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Background: Resting-state EEG microstate and omega complexity analyses have been

widely used to explore deviant brain function in various neuropsychiatric disorders. This

study aimed to investigate the features of microstate dynamics and spatial complexity in

patients with late-life schizophrenia (LLS).

Method: Microstate and omega complexity analyses were performed on resting-

state EEG data from 39 in patients with LLS and compared with 40 elderly normal

controls (NCs).

Result: The duration of microstate classes A and D were significantly higher in patients

with LLS compared with NCs. The occurrence of microstate classes A, B, and C

was significantly lower in patients with LLS compared with NCs. LLS patients have

a lower time coverage of microstate class A and a higher time coverage of class D

than NCs. Transition probabilities from microstate class A to B and from class A to C

were significantly lower in patients with LLS compared with NCs. Transition probabilities

betweenmicrostate class B andDwere significantly higher in patients with LLS compared

with NCs. Global omega complexity and anterior omega complexity were significantly

higher in patients with LLS compared with NCs.

Conclusion: This study revealed an altered pattern of microstate dynamics and omega

complexity in patients with LLS. This may reflect the disturbed neural basis underlying

LLS and enhance the understanding of the pathophysiology of LLS.

Keywords: late-life schizophrenia, microstate, omega complexity, spatial complexity, electroencephalogram

INTRODUCTION

Late-life schizophrenia (LLS) is a severe mental disorder in older people, seriously impairing the
daily functioning and quality of life of LLS patients. With the intensification of global population
aging, schizophrenia in late life has become a major public health issue worldwide (1). LLS differs
from schizophrenia in younger individuals in many respects. Older patients with schizophrenia
have fewer severe positive symptoms and more severe negative symptoms than younger patients
(2, 3). Moreover, patients with LLS have more serious cognitive impairment (4, 5), complicated
medical comorbidity (6, 7), and changed brain structure and function due to aging (8, 9) compared
with younger patients. Currently, most studies on schizophrenia are conducted on the young to
middle-aged population. Research on older patients with schizophrenia is relatively scarce (10).
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The pathophysiology of LLS remains elusive. Accumulating
evidence suggests that disturbed brain networks may underlie
the symptomatology of schizophrenia (11–13). The process of
brain networks is highly dynamic, functioning in a millisecond
timescale. EEG microstate analysis, with a high temporal
resolution, can be used to investigate the dynamic properties of
large-scale brain networks. EEG microstates represent the spatial
topography of scalp electric potential that remains quasi-stable
for a short period and then changes to a different topography
(14). EEG microstates occur in a sub-second duration of
60–120ms, compatible with the time range of information
operations (15). Four canonical microstates labeled as classes
A, B, C, and D have been consistently identified in previous
studies. One hypothesis proposed that an EEG microstate
represents certain neural assemblies, and transitions between
microstate classes reflect sequential activation of different brain
networks (16). Growing evidence has shown that resting-state
EEG microstates are closely related to resting-state networks
(17–20). Simultaneous EEG-fMRI found a correlation between
resting-state networks and each class of the fourmicrostates: class
A (auditory network), class B (visual network), class C (saliency
network), and class D (attention network). Altered patterns of
EEG microstates may reflect disturbed brain networks and have
been reported in several neuropsychiatric disorders, such as
Lewy body dementia (21), Alzheimer’s disease (22), and bipolar
disorder (23).

A growing body of research has found altered properties
of EEG microstates in patients with schizophrenia (24–26).
Such findings were interpreted as reflecting the brain network
malfunction underlying the symptomatology of schizophrenia.
In addition, the same deviant microstate abnormalities as in
schizophrenia patients were found in high-risk individuals and
unaffected relatives, indicating that EEG microstates may serve
as an endophenotype for schizophrenia (27, 28). Moreover,
links have been found between abnormal microstate patterns
and schizophrenic symptoms (29, 30). In terms of clinical
translation, microstate-based neurofeedback training has proven
to be a candidate treatment for schizophrenia (31). Microstate
was found to be an effective indicator of symptom improvements
in TMS therapy for schizophrenia (32). Furthermore, microstate-
based machine learning was tested and shown to be capable of
effectively distinguishing those with schizophrenia from healthy
people (33, 34).

Like EEG microstates, omega complexity can be used to
measure the functioning of large-scale brain networks. Omega
complexity is a linear indicator for spatial complexity extracted
from the covariance matrix based on multiple channel EEG data
(35). It can apply to the whole brain or to a specific brain
area. Omega complexity assesses the degree of synchronization
or coordination between spatially distributed neural processes.
Therefore, it can reflect the connectivity of the neural network.
Several studies revealed altered omega complexity in different
cognitive processes (36, 37) and showed abnormality in various
neuropsychiatric diseases (38, 39). Increased omega complexity
has been found in schizophrenic patients, reflecting loosened
brain networks in schizophrenia (40–42).

EEG microstate and omega complexity analyses have revealed
brain network disturbance in the temporal and spatial domains
in schizophrenia and other disorders. However, as mentioned
before, the underlying pathophysiology of LLS may differ from
that found in schizophrenia in younger people. Therefore, it is
necessary to conduct studies specifically for LLS. This study aims
to investigate the disturbance of brain networks in LLS through
resting-state EEG microstate analysis and omega complexity
analysis. Based on the above evidence, it was hypothesized that
microstate dynamics and omega complexity are altered in LLS
compared to those in healthy older people. Our findings provide
a deeper understanding of the pathophysiology of LLS and new
insights into the treatment of LLS patients.

MATERIALS AND METHODS

Participants
EEG data were collected from 39 inpatients with LLS and 40 older
adult normal controls (NCs). Inpatients with LLS were from
the Department of Geriatric Psychiatry in the Affiliated Brain
Hospital of Guangzhou Medical University. All patients met the
DSM-IV criteria for schizophrenia. The diagnosis was confirmed
by two independent, experienced psychiatrists. All patients were
over 60 years of age. The exclusion criteria included a history of
neurological diseases such as brain tumors, Parkinson’s disease,
stroke, severe head injury, and alcohol or drug abuse. All
patients were receiving neuroleptic medication. Gender and age-
matched NCs were recruited from the local communities. All
NCs were screened for psychiatric disorders using the Mini
International Neuropsychiatric Interview, 4th Edition (MINI).
All NCs reported an absence of a family history of psychosis.

EEG Recording and Preprocessing
Resting-state EEG data were recorded by a 21-channel Nicolet
One System (Natus R©, Germany) at a sampling rate of 125Hz
with a bilateral mastoids reference for inpatients with LLS and
a 64-channel Neuroscan quick-cap (Neuroscan Labs, USA) at a
sampling rate of 1000Hz with a nasal reference for NCs. EEG
recording electrodes were placed according to the international
10–20 system with auxiliary electrodes for artifact detection. All
electrode impedance was maintained below 5 k� during EEG
recording. Patients were asked to sit comfortably with their eyes
closed in a dimly lit room during the recording.

Resting-state EEG data were imported to MATLAB
(Mathworks, v2013a) for preprocessing using the EEGLAB
toolbox (43). EEG data were transformed into a 19-channel
montage (FP1, FP2, F3, F4, Fz, F7, F8, C3, C4, Cz, P3, P4,
Pz, O1, O2, T3, T4, T5, and T6) and were resampled to
125Hz. EEG data were band-pass filtered between 1 and
60Hz, and a notch filter was used to remove power line
interference. Afterward, continuous data were segmented
into 2,000ms epochs. Visual inspection was used to eliminate
the epochs contaminated by severe noise. Bad channels were
removed and interpolated using spherical spline interpolation.
Independent component analysis was performed to remove

Frontiers in Psychiatry | www.frontiersin.org 2 June 2022 | Volume 13 | Article 907802

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Lin et al. Microstate and Complexity in LLS

electrooculography, electromyography, and any other non-
physiological artifacts. Then EEG data were recomputed against
an average reference. The first 20 artifact-free epochs were
selected for further analysis. There was no significant difference
in the number of bad epochs rejected between groups (t = 0.177,
p = 0.860). See the Supplementary Material for a flowchart of
the process of EEG preprocessing.

EEG Microstate Analysis
EEG microstate analysis was performed using the EEGLAB
toolbox and custom scripts based on MATLAB. First, EEG data
were band-pass filtered between 2 and 20Hz. The global field
power (GFP) for each time point was computed, representing the
variance of potential across all electrodes at a certain instance.
The scalp topographies at peaks of GFP were extracted since
these topographies have the highest signal-to-noise ratio and
stability. Topographies for each group were submitted to the
Topographic Atomize and Agglomerate Hierarchical Clustering
Algorithm (T-AAHC). The number of clusters was set as four
for better comparability with early studies (24, 44). For each
group, four prototype microstate maps were yielded and then
back-fitted to EEG data based on the criterion of maximal
spatial correlation. These four maps were labeled as classes A,
B, C, and D according to previous research based on a well-
established standard (44), whereby class A exhibits a right frontal
to left occipital orientation, class B exhibits a left frontal to
right occipital orientation, class C has a prefrontal to occipital
orientation, and class D shows a frontocentral to occipital
orientation. Three microstate parameters (duration, occurrence,
and time coverage) and microstate syntax were computed to
quantify the temporal features of EEG microstates. Duration
refers to the mean time coverage of a given microstate class.
The occurrence is the number of times a certain microstate class
occurs per second. The time coverage is the percentage of total
occupied time for a given microstate class. Microstate syntax
refers to transition probabilities from one class to another. See
Figure 1 for an overview of the microstate analysis pipeline.

Spatial Complexity
Omega complexities were computed using MATLAB custom
scripts in the following procedures: (1) For global omega
complexity, all 19 EEG data electrodes were used to construct
a 19×19 matrix. For anterior omega complexity, the data from
electrodes FP1, FP2, F3, F4, Fz, F7, and F8 were selected to
construct a 7×7 matrix. For posterior omega complexity, the
data from electrodes O1, O2, P3, P4, Pz, T5, and T6 were
selected to construct a 7×7 matrix. (2) Principal component
analysis was used to compute the eigenvalues (λ) of each matrix.
Eigenvalues represent the contribution of each component to the
total variance. (3) To evaluate the relative contribution of each
component, the eigenvalues were normalized to unit sum using
the following equation:

λ
′

i =
λi

∑k
i=1 λi

(1)

FIGURE 1 | Microstate analysis methods. (A) The global field power (GFP)

was computed at each time point. The topographies of electric potential at

peaks of the GFP curve were extracted because GFP peaks have the highest

signal-to-noise ratio. (B) These topographies were submitted to the

Topographic Atomize and Agglomerate Hierarchical Clustering Algorithm

(T-AAHC). Four canonical classes labeled (A–D) were assigned to each cluster.

(C) Four microstate classes were back-fitted to continuous EEG data based

on the criterion of maximal spatial correlation. Then, the microstate parameters

and syntax could be calculated to quantify the microstate dynamics.

Where, i refers to the number of the electrode, and λ’ refers
to the normalized eigenvalue. (4) The value of omega complexity
(�) was calculated with the following equation:

� = exp







−

k
∑

i=1

λ
′

ilogλ
′

i







(2)

The values of omega complexity vary from 1 to k (the
total number of electrodes used), in which 1 represents the
minimal spatial complexity and maximal synchronization, and
vice versa. See Supplementary Material for a flowchart of omega
complexity analysis.
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Statistics
Statistical analyses were performed using SPSS 26 (IBM, USA).
The significance level was set at 0.05. All statistical tests were
two-tailed. For demographic characteristics, the independent
student’s t-test and chi-square test were used to compare
continuous variable and categorical variables between groups,
respectively. For each microstate parameter, a repeated-measures
ANCOVA was performed with microstate classes (A–D) as a
within-subject factor, group (LLS, NCs) as a between-subject
factor, and age as a covariate. In cases where the interaction effect
between microstate class and group was significant, a post hoc
univariate ANCOVA was performed using the same covariate
mentioned above. A univariate ANCOVA was performed with
age as a covariate for each pair of transition probabilities. A
Bonferroni correction was used for multiple comparisons. A
univariate ANCOVA was performed with age as a covariate for
global and regional omega complexity.

RESULTS

Demographic and Clinical Characteristics
Table 1 shows the demographic and clinical characteristics.
There was no significant difference between groups.

Microstate Analysis
Figure 2 shows the topographical maps of the four microstate
classes for patients with LLS and for NCs. Repeated-measures
ANCOVAs yielded significant main effects for the groups in
duration (F = 11.833, p < 0.001, η2 = 0.135) and occurrence
(F = 21.332, p< 0.001, η2= 0.219), revealing an increased mean
duration and a decreased mean occurrence in patients with LLS
compared with NCs. There is also a significant microstate class
× Group interaction for duration (F = 3.040, p = 0.034, η2
= 0.110), occurrence (F = 6.321, p < 0.001, η2 = 0.204) and
time coverage (F = 3.794, p = 0.014, η2 = 0.133). Post hoc one-
way ANCOVAs showed that patients with LLS had significantly
increased duration (F = 6.656, p= 0.012, η2= 0.081), decreased
occurrence (F = 30.884, p < 0.001, η2 = 0.289), and decreased
time coverage (F = 5.031, p = 0.028, η2 = 0.062) of microstate
class A compared with NCs. There was also a significant increase
in duration (F= 22.589, p< 0.001, η2= 0.229) and time coverage
(F = 8.489, p = 0.005, η2 = 0.100) of microstate class D for
patients with LLS compared with NCs. For class B (F = 9.873,
p = 0.002, η2 = 0.115) and class C (F = 4.217, p = 0.043, η2 =

0.053), patients with LLS had significantly decreased occurrence
compared with NCs.

For microstate syntax analysis, we found significantly
decreased transition probabilities from classes A to B (F = 9.641,
p = 0.032, η2 = 0.113) and from classes A to C (F = 9.696, p
= 0.031, η2 =0.113) in patients with LLS compared with NCs.
Transition probabilities were also found to significantly increase
from classes B to D (F = 10.111, p= 0.026, η2= 0.117) and from
classes D to B (F= 10.675, p= 0.020, η2= 0.123) in patients with
LLC compared with NCs. Figure 3 shows the details.

Omega Complexity
Univariate ANCOVAs revealed that global omega complexity is
significantly higher in patients with LLS compared with NCs (F=
7.274, p= 0.009, η2 = 0.087). For regional omega complexity, we
found that anterior omega complexity is significantly higher for
patients with LLS compared with NCs (F = 22.819, p < 0.001, η2

= 0.231). However, there is no significant difference in posterior
omega complexity between groups. Figure 4 shows the details.

DISCUSSION

In the current study, EEG microstate and omega complexity
analyses were used to investigate the pathophysiology of patients
with LLS. Microstate analysis revealed altered parameters for
certain microstate classes in patients with LLS. An altered pattern
of microstate syntax was also found. Omega analysis revealed
that patients with LLS have higher global complexity and higher
anterior complexity.

A large body of prior literature found increased parameters
of class C and decreased parameters of class D in patients with
schizophrenia compared with healthy controls (15, 27, 28). These
findings show a certain consistency. A meta-analysis including
seven studies reported that microstate class C was more frequent
and microstate class D was shorter in schizophrenia than in
controls with a medium effect size (24). Simultaneous EEG-
fMRI recording found that microstate class C was associated with
the salience network (17), which functions to identify the most
relevant stimulus from enormous internal and external inputs
to guide appropriate actions (45). Therefore, altered parameters
of class C in schizophrenia may reflect a disturbance in the
salience network, in line with the hypothesis that a disarranged
salience network underlies the difficulty of schizophrenic patients
in differentiating between the inner world and the outside
world (46). Similarly, microstate class D is related to the
frontoparietal attention network (17). Deviant dynamics of class
D in schizophrenia may reflect impaired cognitive functions
involving attentional processes, such as have been widely found
in patients with schizophrenia (47). However, this consistent
pattern of schizophrenia is contrary to our findings.

We found increased duration and time coverage of class D and
decreased occurrence of class C in patients with LLS compared
with NCs. The reasons that may account for the discrepancy are
as follows. Firstly, despite the opposite direction, our findings of
deviant parameters of classes C and D also suggest disorganized
salience networks and attention networks in patients with LLS.
The opposite direction of our findings compared to those
reported by previous studies may be explained by the differences
between older and younger patients with schizophrenia in terms
of pathophysiology and symptomology. A possible explanation is
that patients with LLS have less prominent positive symptoms,
which correlate negatively with the duration of class D (31,
48). Aging-related changes in brain function may also partially
account for this difference. However, the small number of studies
on LLS makes further interpretation challenging. In addition,
the heterogeneity of patient characteristics between studies may
contribute to inconsistencies between findings. For example,
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TABLE 1 | Demographic and clinical characteristics of late-life schizophrenia patients (LLS) and normal controls (NCs).

LLS NC t/χ2 p

Gender (F/M) 29/10 29/11 0.035 0.852

Age (years) 68.23 ± 5.43 69.30 ± 6.93 0.762 0.449

Education (years) 9.30 ± 2.65 10.21 ± 3.26 1.350 0.181

Disease duration (years) 34.20 ± 13.38

Admission due to schizophrenia (times) 4.13 ± 4.52

Antipsychotic dose (mg/day) 208.87 ± 130.03

Values of continuous variables are shown as mean ± standard deviation. The antipsychotic dose was measured by chlorpromazine equivalents.

FIGURE 2 | The topographical maps of the four microstate classes (A–D) in the late-life schizophrenia group (LLS) and normal controls group (NCs). Classes A to D

were labeled according to previous literature based on a well-established descriptive standard, whereby class A exhibits a right frontal to left occipital orientation, class

B exhibits a left frontal to right occipital orientation, class C has a prefrontal to occipital orientation, and class D shows a frontocentral to occipital orientation. Color is

used to represent electric potential. Red represents positive values, and blue represents negative values (the polarity in microstate can be inverted).

some studies included first-episode unmedicated patients (48,
49), while others included chronic medicated patients (28, 30).
However, the confounding effect of antipsychotics and disease
chronicity remains controversial. One study found no significant
difference in microstate parameters between chronic patients
and first-episode patients with schizophrenia (27), while another
study found different results (50). Furthermore, this difference
may derive from the heterogeneity between samples. Because LLS
is a highly heterogeneous disease, our sample size may not be
large enough to cover the whole spectrum of LLS.

Microstate analysis showed an increased mean duration and
decreased mean occurrence in patients with LLS compared with
NCs. The duration of all classes also has a significant increase or
a tendency to increase in patients with LLS. Similarly, significant
decreases or a tendency to decrease of occurrence can be found
in all classes of patients with LLS. This pattern of microstates
is rather general and not specific to a certain class. Microstate
patterns can reflect brain dynamics, capturing neural activity
at the millisecond timescale (51). A less frequent and more
prolonged microstate pattern suggested a slowing and inflexible
brain dynamic in patients with LLS. Reduced brain dynamic was
found to be related to poor cognitive functions (52, 53). Aging is
also accompanied by a decline in brain dynamics (54, 55). Similar
slowing microstate dynamics have been found in Lewy body

dementia, which is viewed as underlying cognitive fluctuation
and slowing information processing in Lewy body dementia (21).
Therefore, the slowing microstate dynamics we foundmay reflect
the widely reported marked cognitive impairments in LLS (4, 5).

In recent times, the link between EEG microstates and
intrinsic neural oscillation has been elucidated. The formation
and temporal dynamics of the microstates were proved to be
dominated by the alpha-band rhythm (56–58). Among the
four canonical microstate classes, class C has the strongest
alpha oscillations over a wide cortex range (56). Alpha-band
oscillations are considered to have an inhibitory function and
play a crucial role in cognitive processes such as attention (59).
Class C was also found to be more prominent in the resting
state than in the task performance state (60). Therefore, it can be
inferred that activation of class Cmay reflect inhibition of specific
cortical areas and be involved in complex cognitive activities.
Regular microstate class C characteristics represent organized
inhibitory activity, essential for various cognitive functions.
Furthermore, deviant class C parameters may represent a
disruption of this order and, therefore, may lead to cognitive
impairment. The current study found a significant decrease in
the occurrence of class C in LLS, and the less frequent class C
may contribute to disorganized brain function, thereby leading
to the cognitive and psychotic symptoms of LLS.
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FIGURE 3 | Results of the microstate analysis for late-life schizophrenia (LLS) and normal controls (NCs). (A–C) microstate parameters for late-life schizophrenia and

normal controls. (A) duration; (B) occurrence; (C) time coverage for late-life schizophrenia and normal controls. The parameters of each class are displayed from left

to right. Red icons indicate parameters of late-life schizophrenia, blue icons indicate parameters of normal controls, and lines through icons indicate standard

deviation. *indicates p-value ≤ 0.05, **indicates p-value ≤ 0.01, ***indicates p-value ≤ 0.001. (D) results of syntax analysis. Red arrows indicate significantly higher

transition probabilities for patients with late-life schizophrenia compared with to controls. Blue arrows indicate significantly lower transition probabilities for patients with

late-life schizophrenia compared with to controls.

FIGURE 4 | Comparison of global and regional omega complexity between

patients with late-life schizophrenia (LLS) and normal controls (NCs). Red bars

indicate the omega complexities of patients with LLS, and blue bars indicate

the omega complexity of NCs. From left to right, three pairs of bars indicate

global omega complexity, anterior complexity, and posterior complexity for

each group, respectively. Standard deviations are indicated using the error bar.

**indicates p-value ≤ 0.01, ***indicates p-value ≤ 0.001.

Microstate syntax analysis found altered microstate transition
probabilities in LLS. Several studies have reported the presence
of abnormal microstate syntax in patients with schizophrenia;

however, the results are somewhat inconsistent (23, 33, 49). It
has been suggested that microstate syntax may represent the
sequential activation of distinct brain networks. Therefore, the
abnormal microstate syntax in LLS may represent a disorganized
operation of brain network switching, giving rise to the
aberrant behaviors in LLS. Based on the resting-state networks
correlated to the four microstates (17), increased transition
probabilities between classes B and D in LLS can be inferred
as an enhanced interaction between those key nodes located in
visual and attention networks. Conversely, decreased transition
probabilities from classes A to B and from classes A to C
may reflect decreased interaction between key nodes in the
corresponding networks.

We found increased global omega complexity and anterior
omega complexity in LLS compared with NCs, whereas no
significant difference was found for omega complexity in
the posterior region between groups. Omega complexity is
considered a measure of synchronization of the distributed
electrical activities or the number of independent neural
processes (35). Increased complexity reflects reduced
cooperation and enhanced independence of spatially distributed
brain activity, and vice versa. Higher complexity can be found
in relatively active states, thereby suggesting an increase in
the independent information processing process. For example,
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omega complexity increases in eyes-open conditions and
decreases during sleep (61, 62). To our knowledge, three studies
investigated omega complexity in patients with schizophrenia.
Irisawa et al. found increased global omega complexity in
patients with schizophrenia (42). Saito et al. found that anterior
omega complexity is significantly increased in schizophrenia
(40). Kikuchi et al. revealed that schizophrenic patients have
higher omega complexity in gamma and below-gamma bands,
and the frontal area contributes significantly to the higher omega
complexity (41). This accumulated evidence indicates decreased
cooperativity and loosened connectivity of the active neural
processes of schizophrenia, particularly in the anterior area, in
line with the hypothesis that symptoms of schizophrenia are
caused by disconnected brain networks, including those located
in the anterior area (46, 63, 64). In line with previous studies
on schizophrenia in younger people, we found significantly
higher omega complexity of the whole brain and anterior region
in LLS compared with NCs, suggesting that LLS has loosened
connectivity of brain networks, especially those located in the
anterior area.

This study has several limitations that should be considered
when interpreting the findings. First, assessments of clinical
symptoms and cognitive function were not performed. Further
studies with detailed clinical and neuropsychological assessments
are needed to investigate the relationship between schizophrenic
symptoms, cognitive function, and electrophysiological
indicators in LLS patients. Second, the confounding factors
of drugs and comorbidities were not controlled. All participants
in this study were older people. Some of them may have
complex health problems (such as hypertension, diabetes, and
coronary heart disease) and take various medications, potentially
exhibiting confounding effects on brain function. Future
studies could focus specifically on this potential effect. Third,
considering the highly heterogeneous nature of schizophrenia
spectrum disorders, the sample size of this study was small.
Future studies with larger sample sizes are needed to confirm
the findings.

In conclusion, this study revealed altered EEG microstate
parameters, microstate syntax, and omega complexity in patients
with LLS, reflecting disturbed brain networks underlying the
symptoms of LLS. Our findings provide a better understanding
of the pathophysiology of LLS and may facilitate the clinical
application of EEG microstate and omega complexity. Because
microstate was found to be an indicator for TMS efficacy (32),
and microstate-based neurofeedback may serve as a therapy for
schizophrenia patients (31), clarifying the microstate pattern of

LLS may facilitate treatment strategies and the identification of
intervention targets for LLS.
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