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Sestrin2 is a highly conserved protein that can be induced under a variety of stress
conditions, including DNA damage, oxidative stress, endoplasmic reticulum (ER) stress,
and metabolic stress. Numerous studies have shown that the AMP-activated protein
kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling pathway has a crucial
role in the regulation of metabolism. Sestrin2 regulates metabolism via a number of
pathways, including activation of AMPK, inhibition of the mTOR complex 1 (mTORC1),
activation of mTOR complex 2 (mTORC2), inhibition of ER stress, and promotion of
autophagy. Therefore, modulation of Sestrin2 activity may provide a potential therapeutic
target for the prevention of metabolic diseases such as insulin resistance, diabetes,
obesity, non-alcoholic fatty liver disease, and myocardial ischemia/reperfusion injury. In
this review, we examined the regulatory relationship between Sestrin2 and the AMPK/
mTOR signaling pathway and the effects of Sestrin2 on energy metabolism.
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INTRODUCTION

Sestrins, a family of evolutionarily highly conserved stress-induced proteins, are upregulated under
oxidative stress, genotoxic stress, hypoxia, and other stress conditions (1). As stress-induced
metabolic modulators, Sestrins help cells adapt to diverse stress stimuli by activating catabolic
reactions, stopping anabolic activities, and initiating cell repair mechanisms, to maintain cell
homeostasis (2). In mammals, there are three members of the sestrin family, Sestrins1–3, which are
encoded by three independent genes, while only one Sestrin ortholog has been identified in
invertebrates (3–5). Sestrin1, also referred to as p53-activated gene 26 (PA26), was first identified by
Velasco-Miguel et al. and is a growth arrest and DNA damage-inducing gene (5). In 2002, Sestrin2,
also known as hypoxia-inducible gene 95 (Hi95), was reported by Budanov et al., is highly
homologous to Sestrin1, and can be induced by prolonged hypoxia and DNA damage (6, 7).
Sestrin3 is directly activated by forkhead box O (FOXO) transcriptional factors (8). These three
Sestrin proteins have some shared mechanisms of action, including, but not limited to, inhibiting
the production of reactive oxygen species (ROS), activating AMPK, and inhibiting mTORC1 (4, 9).
However, there is growing evidence that the three Sestrins behave differently and promote different
biological effects via AMPK/mTOR signaling because they are distributed differently in different
organs (10, 11). To our knowledge, Sestrin1 has an antioxidant function that can activate the AMPK
signal pathway while inhibiting the mechanistic target of the mTORC1 signal pathway (12).
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Furthermore, Sestrin1 can be activated in a p53-dependent
manner under oxidative stress in skeletal muscle, kidney, brain,
and lung (7). Recent studies suggest that Sestrin1 inhibits
oxidized low-density lipoprotein-induced activation of NOD-
like receptor protein 3 (NLRP3) inflammasome in macrophages
in a murine atherosclerosis model (12). What is even more
interesting is that in multiple mouse models, Sestrin1 influences
plasma cholesterol and regulates cholesterol biosynthesis (13).
Among these members, Sestrin2 is the most intensively studied
since its discovery in 2002. As a p53 target gene, Sestrin2 (SESN2)
can exert cytoprotective functions in the lung, heart, liver,
adipose, and kidney through activation of AMPK and
inhibition of mTORC1 (6, 11, 14, 15). Furthermore, Sestrin2 is
able to suppress nitric oxide release and the production of
classical pro-inflammatory cytokines in cardiomyocytes (16).
Sestrin3 can inhibit mTORC1 and maintain the activity of
protein kinase B (AKT) via activating the AMPK/TSC1/2
signaling pathway (8). Sestrin3 is largely expressed in skeletal
muscle, intestine, adipose, colon, and brain (17).

Increasing evidence suggests that that Sestrin2 has two main
biological functions. Through its own oxidoreductase activity or
activation of antioxidant damage related pathways, Sestrin2 can
reduce the damage of oxidative stress to protect cells and tissues
and maintain redox homeostasis (18, 19). In addition to its redox
activity, Sestrin2 can also inhibit the mammalian target of
mTORC1 through AMPK-dependent or -independent
pathways (20). These two activities of human Sestrin2
(hSestrin2) are supported through its two separate domains,
which were determined from X-ray crystallographic studies. A
recent study of the X-ray crystal structure of hSestrin2 showed
that it consists of well-conserved Sesn-A, Sesn-B, and Sesn-C
domains (11). Sesn-A and Sesn-C are structurally similar but
functionally distinct from each other (21). Sestrin2 controls ROS
and mTOR signaling through two separate functional domains
(22). While Sesn-A reduces alkyl hydroperoxide radicals through
its helix–turn–helix oxidoreductase motif, Sesn-C modifies this
motif to accommodate physical interactions with GAP activity
towards Rags 2 (GATOR2) and subsequent inhibition of
mTORC1 (21, 23). Sestrin2 has a significant role in the
inhibition of ER stress and the activation of autophagy and is
considered to improve obesity-induced and age-related
pathologies by inhibiting mTORC1 (15, 24). Therefore,
Sestrin2 may represent a novel class of potential targets for
the therapeutic intervention of metabolic diseases. In this review,
we discuss the regulatory relationship between Sestrin2 and
AMPK/mTOR signaling and the effects of Sestrin2 on
energy metabolism.
REGULATION OF SESTRIN2 EXPRESSION
IN RESPONSE TO DIVERSE STRESS
CONDITIONS

Human beings exist in a constantly changing environment and
face frequent challenges that threaten our survival and health. In
response to stress, the body undergoes very subtle changes at the
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cellular and molecular level. Understanding how Sestrin2 is
regulated under different stress conditions is very helpful for us
in studying Sestrin2. Therefore, it is of great significance to study
the regulatory mechanism of Sestrin2 expression under different
types of stress conditions.

Sestrin2 and Oxidative Stress
Reactive oxygen species and reactive nitrogen species (RNS) are
generated continuously in the body through oxidative
metabolism, biological functions of mitochondria, and
immunologic functions (25). Physiological ROS are crucially
important for intracellular and extracellular signal transduction
(26). However, it is well-known that overloaded ROS and RNS
can bind with and destroy most cellular biomolecules (lipids,
enzymes, sugars, proteins, nucleic acids, and other small
molecules) under oxidative stress (27–29). Oxidative stress is
considered to be an imbalance in redox properties in certain
cellular environments (30), and plays a crucial role in the
development of numerous human diseases, including diabetes,
obesity, and myocardial injury (31–33). Resistance to oxidative
stress injury is one of the important functions of Sestrin2. In
response to oxidative stress, the expression of Sesrin2 is regulated
at the mRNA and protein level by various transcription factors,
including nuclear factor kappa-B (NF-kB), activator protein-1
(AP-1), CCAAT-enhancer-binding protein beta (C/EBPb),
forkhead box O3 (FOXO3), and p53 (19, 24, 34–36). Sestrin2
has been suggested to maintain the balance of oxidative
metabolism through two main biological functions. First, as an
antioxidant enzyme, Sestrin2 is capable of directly reducing the
accumulation of ROS (37). However, the intrinsic catalytic
antioxidant activity of Sestrin2 remains elusive and limited.
Second, recent studies have demonstrated that Sestrin2 inhibits
ROS production and defends cells against oxidative stress, which
is likely to be mainly attributed to its regulation of several
signaling pathways related to oxidative stress: the Kelch-like
Ech-associated protein 1 (KEAP1)/NF-E2 related factor-2
(NRF2) antioxidant signaling pathway (2) (Figure 1) and the
AMPK and mTORC1 pathways (which will be described in detail
later) (38). NRF2 is a transcription factor that can bind to
antioxidant-responsive elements (AREs) to promote the
expression of many antioxidant molecules to protect cells from
oxidative insults (36). NRF2 is constitutively expressed in the
cytoplasm under physiological conditions (39). Under normal
conditions, KEAP1 binds to NRF2, preventing NRF2
translocation to the nucleus, promoting its ubiquitination and
proteasome degradation, and maintaining free NRF2 in the
cytoplasm at a low level (19). Under oxidative stress, NRF2
dissociates from KEAP1 and translocates to the nucleus. NRF2
binding to ARE activates the transcription of target genes PRX,
SRX, superoxide dismutase (SOD), catalase (CAT), heme
oxygenase 1 (HO1), and glutathione peroxidase 1 (GPX1) (40,
41). In cellular studies, it was found that Sestrin2 binds to unC-
51-like kinase 1 (ULK1) and p62 to form functional complexes,
and that Sestrin2 promotes the phosphorylation of p62, which
further promotes KEAP1 degradation and NRF2 activation (42).
In addition, in studies of liver damage caused by oxidative stress,
Sestrin2 was shown to act as a scaffold protein to enhance the
November 2021 | Volume 12 | Article 751020
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weak binding of KEAP1 to p62, thereby promoting KEAP1
autophagy degradation and preventing oxidative liver injury
(43). More interestingly, NRF2 regulates the expression of
Sestrin2 by binding to the ARE promoter of SESN2 under
oxidative stress (37). A positive feedback loop is formed
between Sestrin2 and NRF2 to promote the transcription and
translation of antioxidant-related genes downstream of NRF2
and to protect cells from oxidative damage (36). Therefore,
during oxidative stress, Sestrin2 is crucial to maintaining
cellular homeostasis.

Sestrin2 and Endoplasmic
Reticulum Stress
ER stress occurs when unfolded or misfolded proteins accumulate
in the endoplasmic network lumen due to adverse physiological
conditions (44). During ER stress, cells can improve their protein
folding ability, inhibit protein production and accumulation,
induce ER stress-related gene transcription, and strengthen the
self-repair ability of ER to restore protein-folding homeostasis and
regulate ER homeostasis through a series of transduction
pathways, including protein kinase R-like endoplasmic reticulum
kinase-eukaryotic translation-initiation factor 2a (PERK-eIF2a),
inositol-requiring enzyme 1a-X-box-binding protein 1 (IRE1-
XBP1), and activating transcription factor 6-CREBH (ATF6-
CREBH). These reactions are called the unfolded protein
reaction (UPR) (45). If ER stress is too strong or lasts too long,
these responses are not enough to restore ER homeostasis, and
apoptosis is eventually induced (46). A growing body of research
has demonstrated that expression of Sestrin2 can be upregulated
underER stress conditions (15, 35, 47). For instance, Park et al. (15)
found that upregulated Sestrin2 is associated with an ER stress-
activated transcription factor, CCAAT enhancer-binding protein
beta (c/EBPb). Once induced, Sestrin2 in turn stops protein
synthesis by inhibiting mTORC1. Recently, a study by H. Jeong
Kim et al. (48) revealed that induction of Sestrin2-regulated
genes can be connected via activation of the PERK/eIF2a/ATF4
pathway. Consistent with these findings, Jegal et al. (35)
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demonstrated that under ER stress, expression of Sestrin2 can be
enhanced via activating transcription factor 6 in hepatocytes, and
Sestrin2 decreases the phosphorylation of JNK and p38 as well as
PARP cleavage, and blocks the cytotoxic effect of excessive ER
stress so as to play a hepatoprotective role both in vitro and in vivo.
Furthermore, Ding et al. (49) elucidated that upregulation of
Sestrin2 expression is dependent on ATF4 and NRF2 but not
p53 under ER stress induced by glucose starvation. To summarize,
Sestrin2 might serve as an important regulator that exerts cell
and tissue protection functions under excessive ER stress.
However, the exact mechanism by which ER stress induces
Sestrin2 expression remains poorly understood and requires
further exploration.

Sestrin2 and Obesity
Obesity is traditionally considered to be the excessive
accumulation of fat in the body, which is a serious hazard to
human health, and in clinical practice, obesity is usually assessed
by the body mass index (BMI) (50). With the improvements in
the general standard of living, the incidence of obesity has risen
sharply (51). Obesity is a major contributor to the development
of metabolic syndromes, including type 2 diabetes mellitus,
hypertension, hyperlipidemia, and cardiovascular disease (52).
Studies have shown that overnutrition and a sedentary lifestyle
are the main causes of obesity (53). mTORC1 is a nutrient-
sensitive protein kinase that has a fundamental role in
maintaining metabolic homeostasis (54). Recent research has
clarified that overnutrition can result in chronic mTORC1
activation (55). In response to persistent overnutrition, chronic
mTORC1 activation can enhance protein and lipid biosynthesis
and inhibit autophagic catabolism (56). Several studies
confirmed that chronic mTORC1 activation mediated by stress
responses such as overnutrition ultimately leads to
overexpression of Sestrin2 (24, 57). Lee et al. (24) found that
the expression of Drosophila Sestrin (dSesn) is upregulated upon
chronic mTORC1 activation via the c-Jun N-terminal kinase
(JNK) and FOXO signaling pathways. Loss of dSesn results in
FIGURE 1 | The effect of Sestrin2 on metabolic-related signaling pathways.
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triglyceride accumulation and mitochondrial dysfunction.
Furthermore, another study by Lee et al. (57) demonstrated
that Sestrin2 is the only Sestrin protein that is induced by
overnutrition and obesity and attenuates chronic mTORC1
activation via the mTORC1/S6K axis in mouse liver. In
agreement with these conclusions, Kimball et al. (58) revealed
that Sestrin2 expression was upregulated in the livers of rats fed
with a high-fat diet. Thus, in a nutshell, Sestrin2 exerts important
metabolic homeostatic functions.
SESTRIN2 AND THE AMPK/MTOR
SIGNALING PATHWAY

mTOR is an evolutionally conserved protein that is a critical
regulator of cell proliferation, proliferation, metabolism, and
autophagy (37). mTOR promotes anabolic processes such as
ribosome biogenesis and synthesis of proteins, nucleotides, fatty
acids, and lipids, and inhibits catabolic processes such as
autophagy (54). It is composed of two structurally and
functionally distinct complexes, mTORC1 and mTORC2,
which are characterized by the presence of Raptor and Rictor,
respectively (59). mTORC1 consists of mTOR Raptor, PRAS40,
and mLST8, while mTORC2 is composed of mTOR, Rictor, Sin1,
Protor, and mLST8 (54). mTORC1 promotes protein and lipid
synthesis through the phosphorylation of its distinctive
substrates, such as ribosomal protein S6 kinase (S6K) and
eukaryotic initiation factor 4E-binding protein 1 (4EBP1) (2).
In addition, mTORC1 may also regulate adipogenesis through
the regulation of the sterol regulatory element-binding proteins
(60). Furthermore, mTORC1 can phosphorylate and suppress
autophagy-initiating protein kinases unc-51-like kinase 1
(ULK1) to inhibit cellular autophagic catabolism (61).
mTORC2 regulates metabolism and cytoskeletal tissue in
response to growth factors through the activation of AGC
family kinases, including AKT, SGK1, and PKCa (62). Recent
studies have shown that mTORC2 in particular is a crucial
controller of lipid metabolism that regulates adipogenesis in
the liver (60).

AMPK, an important nutrient-sensing protein kinase, has a
critical role in increased catabolism and decreased anabolism
(63). AMPK can inhibit the phosphorylation of the acetyl-CoA
carboxylases ACC1 and ACC2, HMG-CoA reductase, and
the glycogen synthases GYS1 and GYS2 to regulate the
biosynthesis of glycogen and lipids (63). It can also inhibit
mTORC1 activity through the phosphorylation of its
regulatory subunit Raptor (64) or through the phosphorylation
of tuberous sclerosis complex 2 and inhibition of mTORC1-
activating guanosine triphosphatase (GTPase) Rheb (4). In
addition, AMPK restrains the transcriptional activity of sterol
regulatory element binding protein (SREBP) through direct
phosphorylation to decrease the expression of lipogenic
genes (65).

Once induced by stress, Sestrin2 affects a variety of signaling
pathways, thus upregulating stress adaptation mechanisms (23).
When induced in response to oxidative stress, Sestrin2 inhibits
Frontiers in Endocrinology | www.frontiersin.org 4
mTORC1 through the activation of AMPK (66). Consequently,
Sestrin2-deficient cells and tissues exhibit lower AMPK and
higher mTORC1 activity under both normal and stressed
conditions (6, 24, 66). It has been reported that Sestrin2 acts as
a scaffold protein, promoting the binding of LKB1 to AMPK and
subsequent AMPK phosphorylation and activation, and controls
mTORC1 signaling as an inhibitor of guanine nucleotide
dissociation in Rag GTPases (6, 67, 68). Sestrin2 can also
activate AMPK through direct interaction with the a subunit
of the AMPK complex (66).Recent studies have shown that
Sestrin2 can inhibit mTORC1 through AMPK-dependent or
-independent pathways (15, 20, 57, 68) (Figure 1). Sestrin2
can also modulate amino acid-stimulated mTORC1 activation
through direct interactions with Rag A/B GTPases or GATOR2
complexes (68, 80). Sestrin2 binds to GATOR2 and releases
GATOR1 from GATOR2-mediated inhibition. Released
GATOR1 subsequently binds to and inactivates RagB,
ultimately resulting in mTORC1 suppression (81) (Figure 1).
In addition, Sestrin2 plays a critical role in the activation of
autophagy through multiple mechanisms including activation of
AMPK, inhibition of mTORC1, and activation of ULK1 (82)
(Figure 1). Therefore, the AMPK/mTORC1 signaling pathway is
critical for Sestrin2 in controlling cell metabolism and survival
under stress conditions (Figure 1).
ROLE OF SESTRIN2 IN DIABETES, NON-
ALCOHOLIC FATTY LIVER DISEASE, AND
MYOCARDIAL ISCHEMIA/REPERFUSION
(I/R) INJURY

Mounting evidence has demonstrated that Sestrin2 is
upregulated in response to diverse stress conditions, including
oxidative stress, ER stress, and metabolic stress. Sestrin2 exerts a
significant influence on the protection of human cells and tissues
via related signal transduction pathways, and was shown to play
a critical role against metabolic diseases, such as diabetes,
obesity-related non-alcoholic fatty live, and myocardial I/R
injury (Table 1).

Sestrin2 and Diabetes
Diabetes is the most common metabolic disease, and is a chronic
disease characterized by persistent hyperglycemia (83). More
than 90% of diabetics have type 2 diabetes, and insulin resistance
is consistently found in patients with type 2 diabetes (84). Insulin
resistance is an impaired biological response to insulin
stimulation in target tissues, primarily liver, muscle, and
adipose tissue (85). Insulin resistance impairs glucose
processing, leading to a compensatory increase in beta cell
insulin production and hyperinsulinemia. Sestrin2 is highly
expressed in the liver (86). According to literature reports, two
pathways of Sestrin2 affect cell signaling pathway transduction:
one activates the AMPK pathway and the other downregulates
the mTOR pathway (2, 87). AMPK is an enzyme activated in
energy-deficient conditions (2). Sestrin2 is induced by oxidative
stress through activation of the NRF2 and JNK/AP-1 signaling
November 2021 | Volume 12 | Article 751020
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axes (4, 43, 88). In bacteria, AhpD is a critical member of the
antioxidant defense system and regenerates peroxide AhpC, a
bacterial peroxidant protein (Prx), through catalytic reduction.
In mammalian cells, Sestrins interact with overoxidized PRX and
promote its regeneration. Here, Sestrins act similarly to AhpD in
bacteria (77). Sestrins have no direct catalytic activity leading to
the reduction of PRX, but may regenerate PRX by promoting the
activity of other oxidoreductases, such as thioredoxin (SRX) (4).
Sestrins can increase SRX expression by activating NRF2 (6, 43)
(Figure 1). Increased glucose downregulates Sestrin2 expression,
thereby increasing mTOR activity and inhibiting AMPK (87, 89).
Moreover, when treated with high levels of glucose, such as
metformin (an AMPK agonist and mitochondrial respiratory
inhibitor), Sestrin2 was upregulated, mTOR activity was
significantly increased, and AMPK activity was decreased (6,
87). S6K is an effector of the mTOR pathway (90). By activating
S6K, mTORC1 promotes insulin resistance by inhibiting
phosphorylation of insulin receptor substrates (IRS) (Figure 1)
and attenuating the insulin-induced phosphatidylinositol 3-
kinase (PI3K)/AKT signaling pathway (6). mTORC1/S6K
activity leads to serine phosphorylation and protein
degradation of IRS, forming a negative feedback loop in which
insulin signaling attenuates subsequent insulin action (89). Lack
of amino acids , espec ia l ly leucine , leads to rapid
dephosphorylation of the mTORC1 effectors S6K and 4EBP1,
which depend on mTORC1 for amino acid resynthesis (91).
Sestrin2 is required to maintain insulin sensitivity in the liver in
high-fat diet (HFD)-induced dietary obesity and Lepob
mutation-induced inherited obesity (57). AMPK and mTORC1
are important protein kinases with complete antagonistic
functions in metabolic homeostasis (92). Sestrin1 and Sestrin2
activate AMPK through direct interaction with the a subunit of
the AMPK complex (66). Sestrin2 acts by activating AMPK and
inhibiting various mechanisms of mTORC1. We know that
AMPK and mTORC1 play critical roles in metabolism, and
Sestrin2 is involved in many biological processes as an upstream
Frontiers in Endocrinology | www.frontiersin.org 5
regulator of AMPK and mTORC1 kinases (57) (Figure 1).
Previous experiments in liver-specific Sesn3 transgenic mice
and knockout mice showed that the transgenic mice were
protected against insulin resistance induced by a high-fat diet,
while the Sesn3 knockout mice showed metabolic defects such as
insulin resistance and glucose intolerance (93, 94). Therefore, we
can recognize that Sestrin2 is a potential insulin sensitizer, and
that Sestrin deficiency and/or dysfunction may lead to insulin
resistance, which can lead to the development of diabetes.
Sestrin2 may be a potential therapeutic target for metabolic
diseases such as diabetes (82).

Sestrin2 and Non-Alcoholic Fatty
Liver Disease
With the global trend in obesity and its related metabolic
syndromes, non-alcoholic fatty liver disease (NAFLD) has
become an important cause of chronic liver disease in
developed countries (95). NAFLD is the hepatic manifestation
of metabolic syndrome characterized by intracellular excessive
accumulation of lipids in hepatocytes, excluding alcohol and
other damaging factors (95). NAFLD involves a range of liver
pathological changes, including steatosis, steatohepatitis,
advanced fibrosis, and cirrhosis (96). Existing studies have
shown that NAFLD is closely associated with persistent ER
stress, inhibition of autophagy, mitochondrial dysfunction,
insulin resistance, lipotoxicity, and overnutrition (15, 71, 96,
97). Overnutrition and obesity give rise to excessive lipid
accumulation in hepatocytes, known as hepatic steatosis (98).
We have previously shown that overnutrition can lead to chronic
mTORC1 activation (53). mTORC1 can intensify the
transcriptional activity of sterol regulatory element binding
protein (SREBP) and the expression of lipogenic genes to
enhance lipid synthesis (Figure 1). It is evident that chronic
mTORC1 activation along with persistent inhibition of
autophagy attenuates clearance of liver lipid droplets,
ultimately leading to hepatosteatosis (99). As a feedback
TABLE 1 | Summary of the role of Sestrin2 in metabolic diseases.

Disease Signaling pathway Effect Reference

Diabetes AMPK/mTOR Improves insulin resistance (57, 69)
Increases insulin-sensitivity

Nonalcoholic fatty liver disease AMPK/mTORC1 Reduces lipid synthesis (24, 70)
Attenuates ER stress (15)

Nrf2/ Keap1 Promotes autophagy (2)
Nrf2/HO-1 Prevents oxidative liver damage (43)
JNKs Keeps redox balance (71)

Attenuates lipotoxicity (72)
Myocardial ischemia/reperfusion (I/R) injury AMPK/PGC-1a Reduces the area of myocardial injury

Attenuates the sensitivity of myocardium to ischemia
(73)

AMPK/LKB1 Protects mitochondrial biogenesis (74)
Inhibits myocardial cell apoptosis (75)

MAPK signaling pathway Diminishes myocardial infarct size (76)
Antioxidant protein Improves function of infarcted myocardium (77)
AMPK/mTOR Refines myocardial substrate metabolism (78)

Modulates cardiac inflammation
Restrains ROS production
Improves contractile function
Attenuates myocardial hypertrophy

(79)

Improves cardiac function
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inhibitor of mTORC1, Sestrin2 can partially ease the effect of
chronic mTORC1 activation. For instance, loss of dSesn leads to
moderate downregulation of AMPK and upregulation of
dTORC1 in Drosophila, which contributes to the increased
expression of liposomal enzyme genes and ultimately to the
accumulation of triglycerides (24). Similarly, a study has
confirmed that hepatosteatosis is more serious, and that the
primary cause of hepatosteatosis is reduced lipid b-oxidation due
to reduced autophagy or mitochondrial biogenesis, rather than
increased adipogenesis in Sestrin2-deficient liver (57).
Furthermore, Sestrin2 also reduces the susceptibility of the
liver to oxidative damage via the NRF2/KEAP1 signaling
pathway (43). In mice with Sestrin2 deficiency, cells continue
to translate large amounts of proteins during ER stress, which
subsequently leads to extensive liver damage, inflammation, and
fibrosis (15). Accordingly, once induced by ER stress, Sestrin2
maintains endoplasmic reticulum homeostasis by inhibiting the
AMPK/mTORC1 signaling pathway (Figure 1), thereby
protecting against hepatosteatosis (15). Kim et al. found that
carbon monoxide can induce Sestrin2 upregulation, and Sestrin2
protects against hepatosteatosis by activating autophagy through
the AMPK/mTORC1 axis in a cellular model of NAFLD (48).
More interestingly, Sestrin2 plays an important role in the
protection against lipotoxicity-associated oxidative stress in the
liver via suppression of JNKs (72). In summary, Sestrin2 has a
significant impact on lipid metabolism and represents a potential
therapeutic strategy for NAFLD.

Sestrin2 and Myocardial Ischemia/
Reperfusion Injury
Coronary heart disease, also known as ischemic heart disease
(IHD), refers to the interruption of blood flow to the heart muscle
due to atherosclerosis, coronary thrombosis, and narrowing of the
small arteries of the heart, which remains the leading cause of
death worldwide because the incidence of IHD increases with age
(100, 101). After an acute myocardial infarction, although early
and successful myocardial reperfusion through thrombolytic or
percutaneous coronary intervention is the most effective way to
rescue the ischemic heart and improve the clinical outcome, the
recovery of blood flow can result in myocardial injury, which
reduces the efficacy of myocardial reperfusion, namely ischemia/
reperfusion (I/R) injury (78, 102). Myocardial I/R injury is closely
related to ROS, calcium overload, energy metabolism disorders,
acidosis, and inflammation (102). Some studies have reported that
the I/R process usually results in elevated levels of ROS
production, especially in the early stages of reperfusion, directly
causing myocardial injury (103). Moreover, excessive ROS leads to
programmed cell death through the activation of the mitogen-
activated protein kinase signaling pathway (104). Mitochondria
have an important role in ROS degradation, and dysfunctional
mitochondria are the main sources of pathological ROS (105, 106).
AMPK can protect mitochondria and play an antioxidant role
during the I/R process (78). Furthermore, AMPK has an essential
role in the activation of glucose uptake in the ischemic heart (107–
109). AMPK also activates 6-phosphofructo 2-kinase, which leads
to the production of fructose 2, 6-bisphosphate, further promoting
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glucose utilization in the ischemic heart (75, 110, 111). Therefore,
AMPK is a protein kinase with significant cardiac protection
against myocardial I/R injury (74). Sestrin2 has been shown to
increase the activation of AMPK via interactions with LKB1 to
improve myocardial substrate metabolism under I/R stress (75).
Sestrin2 was originally characterized as a critical antioxidant
protein that contributes to cycling of peroxiredoxins (77).
Independent of this redox-regulating activity, Sestrin2 can
modulate the activation of AMPK to maintain the integrity of
mitochondrial function and reduce the generation of ROS (14, 66,
74, 112). A study by Quan et al. (76) revealed that Sestrin2 greatly
reduces myocardial damage by modulating inflammation and
redox homeostasis in mouse hearts during I/R stress. Hence,
Sestrin2 provides cardioprotection by repressing ROS during I/R
injury. Furthermore, Quan et al. (73) found that the decreased
Sestrin2 levels in aging and Sesn2-knockout mice led to increased
sensitivity to ischemic insults and areas of myocardial injury,
which aggravated worsened cardiac dysfunction. Sestrin2 protects
mitochondrial function by activating the AMPK/PGC-1a
signaling pathway during myocardial ischemia (73). Sestrin2 has
been shown to be upregulated under anoxic and ischemic
conditions and has a protective role against myocardial ischemia
(7, 74, 78). The loss of Sestrin2 aggravates the accumulation of
fatty acids, thereby altering substrate metabolism in the heart and
increasing the production of ROS (37, 78). Inactivation of the
SESN gene in invertebrates can lead to a variety of metabolic
diseases such as muscle degeneration, oxidative damage, fat
accumulation, and mitochondrial dysfunction (4). Existing
studies have reported that Sestrin2 is involved in the protection
of cardiovascular disease by regulating the AMPK signaling
pathway (38). Sestrin2 protein accumulates in the heart during
myocardial ischemia (17), and the myocardial infarction area in
Sesn2 knockout mice was significantly larger than that in wild-type
mice when myocardial ischemia reperfusion occurred (74). In
conclusion, Sestrin2 has an influential role in cardioprotection
during myocardial I/R injury. Therefore, Sestrin2 may be a
therapeutic target for cardiovascular disease, potentially
revealing a new avenue of investigation for the treatment of
cardiovascular diseases.
PROBLEMS AND PROSPECTS

Sestrin2 is a critical intracellular sensor that activates AMPK and
inhibits mTORC1 to regulate autophagy, ER stress, inflammation,
metabolic homeostasis, and oxidative stress. Clearly, the AMPK/
mTORC1 axis is regulated by Sestrin2 and it provides the main
channel for its function. Sestrin2 regulates metabolism-related
signaling pathways, as summarized in Figure 1. However, despite
their physiological relevance, the exact mechanism by which
Sestrin2 promotes AMPK activation remains unclear. Therefore,
further studies are needed to determine the detailed molecular
function of Sestrin2.

Evidence suggests that Sestrin2 has an important clinical
function in responding to a variety of metabolic diseases, such
as diabetes mellitus, insulin resistance, and lipid metabolism
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disorders. In recent studies, serum Sestrin2 levels were
significantly reduced in obese children and patients with diabetic
nephropathy (113, 114). This suggests that the expression or
secretion of Sestrin2 is somewhat obstructed in the disease state.
Furthermore, a study by Kim et al. revealed that in NAFLD cell
models, carbon monoxide protects the liver against steatosis by
inducing upregulation of Sestrin2, which activates autophagy
through the AMPK/mTORC1 axis (48). Consistent with this
view, as a glucagon-like peptide 1 (GLP-1) analog, liraglutide
could reverse NAFLD by enhancing the level of Sestrin2 protein
and the Sestrin2-mediated NRF2/HO-1 pathway (71). Therefore,
we hypothesized that upregulation of Sestrin2 expression could
ameliorate metabolism-related diseases. Sestrin2 shows great
potential as a good prognostic marker and a viable therapeutic
target in a variety of diseases. However, how to induce Sestrin2
upregulation remains elusive under different disease conditions.
Frontiers in Endocrinology | www.frontiersin.org 7
To design therapeutic strategies to upregulate Sestrin2, it is
important to further study the upstream and downstream
pathways of the multipotent beneficial effects of Sestrin2. Future
studies should use transgenic animal models with conditional
organ-specific knockout of Sesn2 and attempt to link Sestrin2
levels to disease progression, which will help us identify
biochemical pathways regulated by Sestrin2 in specific diseases.
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