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The increasing number of immunocompromised people has made invasive fungal
infections more common. The antifungal armamentarium, in contrast, is limited to a
few classes of drugs, with frequent toxicity and low efficacy pointing to the need for
new agents. Antibodies are great candidates for novel antifungals, as their specificity
can result in lower toxicity. Additionally, the immunomodulatory activity of antibodies
could treat the underlying cause of many invasive mycoses, immune disfunction. In a
previous comparative genomics study, we identified several potential targets for novel
antifungals. Here we validate one of these targets, thioredoxin reductase (TRR1), to
produce antibodies that could be useful therapeutic tools. Recombinant TRR1 proteins
were produced by heterologous expression in Escherichia coli of genes encoding the
proteins from Candida albicans, Cryptococcus neoformans, and Paracoccidioides lutzii.
These proteins were then used to immunize mice, followed by detection of serum
antibodies against them by ELISA and western blot. A first set of experiments in which
individual mice were immunized repeatedly with TRR1 from a single species showed that
all three were highly immunogenic, inducing mostly IgG1 antibodies, and that antibodies
produced against one species cross-reacted with the others. In a second experiment,
individual mice were immunized three times, each with the protein from a different
species. The high titers of antibodies confirmed the presence of antigenic epitopes that
were conserved in fungi but absent in humans. Immunofluorescence with sera from
these immunized mice detected the protein in the cytoplasm and on the cell surface of
fungi from all three species. These results validate TRR1 as a good target for potentially
broad-spectrum antifungal antibodies.
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INTRODUCTION

Fungal diseases are estimated to affect around a billion
people each year, leading to 1.5 million deaths (Bongomin
et al., 2017). The incidence for these diseases is bound
to remain high, as they frequently affect people that are
rendered immunocompromised by advances in Medicine
such as organ transplantation, immunossupression and
chemotherapy. In addition to opportunistic infections,
systemic mycoses caused by primary pathogens such as
Paracoccidioides lutzii are also important causes of morbidity
and mortality in regions such as Latin America (Fortes et al.,
2011; Martinez, 2015) Broad-spectrum treatment options
for these diseases is restricted to drugs from a few chemical
families acting primarily against membrane and cell wall
targets, such as azoles, polyenes, and echinocandins (Nett
and Andes, 2016). Other antifungal classes such as the
pyrimidine analog flucytosine and ergosterol biosynthesis-
inhibiting allylamines have much narrower spectra (Sable
et al., 2008; Fuentefria et al., 2018). Price and availability
in the developing world are a major concern for several of
these drugs, as is the increase in resistance (Sable et al., 2008;
Chang et al., 2017).

There is thus a dire need for new and effective antifungal
drugs, an area of research and technological development in
which some advances have been made (Del Poeta and Casadevall,
2012). In a previous work from our group (Abadio et al., 2011),
we identified potential targets for antifungals using comparative
genomics. We identified ten genes as high-priority targets using
several criteria, such as that the target genes should be (a) present
in most or all of the most important pathogenic fungi, (b)
absent from (or significantly different in) the human genome,
(c) essential or important for the survival of the fungi of
interest, and (d) located in a part of the fungal cell that is
accessible to antifungal agents. Among these genes is TRR1,
which encodes a thioredoxin reductase. This enzyme is crucial
for cellular redox homeostasis and is essential in Candida
albicans (Abadio et al., 2011) and Cryptococcus neoformans
(Missall and Lodge, 2005).

Considering that immune dysfunctions are frequent in cases
of invasive mycoses, antibodies might be advantageous because
they would add to the inhibition of the target a second
therapeutic mechanism: immunomodulation (Kullberg et al.,
2014; Rodrigues et al., 2016). The objective of this work, then, was
to validate TRR1 as a target for antibody development. We found
that this protein is highly immunogenic, has conserved epitopes
and can be found in the cell wall, which suggest it might be a
successful immunotherapy target.

MATERIALS AND METHODS

Microbial Strains and Culture
Escherichia coli BL21 (DE3) and DH5α strains were grown in
LB medium at 37◦C and conserved with 50% of LB and 50%
of glycerol at −80◦C. Fungal strains H99 (C. neoformans) and
SC5314 (C. albicans) were grown in solid YPD for 48 h and

conserved in 50% of liquid YPD and glycerol 50% at −80◦C.
P. lutzii strain Pb01 was maintained by passage every 7 days in
Fava-Netto medium; cells were collected for experiments at 5 days
after passaging.

Mammalian Cell Culture and Protein
Extraction
Human embryonic kidney (HEK293) cells (Gibco) were thawed
and cultured in Freestyle F17 expression medium (Gibco) at
37◦C, 5% CO2. For total protein extraction, cells were pelleted
at 200 × g, washed with PBS and resuspended in cold RIPA
buffer (20 mM Tris–HCl, 140 mM NaCl, 1% Triton X-100,
0.5% SDS, 1 mM EDTA, and 1 mM phenylmethylsulfonyl
fluoride, pH 7.5), then vortexed for 30 s, incubated on ice
for 30 min and centrifuged at 14,000 × g, 10 min. The
supernatant containing soluble proteins was stored at −20◦C for
further analysis.

Mice
Six-week-old female BALB/c mice were used to perform the
immunizations. These experiments were made in the Animal
Facility of the Johns Hopkins Bloomberg School of Public Health,
Johns Hopkins University, or in the Bioassays Laboratory of
the Catholic University of Brasília. The experiments were done
according to the approved protocols MO15H134 (Johns Hopkins
University) and 018/13 (Catholic University of Brasília).

Recombinant Protein Production,
Purification, and Quantification
TRR1 genes were codon-optimized and chemically synthesized
by two different companies, Epoch Biolabs and Genscript. In
both cases, the genes were cloned into the XhoI and NdeI
sites of the pET-21a vector (Novagen), which was purified
with a Qiagen plasmid Midiprep kit following manufacturer’s
instructions. The vector was transformed in E. coli BL21 DE3
to produce the recombinant proteins, which were induced with
0.25 mM IPTG when cultures were at optical densities between
0.4 and 0.6. They were purified by affinity chromatography on
HisPurTM Cobalt Chromatography Cartridges (Thermo Fisher),
with imidazole elution. Protein preparations were analyzed
by polyacrylamide gel electrophoresis (Bio-Rad), concentrated
by ultrafiltration (Millipore CentriprepTM) and quantified by
spectrophotometry. For some experiments we also used as
negative control an unrelated, his-tagged recombinant protein
that was prepared as part of a different project (Moura et al.,
manuscript in preparation). This protein (P. lutzii HSP90)
was produced, purified, concentrated, and quantified with a
similar strategy.

Murine Immunization
Five groups of one to three animals each were separated
according to the condition of the immunization: (1) Control,
injected only with PBS in adjuvant. (2) Animals immunized
only with C. albicans TRR1. (3) Animals immunized only
with P. lutzii TRR1. (4) Animals immunized only with
C. neoformans TRR1. (5) Animals immunized sequentially
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with TRR1 from the three different species (C. albicans –
P. lutzii – C. neoformans). The animals were immunized
with a subcutaneous injection in the back of the neck with
an emulsion of 50% Freund’s adjuvant in PBS containing
50 µg of protein. Three immunizations were made in each
mouse, with a 2-week interval between immunizations. The
first immunization was made with complete and the others
with incomplete Freund’s adjuvant. Sera were obtained before
all immunizations (and 2 months after the last one) by retro-
orbital bleeding using heparin capillary tubes in mice under
isoflurane anesthesia.

Western Blot
Purified recombinant proteins (144 ng per lane), HEK293 protein
extracts (80 µg per lane) and a molecular weight marker
(PageRuler Prestained Protein Ladder – Thermo Fisher) were
separated by electrophoresis on denaturing 10% polyacrylamide
gels. The proteins were then transferred to a nitrocellulose
membrane (GE Healthcare Life Sciences), which was blocked
with 5% skim milk in TBS (20 mM Tris–HCl, 150 mM
NaCl, pH 7.4). The membranes were then incubated with
a 1:6.000 dilution of the sera from immunized mice and,
after washing, with a secondary antibody to mouse light
chains conjugated with HRP (Jackson Immuno Research). The
membranes were then incubated with SuperSignalTM West Pico
PLUS Chemiluminescent Substrate (Thermo Fisher) and imaged
on a ChemiDoc system (Bio-Rad).

ELISA
TRR1 proteins diluted to 10 µg/mL were used to coat polystyrene
plates. After blocking with 1% BSA in PBS, dilutions of the
sera from the immunized mice were incubated for 1 h at 37◦C.
In some of the experiments, we used as secondary antibody
a combination of alkaline phosphatase-conjugated goat anti-
mouse IgG, IgA, and IgM (Southern Biotech) in a 1:1000 dilution
also for 1 h at 37◦C. In other experiments, we used isotype-
specific (IgA, IgG1, IgG2a, IgG2b, IgG3, and IgM) AP-conjugated
secondary antibodies (Southern Biotech). Bound antibodies were
detected using p-nitrophenyl phosphate (Sigma) as a substrate,
with absorbance measured in a plate spectrophotometer at
405 nm. In some experiments we also included as negative
control wells in which the TRR1 proteins were substituted for an
unrelated his-tagged protein, to detect antibodies against the tag
used for TRR1 purification.

Immunofluorescence
Fungal cells were fixed with 4% paraformaldehyde and washed
with PBS. The serum of mice that had been immunized
sequentially with TRR1 from all three fungal species was used
as primary antibody in a dilution of 1:100, followed by Alexa
Fluor R© 488 conjugated anti-mouse IgG antibody (ThermoFisher
Scientific) diluted 1:100. After washing and mounting, the
cells were imaged in a Zeiss AxioObserver Z1 microscope
equipped with a 63× objective. Z-stacks were collected and
deconvolved using a constrained iterative algorithm with the
Zeiss ZEN software.

RESULTS

Production of TRR1 Proteins From
C. albicans, C. neoformans, and P. lutzii
Sequences encoding TRR1 from P. lutzii, C. albicans, and
C. neoformans were obtained from FungiDB (Basenko et al.,
2018), whereas their human homolog was obtained from
UniProt. A Clustal Omega alignment of them (Figure 1) shows
three regions with reasonable variation among the different
fungal species interspersed with highly conserved regions. TRR1
proteins from the three species are between 63 and 76% identical
among each other, but have only 21 to 24% identity with
the human thioredoxin reductase. Genes encoding each of the
TRR1 proteins were chemically synthesized and cloned in pET21
vectors for heterologous expression in E. coli. As shown in
Figure 2, we were able to produce highly purified TRR1 proteins
from all three species. This experiment was repeated twice
with vectors produced from two different companies, with no
discernible difference in the proteins produced.

Immunization With TRR1 Proteins
Generate High Titers of Cross-Reactive
Antibodies
We used the purified recombinant TRR1 proteins to immunize
mice in different strategies. Initially, one group was immunized
with only C. albicans recombinant TRR1 protein, another with
only TRR1 from C. neoformans and a third with P. lutzii TRR1.
Each of these mice were immunized three times, and the titers
of antibodies (IgA + IgG + IgM) recognizing the recombinant
proteins from all three species measured by ELISA. As shown in
Figure 3A, TRR1 proteins from all three species induced titers
of more than 1:5.904.900 of antibodies that bound to the species
used as an immunogen (homospecific antibodies). C. albicans
was the most immunogenic protein, followed by P. lutzii and
C. neoformans. The sera also contained antibodies that were
cross-reactive with TRR1 proteins from other species than
those that were used as immunogen (heterospecific antibodies).
Heterospecific titers varying from 1:72.900 to 1:656.100, being
higher in animals immunized with C. albicans TRR1 and
lower in those immunized with the C. neoformans protein. We
next immunized animals with a different strategy. They were
immunized three times as the other ones were, but with TRR1
from a different species each time. As shown in Figure 3A,
anti-TRR1 titers in these mice varied from 1:72.900 to 1:
5.904.900. The same sera from mice immunized with all three
TRR1 proteins was used in western blot experiments with the
recombinant proteins and a protein extract from a human cell
line, HEK293 (Figure 3B). TRR1 proteins from all three species
were recognized by the antibodies, but not the human homolog.

To determine which immunoglobulin isotypes were induced
by immunization with TRR1 proteins, we repeated these
experiments with isotype specific secondary antibodies. As shown
in Supplementary Figure S1, the isotype with highest titers in
all animals was IgG1, with variable titers for other IgG isotypes
and IgM and little IgA. As all TRR1 proteins had a 6x-His tag,
we also included as negative control an unrelated his-tagged
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FIGURE 1 | Alignment of TRR1 sequences. TRR1 sequences were obtained from online databases and aligned using Clustal Omega (Madeira et al., 2019). Hs,
Homo sapiens; Ca, C. albicans; Cn, C. neoformans; Pl, P. lutzii. The symbols indicate full conservation (∗), strong similarity (:), and weak similarity (.) in each position.

protein to measure the amount of antibodies that recognized
the purification tags instead of the TRR1 protein. The geometric
mean of the titers of IgG1 antibodies to this protein in mice
immunized with TRR1 proteins was 3.5 × 104, approximately
200 times lower than the geometric mean titer of IgG1 to the
immunogens (7.0× 106).

Given the very high titers and cross-reactivity of antibodies
to TRR1, we analyzed the protein sequences using T cell
and B cell epitope prediction tools. The NetMHCIIpan tool
(Jensen et al., 2018) predicted four different regions that
contained peptides that probably bind strongly to mouse
MHC class II (Supplementary Figure S2). Two of these
regions are highly conserved and predicted to occur in all
three species. BepiPred-2.0, a linear B cell epitope prediction
tool, suggested the existence of 10–12 epitopes in each of
the three sequences. Nine of these are predicted to occur
in all three species, of which one is identical in all of

them, six have 50–90% identity among the species and two
have less than 50% identity. Of the nine regions with linear
epitopes in all three species, six were also predicted as
part of conformational epitopes in the C. neoformans TRR1
crystal structure using ElliPro (Ponomarenko et al., 2008).
Supplementary Figure S3 shows the location of some of the
epitopes on the TRR1 sequence.

Antibodies to TRR1 Bind to the Fungal
Cell Surface
We used the sera from mice that were sequentially immunized
with TRR1 proteins from all three species in immunofluorescence
experiments with C. albicans, C. neoformans, and P. lutzii yeast
cells. As shown in Figure 4, we observed significant binding of
antibodies in the antiserum to the cell surface in all three types of
yeast cells, in a punctate pattern.
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FIGURE 2 | Production of his-tagged TRR1 proteins. Genes encoding TRR1
from C. albicans, C. neoformans, and P. lutzii were chemically synthesized and
cloned into bacterial expression vectors. After transformation in E. coli and
induction, the recombinant TRR1 proteins were purified by affinity
chromatography and analyzed by SDS-PAGE.

FIGURE 3 | Heterospecific and homospecific antibodies to TRR1. (A) Titers of
homospecific and heterospecific antibodies in animals immunized with TRR1.
Each animal was immunized three times with TRR1 from a single species or
with the protein from all three species, one at a time. Two months after the last
injection their sera were collected and used in ELISA experiments in which the
plates were coated with TRR1 from each of the three fungal species. Bars
represent the titers of antibodies (IgA + IgG + IgM) against each one of those
species. (B) Sera from mice that were immunized with all three fungal species
in sequence were used in western blot experiments to detect binding to
recombinant C. albicans (lane b), C. neoformans (lanes a,d), and P. lutzii
(lane e) TRR1 proteins, as well as the protein extract of the human cell line
HEK293 (lanes c,f).

FIGURE 4 | Immunofluorescence with anti-TRR1 sera. C. albicans,
C. neoformans, and P. lutzii yeast cells were fixed, permeabilized and
incubated with sera from mice that had been immunized with the TRR1
proteins from all three species. Bound antibodies were detected with a
fluorescently labeled secondary antibody. Positive spots can be observed on
the surfaces of all three cell types.

DISCUSSION

The increase in the life expectancy of immunocompromised
patients afforded by modern medicine has come with a
higher incidence of opportunistic fungal infections like invasive
aspergillosis and candidiasis. In addition to that, the number
of cases of severe mycoses associated with AIDS and infections
by primary fungal pathogens such as Paracoccidioides spp.
and Histoplasma capsulatum still remain high (Travassos and
Taborda, 2017). Considering the dire need for new antifungal
drugs, almost a decade ago we seized the opportunities brought
by genomics studies to discover new drug targets (Abadio et al.,
2011). Our focus in one of these targets, TRR1, has already
resulted in the discovery of new small molecule antifungal
candidates (Abadio et al., 2015). TRR1 might also be a target
for auranofin, an antirheumatic drug that displayed interesting
properties in studies that aimed to repurpose it as an antifungal
(Siles et al., 2013; Fuchs et al., 2016; Thangamani et al., 2017;
Wiederhold et al., 2017). In this work we made the first steps in
validating this target for antibody-based therapies as well.

Antibodies play important roles in the immune response
to fungi (Casadevall and Pirofski, 2012), and also have great
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potential for immunotherapy of fungal diseases (Zhou and
Murphy, 2006; Taborda and Nosanchuk, 2017). The fact that
antibodies are naturally found in mammals and the exquisite
specificity of the humoral immune response can result in drugs
with lower toxicity and lead to less adverse events in comparison
with existing therapies. In addition to inhibiting their targets,
the immunomodulatory effects of antibodies can also contribute
to curing mycoses that frequently happen in immunodepressed
individuals (Ravikumar et al., 2015). Two antibody therapies
for fungal diseases made it to clinical development: efungumab,
an antibody fragment targeting C. albicans HSP90 with positive
results in phase III clinical trials (Pachl et al., 2006) that was
discontinued and 18B7, a murine antibody to the C. neoformans
capsule that gave promising results in a phase I clinical trial
(Larsen et al., 2005).

In addition to these two antibodies that made it to clinical
development, several other antibodies have been proposed as
candidates for immunotherapy of fungal diseases (Nicola et al.,
2018). An anti-β-glucan monoclonal antibody (mAb 2G8) was
protective in animal models of invasive mycoses (Rachini
et al., 2007), consistent with the protection afforded by a
β-glucan vaccine (Torosantucci et al., 2005). Interestingly, other
antibodies had as targets proteins that are not traditionally
associated with the cell wall like TRR1, such as the cytosolic
molecular chaperones HSP90 (Matthews et al., 1991) and
HSP60 (Guimarães et al., 2009) and a histone-like protein
(Nosanchuk et al., 2003). In C. neoformans (Missall and Lodge,
2005) and Fusarium graminearum (Fan et al., 2019), GFP-
tagged TRR1 was localized in the cytoplasm and mitochondria,
the sites in which its enzymatic function is carried out. Our
immunofluorescence experiments, however, showed the protein
is distributed in a punctate pattern on the surface of the three
fungi studied. This pattern has been associated before with
increased antifungal activity for an antibody to the C. albicans
cell wall (Casanova et al., 1990), which is promising for antifungal
therapy. Consistent with this extracellular presence of TRR1,
it was found in C. neoformans extracellular vesicles (Rodrigues
et al., 2008) and on the extracellular matrix of mature C. albicans
biofilms (Martínez et al., 2016). This suggests that cell wall TRR1
would indeed be a good target for therapeutic antibodies, which
cannot penetrate intact fungal cells. It also poses an interesting
question of whether it is “moonlighting” (Jeffery, 2018) in the cell
wall by playing a specific physiologic role there.

Our animal tests showed that TRR1 was highly immunogenic,
corroborating a previous study made with C. albicans TRR1
(Godoy et al., 2016). Moreover, the immunization led to the
production of mostly IgG1 and other IgG isotypes, the expected
response to protein antigens (Vidarsson et al., 2014). These are
also the isotypes most commonly used to generate therapeutic
antibodies, given that the vast majority of therapeutic antibodies
are IgG. More importantly, the protein from different species
seemed to share B (and probably T) cell epitopes that led
to high titers of broadly cross-reactive antibodies, considering
the significant phylogenetic distance between the basidiomycete
C. neoformans and the ascomycetes C. albicans and P. lutzii.
In line with this high immunogenicity and cross-reactivity,
a study in which sera from mice infected with Coccidioides

posadasii, C. albicans, and P. brasiliensis were incubated with an
array containing recombinant Saccharomyces cerevisiae proteins
detected antibodies that were induced by fungal infection and
cross-reacted with baker’s yeast TRR1 (Coelho et al., 2015).
Strikingly, TRR1 was one of only 16 out of 4,800 different
S. cerevisiae proteins present on the array that were recognized
by antibodies in sera from animals infected with all three
fungi, which together with our data indicate that TRR1 is an
immunodominant antigen. This has interesting applications for
TRR1 as a therapeutic antibody target, suggesting a higher
possibility of a broad-spectrum drug. Given that mice immunized
with C. albicans TRR1 were more resistant in an animal model of
invasive candidiasis (Godoy et al., 2016), these findings also raise
the question of the role immune responses against cell wall TRR1
play in antifungal immunity.
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