic

characteristics. Learning effects were seen in the form of increased accuracy and

confidence with repeated exposure to the sound sequences. We found no significant

accuracy differences based on the participants’ level of music training. Overall, we see

our model as a concrete conceptual and technical starting point for STS sonification

design catering to rehabilitative and clinical monitoring applications.

Keywords: movement sonification, conceptual metaphor, music, rehabilitation, sit-to-stand, embodied cognition,

auditory information display, kinematics
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1. INTRODUCTION

Aided in no small part by advances in digital audio technology,
sonification research has made considerable strides in the past
two decades (Supper, 2015), and been found to have potential
for application in several domains related to data exploration,
process monitoring, motor training and assistive technology
(Hermann et al., 2011; Minciacchi et al., 2020). Due to the
versatility ofmodern sound synthesis platforms, it is now possible
to build flexible and complex real-time auditory displays (Supper,
2015; Kantan et al., 2021). Of particular interest is the sonification
of biological signals, which has been explored for rehabilitation
(Guerra et al., 2020; Linnhoff et al., 2020), diagnostics (Ballora
et al., 2004; Danna et al., 2013; Gionfrida and Roginska, 2017;
Aldana Blanco et al., 2020) and monitoring (Aldana Blanco et al.,
2020). In this study, we focused on sonifying the ubiquitous
movement of rising from a chair—the sit-to-stand (STS) transfer.

Movement sonification has received an increasing amount
of attention in recent years and shown significant therapeutic
promise (Sigrist et al., 2012; Dyer et al., 2015; Guerra et al., 2020;
Linnhoff et al., 2020). This has been bolstered by advances in
computing power as well as inexpensive and portable motion-
sensing hardware (Ma et al., 2016; Kos and Umek, 2018), not to
mention some highly refined sensor fusion algorithms (Ribeiro,
2004; Madgwick et al., 2011). Movement sonification makes it
possible to “hear” continuous kinematic information like the
course of a trajectory or the velocity/position contour of a distal
effector (e.g., limb), even during phases where the movement
by itself otherwise generates no audible sound due to its low
frequency nature (Effenberg, 2005; Vinken et al., 2013). There are
direct cortical links between the auditory and motor regions of
the brain, as well as a strong motor component involved in music
listening through mechanisms of motor mimesis and resonance
(Maes et al., 2014, 2016; Wallmark, 2014). Auditory displays
are particularly suitable for perceptualizing biological time series
information, since the omnidirectionality of sound reduces visual
burden (Watson and Sanderson, 2001; Eldridge, 2006), the high
temporal resolution of the auditory system facilitates temporal
pattern discrimination, and humans are able to process multiple
concurrent auditory streams (Eldridge, 2006; Hermann et al.,
2011).

In motor learning applications, sonification can serve as
means of providing task-relevant feedback in tandem with
intrinsic feedback modalities such as vision and proprioception
(Sigrist et al., 2012; Dyer et al., 2015; Effenberg et al., 2016;
Dyer, 2017). Motor learning has been found to be more effective
and stable when the brain is able to integrate multisensory
feedback into a multimodal representation of the movement
(as reviewed by Sigrist et al., 2012). For this to occur reliably,
the temporal structure of the sonified feedback must correlate
well with that of the intrinsic feedback (Parise et al., 2012). If
this is achieved, the sonified feedback can theoretically highlight
task-relevant information already present in intrinsic channels,
facilitating sensorimotor associative learning below the level of
conscious perception (Makino et al., 2016; Morone et al., 2021).
Alternatively, sonification can be used as a form of sensory
substitution, filling in for another task-critical sensory stream

that is either damaged or missing, such as vestibular, visual
or somatosensory loss in balance training (Dozza et al., 2007;
Costantini et al., 2018).

In spite of all its potential, movement sonification has yet
to find widespread adoption in rehabilitation contexts, partly
because existing research fails to address important questions
related to short- and long-term therapeutic effects, meaningful
mapping design practices and aesthetic considerations (Guerra
et al., 2020; Linnhoff et al., 2020). There are no guidelines for
how sonified feedback should be designed (Dyer, 2017), and the
development of generalized guidelines and sonic interactions is
made difficult by the variability seen among patients and therapy
paradigms (Lesaffre, 2018). Sonification has not been explored
within STS training and monitoring to the same degree as in
balance (Ma et al., 2016; Guerra et al., 2020) and gait training
(Linnhoff et al., 2020), but we summarize the scanty existing
literature. Nicolai et al. (2010) designed auditory biofeedback
for supranuclear palsy patients, where their system measured
forward trunk bend while sitting, and provided a sound cue
to stand up when a threshold was exceeded. Partly owing to
a small sample size, they were unable to detect significant
improvements in STS assessments such as the Five Chair Rise
(5CR) Test. In a small pilot study with healthy participants
carrying out STS transfers, Wang et al. (2014) provided auditory
feedback on STS, based on Kinect-based measurements. The
feedback led to smoother head movements and larger minimum
hip flexion angles, both of which were deemed positive by the
authors. Music-based interventions have also been proposed and
tested. Peng et al. (2011) applied music therapy (specifically
Patterned Sensory Enhancement) to children with spastic
diplegia, finding that the intervention led to greater knee and
extensor powers, better center of mass (CoM) smoothness, and
faster movement execution. Newbold et al. (2015) proposed
a musical STS sonification scheme that mapped various STS
parameters to melody, harmony, texture, and rhythm—however,
they did not evaluate it in any way. On the whole, there is a
lack of experimentally validated models and design guidelines
for STS sonification catering to various patient groups and
impairment types.

In this work, we focused on the general task of
communicating STS kinematic information through sound,
something that must occur in a stable, unambiguous manner
in any rehabilitative or monitoring application. Specifically, we
devised an adaptable sonification model for STS kinematics. The
subsequent sections of this article provide details of its theoretical
background, design, development, and final evaluation by means
of a listening test experiment on 25 healthy participants.

2. BACKGROUND

2.1. What to Sonify?
STS is one of the most common activities in daily life; its
goal is defined as “moving the mass center of the body
upward from a sitting to a standing position without losing
balance” (Roebroeck et al., 1994). During STS, the body CoM
initially moves forward in the horizontal direction, and this
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momentum is gradually transferred to the upward direction
through coordinated rotations of the hip, knee, and ankle joints,
which are dictated by co-contractions of the lower body and
torso muscles (Roebroeck et al., 1994; Kerr et al., 1997). STS
can be examined in terms of the trajectory of the CoM of the
body, the involved joints (hip, knee, and ankle), body segments
(head-arms-trunk, thigh, and shank), and several major lower
limb muscles (Roebroeck et al., 1994). Modern inertial sensing
technology has made it possible to extract an extensive amount
of STS kinematic and kinetic data, making such sensors useful
tools for STS performance assessment (Millor et al., 2014).

Raw inertial readings require extra signal analysis to derive
meaningful, clinically relevant features (see Millor et al., 2014
for a detailed review). Several such features have been defined
and captured using various configurations of accelerometers,
gyroscopes, and magnetometers mounted at different body
locations. An important one is the transition duration (time
expended in performing STS), which can differentiate frail and
healthy subjects (Millor et al., 2014). Several linear kinematic
parameters have been found to differentiate pathological and
non-pathological STS, such as vertical, mediolaterial and
anteroposterior acceleration, anteroposterior jerk, and vertical
linear velocity (Millor et al., 2014). Velocity and acceleration
measures during STS have shown potential in geriatric screening
as well (Shukla et al., 2020). There are also some clinically relevant
angular kinematic parameters such as knee extensor velocity and
trunk tilt (Millor et al., 2014).

We propose that clinically relevant parameters should be
either sonified directly or easily deducible from the sonification
of other parameters. Regardless of the approach or application,
the function of the sonification is to serve as a communication
channel for task-relevant information streams. Sound-based
communication design for STS can thus take inspiration
from communication design guidelines proposed for more
conventional visual monitoring (O’Hara et al., 2004): (A) the
displayed information should be synthesized to a high-level to
reduce the required cognitive effort, and (B) the display should
trigger an appropriate mental representation of the monitored
situation (STS characteristics) using salient cues. The latter relates
to the movement-sound mapping, which is discussed next.

2.2. How to Sonify?
Mapping choices are generally dictated by questions of
veridicality (whether data relations can be heard correctly and
confidently in the sounds), usefulness, usability and acceptance
(Barrass and Kramer, 1999). Bakogiannis et al. (2021) suggest
that meaning arises when the phenomenon (STS in this case) is
represented using organized sound that enables the perception
of information. They elaborate that a sonification model is
well-designed when the representation is structure-preserving
(preserves the main elements, connections and relations in the
information) and inference-preserving (enables the listeners to
draw conclusions about the phenomenon) (Bakogiannis et al.,
2021). Despite the importance of these criteria, Supper (2015)
argues that the topic of interpreting the meaning of sonified
data has remained neglected in the sonification community, in
favor of the development of technical solutions and tools (Supper,

2015). Consequently, no proven techniques exist for the design
of veridical sonic representations of data in various contexts,
including STS. Concerns related to aesthetics and usability
are equally relevant. In rehabilitation settings, sonifications
should be designed so as to minimize auditory fatigue (Dyer
et al., 2015; Guerra et al., 2020). In monitoring settings,
sonifications should be unobtrusive and compatible with the
acoustic environment (Hildebrandt et al., 2014). In either case,
it is important that the sound varies in tight connection with the
underlying phenomenon, such that important and/or surprising
state changes are conspicuous and clearly audible (Barrass and
Kramer, 1999; Hildebrandt et al., 2014).

Conceptual metaphor-based approaches aim to address
the problem of designing meaningful sonification schemes
(Antle et al., 2009; Worrall, 2019; Roddy and Bridges, 2020).
Theoretically, they do this by leveraging humans’ existing
embodied knowledge in familiar domains of thought in the
task of understanding of an abstract domain (STS kinematics
in this case). In other words, embodied associations built over
a lifetime of experience with sound and music can be used to
interpret information about movement kinematics, provided that
the sonification mapping is designed accordingly (Roddy and
Bridges, 2020). Music is the organization of sound into structures
that most people are able to subconsciously decode without
training (as in everyday music listening) (Vickers and Hogg,
2006), making it a good potential medium to provide sonified
feedback (Newbold et al., 2015). Music andmovement are closely
connected (Maes et al., 2016), and musical characteristics such
as melody, harmony, rhythm are often understood in terms of
physical and spatial metaphors (Antle et al., 2009; Kelkar and
Jensenius, 2018). The same goes for timbre, as listeners have been
found to be able to recognize music genres within a fraction of a
second (Mace et al., 2012) and derive meaning from timbal cues
via motor mimetic processes (Wallmark, 2014).

Music is typically a rich and complex signal, and therefore
not all of its structural properties have equally been explored
for sonification purposes. Melodic sonification has been found
to help in structuring and sequencing timed actions, along
with recovering complex target patterns (Dyer et al., 2017).
Interactive musical sonification can motivate, monitor and
modify movement (particularly beat-synchronized rhythmic
motion) (Maes et al., 2016), and allows comparable motor
performance to non-musical sonification (Bergstrom et al., 2013).
In some recent studies, metaphorical and musical sonification
designs have been found to be advantageous, both in terms of
information conveyance and aesthetic values (Antle et al., 2009;
Danna et al., 2015; Roodaki et al., 2017; Aldana Blanco et al.,
2020). In the STS sonification model proposed by Newbold et al.
(2015), the central idea was that of using melodic phrases to
represent STS movement phases within a pre-calibrated range
of motion (“exercise space”), with the pitch structure of the
melody providing information of spatiotemporal progression
within the phase. Melodic sonification has also been suggested
for reaching exercises in chronic pain rehabilitation by Singh
et al. (2014). Such a sonification design has the potential to
convey STS parameters of clinical interest, such as the transition
duration and relative durations of STS sub-phases. However,
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linear velocity, acceleration, and jerk information is less explicit
in such a representation due to the spatial quantization that any
melodic representation of position entails. Hence, it seems logical
that other auditory dimensions such as timbre or dynamics must
represent these parameters.

2.3. Framing the Present Work
Until now, embodied musical sonification schemes specific to
STS have been proposed (Newbold et al., 2015) but, to the
best of our knowledge, never been realized or evaluated in
a rehabilitative or monitoring context. Given the widespread
importance of STS, we believe that it would be of considerable
value to devise a generic model to robustly communicate STS
kinematic information. Due to the wide range of STS impairment
types, the communication model must be adaptable to various
use cases. In this study, we designed and developed a sonification
model for STS based on embodied principles. Our goal was to
create a model combining a melodic representation of the rising
motion realized in a complex harmonic profile (fixed component
of model) with salient sonic entities signifying movement
impairments (flexible component). To avoid ambiguities resulting
from the complexities and culture-specific definitions and
expectations related to music, we did not integrate any
elements of rhythm and harmony into the present model. The
model was evaluated by means of a forced-choice classification
experiment, where healthy and cognitively unimpaired listeners
were asked to identify simulated STS pattern types from their
sonified sequences.

3. MATERIALS AND METHODS

3.1. Sonification Platform and Design
Guidelines
We used an upgraded version of the technological framework
described by Kantan et al. (2021), with separate trunk-,
thigh-, and shank-mounted M5Stack Grey ESP32 IMU devices
wirelessly transmitting inertial data to a JUCE1 application for
Windows. This software computes movement features in real-
time and maps them to the synthesis parameters of physically-
modeled musical instruments realized using FAUST DSP.2 These
mappings are highly configurable in real-time in terms of
topology, dimensionality, and mathematical transfer functions
(Kantan et al., 2021). We modified the platform to enable the
streaming, visualization and sonification of pre-recorded IMU
data so as to generate multiple sonified versions of the same
inertial data.

Note that the embedded IMU (MPU9250)3 and the ESP32
microcontroller are inexpensive and readily available. Hence the
measurement setup is easy to reproduce. The JUCE framework is
also free, and the sonification source code can be readily compiled
for real-time use.

At the outset, we created a varied set of mapping
configurations linking movement features (segment angles,

1JUCE Framework—https://juce.com/
2FAUST Programming Language—https://faust.grame.fr/
3https://invensense.tdk.com/products/motion-tracking/9-axis/mpu-9250/

joint angles, CoM horizontal/vertical displacement) to musical
instrument model parameters (voice, guitar, piano simulations—
pitch, dynamics, and consonance manipulations). These were
targeted toward particular STS impairments that we compiled
from literature (Kotake et al., 1993; Riley et al., 1997; Cheng
et al., 1998; Scarborough et al., 2007) and through consulting
with physiotherapists. We preliminarily evaluated the clinical
potential of the mappings through expert interviews with five
specialists (comprising physiotherapists, music therapists, and
an experienced biofeedback researcher).4 By examining these
disparate perspectives, we were able to formulate a broad
design philosophy for STS sonification for feedback purposes,
summarized as follows:

• “High-level” movement features (e.g., body CoM trajectories)
are more directly coupled to the task (a.k.a. rising) and may be
more suitable for sonification than “low-level” features (e.g.,
joint, segment angles) (similar suggestions made by O’Hara
et al., 2004 for visual displays).

• The use of continuous sounds with no silent pauses will
probably get fatiguing for patients in the medium/long term
(as also explained by Roodaki et al., 2017).

• Physically-modeled musical instruments may be sufficiently
pleasant-sounding to prevent auditory fatigue.

• Using an ascendingmelody to denote the risingmotionmay be
a suitable representation (in line with the approach suggested
by Newbold et al., 2015).

• The use of multiple musical instruments to concurrently
represent separate movement features (see Video Demo 2—
Mapping 2 in the interview materials) may be difficult for
patients to understand.

• A potentially intuitive sonification design is:

• No sound when the body is at rest.
• Continuous movement features represented through

continuous sound changes (analogic mappings).
• Discrete transient sounds to signify key events during

the STS motion, e.g., when standing position is reached,
instants of freezing (symbolic mappings).

3.2. STS Movement Materials
STS impairments can be caused by age (Lord et al., 2002)
as well as a range of neurological disorders and orthopedic
problems/procedures (Millor et al., 2014). Some examples are
stroke (Cheng et al., 1998; Boukadida et al., 2015), Parkinson’s
Disease (Mak et al., 2011), spastic diplegia (Peng et al.,
2011), supranuclear palsy (Nicolai et al., 2010), and hip/knee
arthroplasty (Wang et al., 2019, 2021), all of which require
rehabilitation. Furthermore, older adults tend to use suboptimal
chair rise strategies due to inefficient momentum transfer
mechanisms (Scarborough et al., 2007). They may suffer from
weakness or balance issues that manifest as “sitback failures”
or “step failures” (Riley et al., 1997). Stroke patients exhibit
decreased sensory ability and unilateral muscle weakness, leading
to lateral deviation of the trunk, asymmetrical weight-bearing

4Interview Material: https://docs.google.com/document/d/1VzfjOKnoHe1aWlH

55eDd3Auxdzals8qJxaILIRadDVY/edit?usp=sharing
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TABLE 1 | Summarized description of the STS patterns P1-P6 in terms of their speed, stopping and jerkiness characteristics.

Movement (P1) (P2) (P3) (P4) (P5) (P6)

attribute Slow rise Slow - fast Failed attempts Freezing Jerky rise Unstable ankles

Speed Uniform Slow bend, fast rise Multiple changes

during bend

Multiple pauses

during rise

Fast changes

throughout

Uniform rise, fast

changes post rise

Stopping Once after rise Once after rise Once after rise Multiple times Once after rise Once after rise

Jerkiness None None Before rise None Entire After rise

and extended rise times (Cheng et al., 1998; Boukadida et al.,
2015). Post-arthroplasty patients show similar asymmetry (Wang
et al., 2019, 2021). Parkinson’s Disease patients suffer from
bradykinesia and postural instability, leading to an increased fall
risk (Mak et al., 2011) and children with spastic diplegia rise in a
jerky and indirect manner (Peng et al., 2011).

Based on this knowledge and with the goal of sampling the
wide set of existing STS impairments and assembling a set of
distinct movement classes, we identified six STS patterns—see
Table 1. Some of these were normal (P1) and others impaired,
based on STS impairment literature (P3, P5, P6) (Riley et al.,
1997; Scarborough et al., 2007; Peng et al., 2011; Millor et al.,
2014; van Der Kruk et al., 2021) or our consultations with
physiotherapists (P2, P4). However, the descriptions in Table 1

and experiment materials were derived from metronome-timed
recordings of simulated movements by a healthy individual (the
first author). Hence, these may not accurately mimic pathological
STS patterns seen clinically among patients, but their purpose
was to serve as movement material to test the informative
potential of the sonification model. Video clips of the patterns
are provided here.5

3.3. Movement Capture and Analysis
Based on Musić et al. (2008), we approximated the STS transfer
using a three segment human body model in the sagittal plane.
Although several studies have computed clinically relevant STS
parameters using a single sensor (Millor et al., 2014), we chose
to use three separate sensors (one per body segment) so as to
obtain a more complete sagittal plane reconstruction of the STS
movement (Musić et al., 2008), from which individual kinematic
parameters could be estimated in a straightforward manner. In
this model, the body position in the sagittal plane is uniquely
defined in terms of the anteroposterior inclinations of the shank,
thigh and HAT (head-arms-trunk) body segments, which in turn
are used to compute the instantaneous CoM position of the body.
Themodel uses anthropometric data (Drillis et al., 1964; De Leva,
1996) to estimate segment masses, lengths, and CoM positions.
Several simplifying assumptions are made; the hip, knee, and
ankle are considered frictionless pin joints, and the model is in
contact with the ground only by the distal end of the shank. STS
is assumed to be symmetrical in the frontal plane, although in
reality this is often not the case in impaired individuals such as
hemiparetic stroke patients (Cheng et al., 1998; Boukadida et al.,
2015).

5Refer to the “Tutorial—STS Patterns” folder: https://www.dropbox.com/sh/

e6di622gjmepo5s/AADxAN3hr6F3UpE4lafP1yTva?dl=0

We briefly describe how our set of high-level movement
features was derived from the sampled inertial data (3 axes each
of accelerometer and gyroscope readings, 100 Hz) transmitted
by the trunk, thigh and shank sensors. Upon reception, each
axis underwent bias compensation by subtracting the axis-wise
mean sensor reading over 10 s when the sensor was stationary,
whilst accounting for the gravitational component. The result was
processed with a 3-pointmedian filter, and sensor fusion was then
employed to compute the anteroposterior inclination of each
segment. For this, we opted for the Madgwick Gradient Descent
method (Madgwick et al., 2011) for its smaller error, superior
computational efficiency and ability to operate at lower sampling
rates than conventional Kalman filters. The error correction
coefficient of the filter (β) was kept at its documented optimal
value of 0.033 (Madgwick et al., 2011). Based on the segment
angles and anthropometric data (Drillis et al., 1964; De Leva,
1996), the system was able to reconstruct the body trajectory in
the sagittal plane.

The next step was to periodically compute CoM position.
First, we defined a relative coordinate system in the sagittal plane,
placing the origin at the distal end of the shank. A unit distance
(1) in these coordinates equalled the total length of the body with
the hip and knee extended, and ankle in the neutral position (90◦

angle between shank and foot). The X and Y coordinates of each
segment’s CoMwere computed from its inclination angle and the
known position of its distal joint, starting from the ankle (0.0,0.0)
and moving upwards:

xseg = xjoint + sin(2seg) · Lseg · DCoM

yseg = yjoint + cos(2seg) · Lseg · DCoM

where xseg and yseg represented the horizontal and vertical
coordinates of the segment CoM, respectively, x/yjoint
corresponded to the distal joint, 2seg was the segment
inclination, Lseg was the length of the segment relative to
total body height, and DCoM was the fraction of the segment
length between the distal joint and the segment CoM. The
simplifying assumptions about the nature of the joints allowed
the body CoM to be calculated as follows:

xCoM = xHAT · wHAT + xthigh · wthigh + xshank · wshank

yCoM = yHAT · wHAT + ythigh · wthigh + yshank · wshank

where wseg represented the segment’s weight as a fraction of
the total body weight. These coefficients could be modified in
the software to accommodate individual differences, but were
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configured based on normative data (Drillis et al., 1964; De Leva,
1996). CoM coordinate values corresponding to upright sitting
and standing could be calibrated as well. The rectangular space in
between these points was designated as the so-called STS “exercise
space” (Newbold et al., 2015). The CoM- and body segment-
related information was then used to extract the following
features for sonification:

CoM Speed: Horizontal and vertical CoM velocity were
obtained by single differentiation of XCoM and YCoM , and the
instantaneous speed of the CoM was calculated as the Euclidean
norm of these two vectors. This is shown for two STS patterns in
the first row of Figure 1. For the slow-fast pattern, the contrast
in CoM speed is clearly visible between the first and second
halves of the rise duration. In the failed attempts pattern, the
initial excursions represent multiple instances of trunk flexion
and extension prior to rising.

Distance from Stand: This feature served as a continuous
measure of STS progression, or “how far” the body was from
a standing position, ranging from 1 (during steady sitting) to 0
(upright standing). To obtain this, the instantaneous Euclidean
distance between the CoM position and the calibrated “stand”
coordinates was first calculated. This was then normalized
through division by the Euclidean distance between the

calibrated “stand” and “sit” coordinates as follows:

d =

√

(xstand − xCoM)2 + (ystand − yCoM)2
√

(xstand − xsit)2 + (ystand − ysit)2

This yielded the distance measure, depicted in the second row
of Figure 1. For the slow-fast pattern, the gradient is initially
shallow and suddenly steepens, corresponding to the slow bend
and fast rise. In the failed attempts pattern, the repeated initial
trunk flexions and extensions are seen as oscillations in the curve.

Freezes During Rise: This measure detected movement
stoppages during STS by examining hip angular velocity, which
was smoothed using a 2nd order Butterworth lowpass filter (fc=
7Hz) and compared to an empirically set threshold (based on our
recorded movement materials). If hip angular velocity remained
below the threshold for a sustained period of 130 ms or longer, a
freeze was registered. Note that this also occurred at movement
completion in freeze-free STS. Freezes are shown as dashed
vertical lines in the third row plots of Figure 1. Both movement
patterns only exhibit one instance of movement stoppage, which
occurs at the end of the rise.

Shank Angular Jerk: This was used to capture movement
intermittencies, commonly seen in impaired movement patterns

FIGURE 1 | The four movement features (rows) plotted for two movement patterns (Slow-Fast and Failed Attempts) to illustrate their information content. The

horizontal axis is time in seconds. ROW 1: CoM Speed shown in bodylengths/s. ROW 2: Distance from Stand shown as a fraction of the distance between the sit and

stand coordinates. The horizontal dotted lines represent the distance thresholds corresponding to each note in the melodic pitch mapping (see Section 3.4). The

vertical dashed-dotted lines represent instants of note transitions, providing a picture of the generated melodic contour. ROW 3: Hip Angular Velocity shown in

degrees/s, and if it remains below the threshold for 130 ms consecutively, a freeze registered. Detected freezes are shown as vertical dotted lines. ROW 4: Shank Jerk

shown as degrees/s3. The horizontal line “Threshold” represents the maximum permissible jerk threshold. The dashed lines represent positive threshold crossings.

For corresponding plots of all six STS patterns, please refer to the Supplementary Material.
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(Balasubramanian et al., 2011). Shank angular velocity was
obtained from the gyroscope readings and double-differentiated
along each axis to yield the angular jerk vectors, whose Euclidean
norm served as the final feature value. This measure was chosen
over acceleration-based linear jerk to avoid the influence of the
gravitational component. A depiction is provided in the fourth
row of Figure 1. The slow-fast pattern is relatively jerk-free until
the fast rise, but the failed attempts pattern displays a greater
degree of jerkiness during the initial portion of the rise.

Movement feature plots for all six STS patterns are shown
in the Supplementary Material. We estimated the quantity of
information necessary to reliably classify an STS pattern as a
member of one of the six categories. In short, a combination of
features appeared necessary, as no single feature seemed to clearly
disambiguate all categories. CoM Speed trajectories of P1, P2, and
P3 showed distinctive structural traits, but those of P4, P5, and P6
did not. Distance from Stand only exhibited distinctive contours
for P2 (shallow initial gradient, sudden steepening) and P3 (pre-
rise oscillations), whilst the others were less distinguishable. For
our recorded data the Freezes during Rise feature seemed to
allow the unique identification of P4, as it was the only pattern
with multiple detected freezes. Shank Angular Jerk appeared to
bring out differences among P3, P5, and P6 in terms of the
temporal location and extent of jerky excursions. To summarize,
we estimated for an STS pattern belonging to a random category,
information of all four movement features would reliably allow
the pattern to be identified.

3.4. Sonification Model
With that in mind, we developed a multidimensional model
for the simultaneous sonification of all movement features.
This was done using conceptual metaphors that represented the
STS motion using a flute physical model (fixed component of
model), whilst saliently sonifying jerkiness and freezing when
they occurred (flexible component). We chose the flute for its
continuous excitation signal, melodic capabilities, and mellow
timbre. With most of its harmonic energy concentrated below 3
kHz, the sensitive 2–5 kHz range (Fletcher and Munson, 1933)
could be occupied by the jerk and freezing feedback streams.
An overview of the mapping principles follows, with technical
specifics provided in Table 2. The first two mappings (S,P) are
the fixed component of the model, whereas the last two (F,J) are
the flexible component.

[S] CoM Speed −→ Flute Blowing Pressure: The goal of this
analogic mapping was to represent instantaneous energy changes
in themovement as energy variations in the sound. Instantaneous
velocity v correlates with kinetic energy of the body (E = 0.5 ·

m · v2) (Fedak et al., 1982), and we therefore mapped CoM speed
to the amplitude of the flute excitation signal. Sonically, this
manifested as changes in volume of the tube resonances and the
air blowing noise. The volume ranged from near-silence when the
body is at rest (zero speed) to maximum intensity at the upper
CoM speed bound.

[P] Distance from Stand −→ Flute Melodic Pitch: The
STS progression (decreasing distance between CoM and stand
coordinates) was discretely represented by the ascending tones
of a major scale in a single octave. The distance feature received
contributions from both the horizontal and the vertical CoM
displacement components, meaning that forward trunk flexion
also resulted in melodic pitch increases, although the vertical
component was more dominant due to its relatively large
contribution to the total distance traversed by the CoM.

[F] Freezes During Rise −→ Triggered Bell Sound: The
goal was to symbolize freezes (discrete events) through discrete,
salient auditory stimuli—specifically the sound of a church bell
(physical model). Thus in freeze-free STS, the bell only sounded
at movement completion, whereas it sounded multiple times
during the course of freeze-ridden STS.

[J] Shank Angular Jerk −→ High Pitch Modulations:

Jerky excursions during STS (typically manifesting as rapid,
unpredictable speed changes) were sonified as salient high
frequency pitch modulations. This can be seen as converting
“glitchy” movements into “glitchy” sound. If shank jerk exceeded
a threshold, a multiplicative factor was applied (proportional to
threshold overshoot) to the fundamental frequency of the flute.

Figure 2 illustrates the audio signal generated by the unstable
ankles movement pattern. Several key kinematic characteristics
are apparent from the spectrogram. The ascending scale
corresponding to the rise is clearly evident from the stepwise
increases in fundamental and harmonic frequencies. The jerky
excursions post rise are visible as pitch distortions, and the final
stoppage of the motion is signified by the relatively broadband
bell sound directly afterwards.

We estimated that information of all four movement features
would theoretically enable STS pattern classification. As the
communication medium in our case was sound, our estimation

TABLE 2 | A summary of mapping specifics.

Short Form Movement Feature Mapped Perceptual Parameter Param. Range Mapping Polarity Mapping Func. Order Param. Smoothing

Cutoff Freq.

S CoM Speed Flute Blowing Pressure 0–1 + 0.45 6 Hz

P Distance from Stand Flute Melodic Pitch A4–A5 note - 0.75 No smoothing

F Freezes during Rise Bell Sound Off–On + 1 No smoothing

J Shank Jerk Flute Pitch Multiplier 1–10 + 0.45 19 Hz

Mapping polarity refers to whether positive changes in the movement feature led to positive (+) or negative (−) changes in the perceptual parameter. Mapping function order refers to

the shape of the transfer function linking movement feature values to perceptual parameter values. The latter may also have undergone smoothing via a 2nd order Butterworth Low

Pass Filter, whose cutoff frequency (if applicable) is shown in the final column.
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FIGURE 2 | A sonified version of the “Unstable Ankles” pattern, shown as a stereo (2-channel) waveform and spectrogram (0–5 kHz, linear scaling) generated in

PRAAT. The latter depicts the ascending scale, high pitch modulations post-rise, and the triggered bell on coming to rest after standing.

would only hold true if (A) the listener could understand how
sound changes were linked to movement features, and (B) the
sonic communication preserved the structure and integrity of
the underlying information (Bakogiannis et al., 2021) in a way
that was both perceptible and cognitively manageable. To test the
model in these terms, we carried out an empirical evaluation in
the form of a classification experiment inspired by Vinken et al.
(2013).

4. EXPERIMENT

We applied a 6-alternative forced-choice paradigm where
participants needed to identify STS movement patterns (see
videos in Supplementary Material) by listening to sonifications
generated using different combinations of the parameter
mappings within the model. We aimed to assess how effectively
the complete model could convey the movement information
necessary to identify the movement patterns, in terms of
classification accuracy, confidence and response time. Another
goal was to assess the contribution of individual parameter
mappings to the above outcomes, as well as the impact of
music training.

4.1. Hypotheses
We formulated a list of concrete hypotheses based on findings
from past literature:

• H1: Increasing the dimensionality of movement feature
mappings contained will lead to an increase in classification
accuracy and confidence, along with a decrease in response
time. This applies particularly to the flexible component of the

model (e.g., triggered bell and pitchmodulations) (Barrass and
Kramer, 1999; Bakogiannis et al., 2021).

• H2: STS patterns with distinct structural traits (e.g., failed
attempts) that manifest across multiple movement features
will be classified with greater accuracy, confidence, and speed
than others (Vinken et al., 2013).

• H3: Repeated exposure to the sonified sequences over the
course of the experiment will lead to learning effects that
manifest as increased accuracy, increased confidence and
decreased response time (Eldridge, 2006; Vinken et al., 2013).

4.2. Participants
A convenience sample of 25 participants (4 women) ranging
from 22 to 49 y/o (30.28 ± 6.02 y/o) volunteered to participate
in the study. They were primarily recruited from among
the students and staff of Aalborg University, Copenhagen.
None of them reported any auditory/cognitive impairment or
any prior experiences with our experimental protocol, and
they were all naïve about our hypotheses. All experimental
procedures conformed to ethics code of the Declaration of
Helsinki. The finalized experiment protocol was presented to the
chair of Aalborg University’s Research Ethics Committee, who
approved the project on the basis that (1) informed consent was
obtained prior to participation and (2) no personal, sensitive, or
confidential information was collected from participants.

4.3. Materials and Setup
We generated sound sequences corresponding to multiple
instances of all STS patterns, sonified using the parameter
combinations shown in Table 3. One hundred and eight audio
clips (3 instances of each movement type × 6 STS patterns × 6
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TABLE 3 | The six parameter combinations used to generate the sound sequences.

Param. Combo Flute Pressure Flute Melodic Pitch Bell Strike Pitch Glitches

CoM Speed (S) Distance from Stand (P) Rise Freezes (F) Shank Jerk (J)

S X

SJ X X

SP X X

SJF X X X

SPF X X X

SJPF X X X X

The abbreviations in the first column refer to the mappings present in that particular combination.

parameter combinations) of equal duration (8 s) were generated.
The sequences were edited and normalized in REAPER, and
subsequently rendered as 48 kHz/24 bitWAVfiles.We havemade
these available in a Dropbox folder.6

The experiment was conducted with individual participants
seated in a quiet room with no acoustic treatment. A Windows
laptop running a custom-built experiment interface (built using
JUCE) was used, and the sound sequences were played back over
small USB-powered stereo speakers placed < 1 m away, and at a
comfortable volume. By using such a sound reproduction system
and listening environment, the sound underwent comparable
degradation to what it might be subjected to in real-world
listening situations.

4.4. Procedure
Each participant was first given an overview of the purpose of
the research and experiment. Next, the participant’s Goldsmith
General Musical Sophistication Index (GMSI) (Müllensiefen
et al., 2014) was determined via an online questionnaire.
The questionnaire consists of 29 items targeting self-reported
music training, melodic and rhythmic ability7, yielding a score
between 18 and 126 (Müllensiefen et al., 2014). Afterwards,
the experiment was conducted over three separate phases:
Familiarization, Training, and Testing.

Familiarization Phase: Participants watched two
instructional videos (see Dropbox folder) that explained (A)
the movement patterns, and (B) the individual and combined
movement-sound mappings. The videos were formatted as
text slides with information interleaved with audiovisual
demos. Each movement pattern and mapping was shown once,
but participants were instructed to carefully watch them as
many times as necessary to familiarize themselves with the
content. Once this was complete, the experimenter clarified
any queries they may have had related to terminology and
movement/mapping concepts. Info charts summarizing the
STS patterns (identical to Table 1) and the movement-sound
mappings were placed in front of participants for reference
throughout the experiment.

6STS Experiment Audio Clips: https://www.dropbox.com/sh/e6di622gjmepo5s/

AADxAN3hr6F3UpE4lafP1yTva?dl=0
7Goldsmith’s Musical Sophistication Index—https://shiny.gold-msi.org/

longgold_demo/?test=GMS&language=en

Training Phase: This was carried out on the experiment
interface (see Supplementary Material), where participants
carried out the classification task on sound sequences from each
of the six parameter combinations in Table 3, in reverse order
starting from SJPF. The STS patterns were ordered based on
a Latin squares design, and the participants had to attempt at
least three classifications per parameter combination in order to
proceed to the main experiment. The classification trials took on
the same form throughout the experiment.

Classification Trials: Upon initiating a trial, a sound sequence
was played back once, and there was no option to replay it. Upon
its completion, the classification task was conducted as follows:

1. STS Pattern Selection: Participants were presented with six
options (the STS patterns) and had to select the one that was
first brought to mind by the preceding sound sequence. After
clicking, they were unable to modify their selection.

2. Confidence Rating: They also had to report how confident they
were in their choice by setting a slider value (0–100 integer
value scale, 0= not at all confident, 100= fully confident).

Participants were allowed to refer to the info charts to help them
finalize their choice, and there was no time limit for the task. After
filling in their responses, they had to click a button to proceed.

In the training phase, the correct answer was displayed
after each response, and participants were given the option
of re-listening to the sound sequence while simultaneously
watching a synchronized video clip of the correct pattern, so
as to reinforce their understanding of the sound-movement
relationship. Responses during this phase were not recorded. An
illustration of the reinforcement learning interface is provided in
the Supplementary Material.

Testing Phase: The six parameter combinations given in
Table 3 were presented to participants over a series of six
blocks, whose order was counterbalanced using a Latin squares
design. At the start of each block, the interface informed
participants of the new parameter combination. Within a block,
classification trials were carried out with sound sequences
corresponding to every STS pattern presented three times
(order counterbalanced across blocks, consecutive sequences
non-identical). This resulted in a total test length of 6 blocks ×
6 STS patterns × 3 repetitions per pattern = 108 classification
trials. The interface also recorded the time elapsed between sound
sequence completion and STS pattern selection. On concluding
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a trial, 1-s white noise burst was played. This procedure was
repeated until all 108 trials were complete, after which the
experiment data was automatically logged. The experiment lasted
a maximum of 2 h but was typically completed within an hour
and a half.

4.5. Outcome Measures
1. Classification Accuracy: From the experiment logs, block- and

pattern-wise responses were extracted and two measures of
accuracy were computed in MATLAB 2018b (Mathworks):

• Percentage of Correct Responses: We henceforth refer to
this as Accuracy (%), computed as:

Accuracy(%) =
Correct Responses

Total Responses
· 100

• F-score: This is the harmonic mean of precision and recall
(commonly used in machine learning applications). It was
calculated for each STS pattern as follows:

Precision =
True Positives

True Positives+ False Positives

Recall =
True Positives

True Positives+ False Negatives

FScore =
2 · Precision · Recall

Precision+ Recall

When analyzing accuracy in terms of individual STS
patterns, the F-score was the most suitable metric because
high precision (fewer false positives) and high recall (fewer
false negatives) are both clinically important, and the F-
score gives them equal weight.

2. Confidence: This was a measure of uncertainty in the
classification process, and was rated by participants during
each trial (ranging from 0 to 100%).

3. Response Time: The elapsed time between the end of the sound
sequence and the instant an STS pattern option was clicked, as
recorded by the interface.

4.6. Statistical Analysis
All statistical analysis was done in SPSS 27.0 (IBM Corp).
Summary measures for the data are presented as mean ±

standard deviation. Repeated measures (RM) ANOVAs were
used to test for effects of Parameter Combination and STS Pattern
on classification accuracy, confidence and response time (H1

and H2, respectively). Overall F-scores for each STS pattern
were also computed within every parameter combination, along
with confusion matrices. To investigate learning effects (H3), the
following analyses were carried out:

• Across-Block Effects: The Block factor represented the temporal
progression of the experiment. RM ANOVAs were used to
test for effects of Block on accuracy (%), confidence, and
response time.

• Within-Block Effects: This refers to learning effects brought
about by repeated exposure to the sound sequences (three
repetitions of each STS pattern per block). An RM ANOVA

was used to test the effect of sound sequence repetition
(Repetition Number) on participant accuracy (%). The 36
sound sequences (6 STS patterns× 6 parameter combinations)
were then analyzed in terms of elicited confidence and
response time across repetitions. The sequences were first
clustered using the k-means algorithm (k = 2) due to large
variability in the data. 3 Repetition Numbers × 2 Clusters
mixed-design RM ANOVAs were then used to test within-
block learning effects and compare them across clusters.

In addition, some secondary analyses were conducted:

• Confidence-Response Time Relationship: This was investigated
using a two-tailed correlation analysis between rated
confidence and recorded response time over the 2,700 total
responses (25 participants× 108 responses).

• Effects of Music Training: We first ran a two-tailed correlation
analysis between participants’ overall accuracy (%) and their
GMSI scores. Next, an RM ANCOVA was carried out with
Parameter Combination as the within-factor and GMSI Score
as the covariate to measure the effect of music training on
each outcome.

• Differences between Correct and Incorrect Responses:
Confidence and response time behavior were compared
between correct and incorrect classification responses. To
minimize the impact of between-participant variability on
these analyses,both outcomes were first normalized through
division by the respective participant’s grand mean (over the
entire experiment) and expressed as a percentage. One-way
ANOVAs were then carried out.

For all statistical tests, we used a significance criterion α = 0.05.
If significant main effects were detected by the ANOVAs, Tukey
post-hoc pairwise comparisons were carried out with Bonferroni
correction applied. The JUCE code, data logs, analysis scripts,
and SPSS test outputs are available on GitHub.8

5. RESULTS

We found that participants were able to carry out the
classification task with an overall mean accuracy (%) of 71.56%.
This was well above chance level accuracy in a 6-alternative
forced choice paradigm (16.67%). The overall rated confidence
was 64.95± 16.52% and response time per trial was 4.28± 1.52 s.

5.1. Effect of Parameter Combination
Figure 3A shows the accuracy (%) within each parameter
combination. The RM ANOVA showed a significant main effect
of Parameter Combination on accuracy [F(5, 120) = 40.586, p
< 0.001, η2p = 0.628]. Tukey post-hoc tests found multiple
significant pairwise differences (shown as brackets in Figure 3A).
As can be seen, accuracy was well over chance level in all
cases, and showed a clear increasing trend with the addition of
individual mappings. The highest accuracy (86.67 ± 14.69%)
was found for the combination sonifying all four movement

8Experiment Git Repository: https://github.com/prithviKantanAAU/

FrontiersSTS_Code_Analysis
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FIGURE 3 | (A) Accuracy comparison between parameter combinations, (B) F-score comparison between STS patterns, (C) Confidence comparison between

parameter combinations, and (D) Confidence comparison between STS patterns. Bar heights indicate mean values, and the error bars show 95% confidence

intervals. Asterisks indicate significant pairwise differences (α = 0.05). Dotted line in (A) signifies chance level accuracy (16.67%).

features—CoM Speed, Distance from Stand, Freezes, and Shank
Jerk (SJPF). At the opposite end, only sonifying CoM speed (S)
resulted in the lowest accuracy (51.78± 16.95%).

In terms of rated confidence, Figure 3C shows an increasing
trend with the addition of feature mappings. The RM ANOVA
revealed a significant main effect of Parameter Combination
on confidence [F(5, 120) = 33.392, p < 0.001, η2p = 0.582],
with post-hoc comparisons revealing several pairwise differences
(see Figure 3C). SJPF (79.08 ± 18.04%) elicited significantly
higher confidence than all other combinations, and S (46.60
± 19.27%) was significantly lower than all others, with the
intermediate combinations all lying in between these extremes.
There was also a main effect of Parameter Combination on
response time [F(5, 120) = 4.578, p= 0.001, η2p = 0.160], although
post-hoc comparisons did not reveal any significant pairwise
differences. We discovered a significant negative correlation

between participant-normalized confidence and response time
values (ρ =−0.395, p < 0.01).

5.2. Effect of STS Pattern
As shown in Figure 3B, there was considerable variability in the
measured F-scores between the STS patterns. The RM ANOVA
revealed a significant main effect of Pattern on accuracy (F-
score) [F(5, 120) = 14.950, p < 0.001, η2p = 0.384]. Post-hoc
pairwise comparisons revealed multiple pairwise differences (see
Figure 3B). P2 (slow-fast) (0.78 ± 0.15) and P3 (failed attempts)
(0.83± 0.17) exhibited significantly higher F-scores than all other
patterns. A significant main effect of Pattern on confidence was
also found [F(5, 120) = 16.708, p < 0.001, η2p = 0.410]. Post-
hoc comparisons revealed similar trends to the F-score plot (see
Figure 3D).
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FIGURE 4 | Left: Heatmap depicting F-score distribution across patterns P1-P6 (vertical direction) and parameter combinations. Higher values indicate superior

performance. Middle: The confusion matrix for the SP parameter combination (fixed component of model). Rows represent true classes, and columns represent

predicted classes. Thus, the diagonal elements represent correct classifications, and the rest are incorrect. Right: Confusion matrix for the SJPF parameter

combination (fixed + flexible components of model).

The F-scores for each pattern and parameter combination
are visualized as a heatmap in Figure 4 (left). In general,
an increasing tendency (progressively redder hues) is visible
from left to right as the mapping dimensionality increases,
and the tendency is highly pattern-dependent. In the middle
plot, the confusion matrix for the SP parameter combination
fixed component of sonification model is shown. Patterns P4
(freezing), P5 (jerky rise), and P6 (unstable ankles) were the
patterns most commonly misclassified and confused with one
another. Figure 4 (right) shows the confusion matrix for SJPF
(complete model) (rightmost column of heatmap), which had
far fewer misclassifications overall. 22/60 total misclassifications
were instances of P1 (slow rise) wrongly marked as P2 (slow-
fast), with sporadic incidences of other miscellaneous confusions.
Confusion matrices for the remaining parameter combinations
can be found in the Supplementary Material.

5.3. Learning Effects—Within- and
Across-Block
The RM ANOVA revealed no significant effect of Block on
accuracy [F(5, 120) = 0.799, p = 0.553, η2p = 0.032], confidence

[F(5, 120) = 0.401, p = 0.847, η2p = 0.016], or response time

[F(5, 120) = 1.418, p= 0.222, η2p = 0.056].
In terms of within-block effects, the RM ANOVA showed a

significant main effect of repetition number [F(2, 48) = 7.865, p
= 0.001, η2p = 0.247] on accuracy (%). Post-hoc comparisons
revealed that participant accuracy was significantly higher when
classifying the third repetition of a sound sequence (75.11 ±

10.22%) than when classifying the first (68.67 ± 12.15%) and
second (70.89± 13.00%) repetitions.

For confidence and response time, the results of the k-
means clustering of sound sequences are shown on the left side
of Figure 5. The confidence clusters appear well-defined, with

the high cluster concentrated among the higher-dimensional
parameter combinations and slow-fast (P2) and failed attempts
(P3) sequences. A comparable tendency is seen for response time
clusters, with many high confidence cluster members overlapping
with fast response cluster members and vice versa. We then
checked for differences between these clusters, and how they
were evolved overmultiple repetitions. For confidence, themixed
ANOVA found significant main effects of repetition number
[F(2, 68) = 5.847, p = 0.005, η2p = 0.147] and Cluster [F(1, 34) =

115.89, p < 0.001, η2p = 0.989], as well as a significant interaction

between them [F(2, 68) = 4.703, p = 0.014, η2p = 0.122]. As
seen on the right side of Figure 5A, the high confidence cluster
showed a mild increasing trend, whilst the low confidence cluster
did not. Post-hoc comparisons revealed that repetition number
3 (66.61 ± 14.58%) elicited significantly higher confidence than
repetition number 2 (64.79 ± 14.98%) and 1 (63.46 ± 12.76%)
(right side of Figure 5A). Response time is depicted on the right
side of Figure 5B. Here, there were significant main effects of
repetition number [F(2, 68) = 36.259, p < 0.001, η2p = 0.516]

and Cluster [F(1, 34) = 76.787, p < 0.001, η2p = 0.693], but
no significant interaction between them. Post-hoc comparisons
revealed significant differences among all repetitions (shown on
right side of Figure 5B). Both clusters showed decreasing trends
with increasing repetitions.

5.4. Effect of Music Training
There was no significant correlation between participants’ overall
accuracies and their GMSI scores (ρ = 0.34, p= 0.097). The RM
ANCOVA did not reveal a significant main effect of GMSI Score
on accuracy [F(1, 23) = 3.002, p = 0.097, η2p = 0.115], confidence

[F(1, 23) = 0.881, p= 0.377, η2p = 0.034] or response time [F(1, 23)

= 2.895, p= 0.102, η2p = 0.112].
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FIGURE 5 | (A) Confidence-based clustering, (B) Response Time-based clustering of sound sequences. The clusters are shown on the left, and the comparison

between repetition numbers is shown on the right. Bar heights indicate mean values, and the error bars show 95% confidence intervals. Asterisks indicate significant

pairwise differences.

5.5. Differences Based on Response
Correctness
The one-way ANOVA revealed a significant main effect
of Correctness on confidence [F(1, 27.944) = 117.057, p <

0.001, η2p=0.807]. A post-hoc comparison revealed that
participants were significantly more confident during
correct classification responses (+7.364 ± 43.16% relative
to their mean) than incorrect ones (−19.895 ± 39.27%
relative to their mean). A significant effect of Correctness
was also seen for response time [F(1, 28.588) = 119.874, p
< 0.001, η2p=0.807]. A post-hoc comparison revealed that
participants exhibited significantly faster response times during
correct responses (−19.13 ± 92.24% relative to their mean)
than during incorrect ones (+48.13 ± 136.03% relative to
their mean).

6. GENERAL DISCUSSION

In this study, we designed and developed an adaptable
sonification model for STS feedback and monitoring
applications. We evaluated its veridicality (as defined by
Barrass and Kramer, 1999) via a forced-choice classification task
experiment where participants had to identify simulated STS
patterns from their sonified sequences. We hypothesized that
increasing the number of information mappings would increase
classification accuracy, confidence, and reduce response time
(H1), and this was validated by the strong effect of Parameter
Combination on these outcomes. This finding aligns well with
existing theories on categorization processes in the human
brain, specifically that the uncertainty involved in assigning
a category to a stimulus directly depends on the distance of
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the stimulus in perceptual space from “key representational
features” of the category (Seger and Peterson, 2013). Thus,
providing clear sonified information about these features appears
to have resulted in less uncertainty, as is evidenced in the
accuracy and confidence findings. The outcomes were also
found to be highly pattern-dependent (validating H2), with two
structurally distinctive patterns (slow-fast, failed attempts) being
classified with greater accuracy and confidence than the others.
Furthermore, there were distinct learning effects brought about
by repeated exposure to sound sequences (effects of Repetition
Number), but these did not transcend parameter combinations
(no effect of Block), partly validating H3. This fits the theory that
ambiguity in categorization processes decreases, and certainty
increases as learning progresses (Seger and Peterson, 2013).

Even though four streams of information were presented
simultaneously, our findings indicate that the participants were
able to interpret the underlying information without major
perceptual difficulties or cognitive overload (as evidenced by
the SPJF accuracy figure of 86.67 ± 14.69%, which was well
above the 16.67% chance level figure). Furthermore, this level
of performance was achieved despite the relatively low fidelity
of the sound reproduction system, showing that the model
is robust to acoustical degradation. We credit this to the
metaphorical and naturalistic sonification design (Antle et al.,
2009; Roddy and Bridges, 2020), which leveraged existing
embodied associations related to melody and dynamics in
the representation of kinematic quantities. However, future
studies should validate this by comparing the model with more
abstract, non-metaphorical designs. It is also unclear at this
point what level of detection accuracy is clinically usable, and
how our obtained value should be interpreted in these terms.
Clinical usability studies will have to be carried out in order to
determine this.

6.1. The Sonification Model Components
The model comprised a fixed component to represent the rising
motion itself (mappings S, P) and a flexible component to
sonify kinematic variables of clinical interest—here we chose
to represent freezes and shank jerk. The experiment results
indicate that both components, as well as their individual
constituent mappings, contributed positively to the classification
process as seen in Figure 3A. This was interestingly at odds
with the findings of Vinken et al. (2013), who found no
effect of increasing the mapping dimensionality in a similar
experiment. The difference in our case was most likely because
the STS pattern characteristics and mapping rules were clearly
conveyed to the participants. We now appraise both the
model components.

Fixed Component: This represented the upward rising
motion as amelody whose dynamic properties were controlled by
the CoM speed. It seems reasonable to believe that its constituent
variables are generalizable to any STS pattern type as their
underlying assumption of the CoM moving with finite speed
from sitting to standing coordinate positions (both modifiable)
will always hold true. The fixed component by itself (SP) allowed
a mean accuracy (%) of 57.11% (well above chance level). Its
confusion matrix shows that true P2 (slow start-fast end) and

P3 (failed attempts) sequences were classified with relatively
few misclassifications. This can be attributed to the nature of
the patterns and their resulting sound sequences; both pattern
sequences had very distinctive amplitude envelopes and melodic
contours (see Figure 1). It shows that participants were able to
cognitively process the ordering of the melodic representation to
interpret the movement trajectory at a coarse level, supporting
the melodic sonification model for STS proposed by Newbold
et al. (2015) and in line with the findings of Dyer et al. (2017).
It is interesting to note that the addition of the melody mapping
(P) did not result in significant improvements in classification
accuracy over identical parameter combinations without it (e.g.,
S vs. SP, SJF vs. SJPF—see Figure 3A). However, it did lead
to significantly higher confidence in both the above cases (see
Figure 3C), implying that the presence of the melody helped
strengthen the mental representation generated by the other
feature mappings through its metaphorical depiction of spatial
position. The use of melody for this purpose is supported by
past findings of how spatial gestures are cognitively assigned to
melodic contours (Kelkar and Jensenius, 2018).

The fixed component can also indirectly convey clinically
relevant parameters through the melodic representation, such as
transition duration (time taken to execute STS) and the speeds
at which the different STS movement phases take place (Millor
et al., 2014). The former is simply the time taken to traverse
the entire musical scale, whilst the latter is apparent from the
variation of scale note durations from start to finish. The same
cannot be said for the more rapidly-varying parameters such as
acceleration and jerk, and our experiment results indicate that
the fixed component had clear limitations in this regard. The SP
confusion matrix (see Figure 4, middle) shows a large number
of misclassifications among P4, P5, and P6. This was expected,
considering that SP did not contain the freezing and shank jerk
information critical for identifying and disambiguating these
patterns. Moreover, the CoM Speed feature was smoothed prior
to mapping, and the melodic pitch mapping was essentially
a spatial quantization of the rising motion. Although these
steps were necessary to create a smooth-sounding and simple
melodic sequence, they resulted in a loss of spatial and temporal
resolution, making it harder to hear and understand fast changes
in CoM speed that impaired STS patterns commonly exhibit
(Scarborough et al., 2007; Nicolai et al., 2010; Peng et al.,
2011; Millor et al., 2014; Boukadida et al., 2015). Even if
CoM speed smoothing had been absent, the integration time of
human loudness perception (Florentine et al., 1996) would have
made this mapping inappropriate for representing rapid changes
in speed.

The experiment also uncovered some flaws in the technical
implementation of the melody mapping. The confusion matrix
of SJPF (Figure 4, right) shows that a relatively large number
of true P1 (slow rise) sequences were misclassified as P2 (slow-
fast). A closer examination of the Distance from Stand plot for P1
shows that its trajectory was non-linear. There seems to have been
a relatively dominant contribution of the vertical component
of STS displacement to the Euclidean distance variable, which
caused the melody to accelerate after initial trunk flexion. This
may have given the impression of a slow beginning and fast end
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to participants who did not receive the slow-fast sequence before
the slow rise in the experiment order. The mapping function
shape should be adjusted to ensure that normal rises result in
melodies with temporally equi-spaced notes, so as tomaintain the
integrity of the conceptual metaphor. Another issue was that the
final note of the ascending melody appears to have been triggered
well before the rise was complete [see second row of Figure 1,
where the feature value is 0.2 when the final note is triggered
(last vertical dotted line)]. This highlights the importance of
an accurate calibration procedure and suitable mapping shape
function in clinical use-cases.

Flexible Component: In our experiment, the flexible
component (Freezing, Jerk mappings) was able to effectively fill
in the information gaps present in the fixed component, greatly
improving the classification accuracy of the Freezing, Jerky Rise,
and Unstable Ankles patterns as is clearly evident in Figure 4

(left) and Figure 3A. This shows that participants could clearly
perceive and understand the flexible component mappings in
parallel with the fixed component, which was expected given the
clear spectral separation between the flute and the bell/high pitch
modulations (Figure 2). Our findings support the notion that
these sonifications were able to preserve the underlying structure
of the information (Eldridge, 2006), allowing correct inferences
to be drawn about the physical phenomenon (Bakogiannis et al.,
2021).

We acknowledge that the flexible component was designed
specifically based on our movement material and thus may not
be universally generalizable, but propose, based on our results,
that the same sonic entities (bell sound, high pitch modulations)
can be used to, respectively, represent other movement features
of clinical interest (e.g., mediolateral trunk tilt in stroke patients
could be mapped to the high pitch modulations). Using the 3-
segment STS computationalmodel with a sonification framework
such as that developed by Kantan et al. (2021) facilitates
the realization of a wide range of such mappings for varied
situations. Although some relevant movement features have been
documented and measured using inertial sensors in the past
(Millor et al., 2014), not all of them are amenable for real-time
sonification, and future research must clearly define sonifiable
features for different types of patients and impairments.

A key distinction between our movement materials and
real-life pathological STS pattern categories is that the latter
are likely to be less clear-cut, manifesting as combinations of
discrete impairments resulting from muscle weakness and/or
spasticity (Cheng et al., 1998; Scarborough et al., 2007; Boukadida
et al., 2015). The sonification design strongly depends on
the use-case scenario within the context of feedback and
monitoring (Hildebrandt et al., 2014; Millor et al., 2014; Bresin
et al., 2020). For example, a sonification of jerk may be
useful for a therapist who is monitoring/assessing a patient,
but not for feedback purposes, as patients may not be able
to spontaneously convert this information into meaningful
biomechanical change. It should be noted that although the
results indicate that the freezing and jerk mappings were
sufficiently salient, the participants were young and cognitively
unimpaired. Future studies will investigate whether patients
with varied degrees of cognitive impairment can perceive and

comprehend the sounds—particularly in the case of augmented
feedback applications (Sigrist et al., 2012; Morone et al., 2021). It
is also possible that these salient entities (e.g., bell sounds) cause
unacceptable levels of alarm fatigue (Cvach, 2012) and sonic
disturbance in clinical monitoring contexts (Roodaki et al., 2017;
Aldana Blanco et al., 2020).

6.2. Conceptual Advantages of Model
We believe that our model has several advantages at the
conceptual level. All its constituent movement features are easily
computed in real-time without any windowing or segmentation
of the inertial data. The upward trajectory of the body CoM
is directly converted to a congruent auditory representation,
providing continuous task-relevant stream of information that
can potentially aid associative sensorimotor learning (Sigrist
et al., 2012; Dyer et al., 2015; Morone et al., 2021) or serve as
sensory substitution for deafferented individuals. The mapping
of CoM speed to the dynamics of the flute model ensures that
there is sound only during periods of motion, which has been
recommended as a means to reduce auditory fatigue and sensory
overload when the body is at rest (Roodaki et al., 2017). In
general, our results showed that the use of both analogic and
symbolic mappings (Eldridge, 2006) in the model created a
comprehensible balance of continuous and discrete kinematic
information. Last but not least, the flexible component of the
model can be tailored to suit clinical needs in various STS use-
cases. Most of the clinically relevant variables listed by Millor
et al. (2014) (vertical velocity, acceleration, jerk, joint angular
velocity) can be computed from the 3-segment sagittal plane STS
model we used (Musić et al., 2008) and mapped to suitable sonic
entities within the model.

6.3. Learning Effects and Impact of Music
Training
An interesting finding was that the difference between musicians’
and non-musicians’ performance parameters was not significant
for any of the outcomes, even thoughmusicians have been shown
to be better than non-musicians at tracking the direction of
frequency changes in auditory displays (Neuhoff et al., 2002).
This result can be interpreted as evidence that music training
is not a prerequisite in order to be able to effectively use
the sonification model. The lack of significance can also be
attributed to the relatively small sample size and the convenience
sampling of participants (not necessarily at GMSI scale extremes;
Müllensiefen et al., 2014), as well as the fact that the GMSI
does not take general auditory comprehension and memory
abilities into account, both important for classification in this
context (Seger and Peterson, 2013). As far as learning effects were
concerned, we did not find these to be present over the course
of the experiment (i.e., across blocks) but they were certainly
present within blocks (across sound sequence repetitions). The
former is at odds with the findings of Vinken et al. (2013), who
found significant across-block learning effects. In our case, the
strong effects of parameter combination may have offset and/or
masked any lingering effects across blocks. However, within-
block effects were clearly seen for the accuracy, confidence, and
response time outcomes. This indicates that the participants
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generally got better at using a single parameter combination
with repeated exposure, pointing to the learnability of the model
(Eldridge, 2006). However, the sound sequences we used across
repetitions were identical, whereas repeated movement patterns
in real life are unlikely to be so due to motor variability
(Bernstein, 1966). It is therefore unclear at this point how the
resulting variations in the auditory stimuli will affect their ability
to be unambiguously categorized, in other words the level of
generalization required in order to carry out the task (Seger
and Peterson, 2013). This can be tested in future perceptual
tests by additionally evaluating the ability of participants to
classify one or more novel STS patterns not included in
the training phases (like the generalization tests done by
Dotov and Froese, 2018).

The sound sequences could be separated into two highly
distinct clusters based on confidence and response time.
Examining Figure 5, it is clear that the outcome for each
sound sequence depended on whether it contained salient
representations of pattern-distinctive information. E.g., for P4
(freezing) all parameter combinations having the F (freezes
during rise) feature mapping were in the high confidence
cluster, and vice versa. The results also indicate that positive
learning effects were exclusive to the sequences that sonified
pattern-distinctive information, showing that the participants
got better at extracting and using this information in their
judgments. Response time was inversely linked to confidence,
as known from existing neuroscientific models of categorical
uncertainty (Grinband et al., 2006). Participants exhibited
highly distinct levels of confidence depending on response
correctness as well, indicating that they themselves had a good
awareness of when their responses were likely to be incorrect,
i.e., it was rare that they confidently and quickly submitted
an incorrect response. This is in line with existing theory,
specifically that uncertainty during categorization is directly
related to the perceptual distance between a stimulus and the
existing mental representation of the category assigned to it
(Seger and Peterson, 2013).

6.4. Limitations
We acknowledge that our methods and materials had several
limitations. For the fixed component, we chose the flute for
its continuous excitation signal and mellow tone, but did
not evaluate its aesthetic values. Personal preferences and
tastes related to musical instruments and scales are likely
to exert an influence upon whether users choose to use
such a communication model (Barrass and Kramer, 1999;
Parseihian et al., 2015). Moreover, it is also likely that a simple
ascending melody becomes monotonous and/or predictable
after many repetitions, reducing the novelty and motivational
value of the feedback (Maes et al., 2016). A solution can
be the integration of rhythmic and harmony-based elements
into the model. However, it is important to strike a balance
between veridicality of information communication and stimulus
novelty/unpredictability. Future studies can also include control
conditions (e.g., sine wave sonification) to comparatively evaluate
the aesthetic appeal and auditory fatigue, along with the other
classification-related outcomes.

Ourmovementmaterials attempted to sample existing normal
and impaired movement patterns based on STS literature (Kerr
et al., 1991; Riley et al., 1997; Cheng et al., 1998; Scarborough
et al., 2007). However, these were recordings of a single
healthy individual, and did not cover the breadth of existing
STS impairments seen in literature (Riley et al., 1997; Cheng
et al., 1998; Scarborough et al., 2007; Millor et al., 2014). A
more robust approach would have been to use inertial data
recordings obtained from patients with a range of disabilities.
An example is Danna et al. (2015), who recorded writing
patterns of real dysgraphia patients for use in their perceptual
test. Future studies will adapt the model based on recorded
data obtained from patients suffering from STS impairments.
the STS kinematic model we used (Musić et al., 2008) did
not include mediolateral asymmetry, which is common among
stroke patients (Cheng et al., 1998; Boukadida et al., 2015)
and hip/knee arthroplasty patients (Wang et al., 2019, 2021).
Lastly, the Madgwick filtering algorithm we used for orientation
estimation (Madgwick et al., 2011) is prone to drifting over time
depending on its configuration.

The model evaluation was done through a perceptual test,
which in essence was an “open-loop” setting with no connection
between the listener and the movement. The results from
this assessment may not be generalizable to a motor feedback
application, which is “closed-loop”. It will be necessary to
perform human experiments to assess the model in a closed-loop
feedback setting (such as the protocol employed by Gholinezhad
et al., 2021). A potential pitfall in the experiment design was the
fact that a forced-choice paradigm may have made elimination
strategies possible, although more continuous measures of
movement quality such as those used by Danna et al. (2015)
are subject to individual variability. Aside from this, we did not
test how intuitive the sonification model was, as we gave the
participants explicit information of the mappings. Future studies
should include an “implicit” condition where no information
about the mappings is provided, similar to Danna et al. (2015)
and Vinken et al. (2013).

6.5. Conclusions
We designed and developed an STS sonification model for
rehabilitative and monitoring applications. The results of the
listening test experiment showed that the model was capable
of effectively conveying kinematic information about a set
of normal and simulated impaired movement patterns. We
believe that the model has several conceptual advantages that
will allow it to be adapted to concrete applications for motor
feedback and clinical monitoring, although our materials and
experimental methods had some limitations. Future studies will
upgrade the model based on movement data obtained from real
patients, and evaluate it in these specific use-cases, exploring the
versatility of the flexible component as a tool to represent various
clinically relevant kinematic parameters. On the whole, there
is a need for STS sonification design research, and our model
provides a clear conceptual and technical starting point in the
quest to leverage the potential of the sonic medium in clinical
STS applications.
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