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Simple Summary: In order to identify common genes associated with the pathology of multiple
cancers, we integrated differential expressed gene (DEGs) from datasets of six cancers (liver, lung
colorectal, gastric, prostate, and breast cancers) and identified six DEGs common to the six cancers.
We conducted enrichment analysis and our results suggested that the DEGs are involved in the
tumorigenic properties, including distant metastases, treatment failure, and survival prognosis.
Notably, our results suggested high frequencies of genetic and epigenetic alterations of the DEGs in
association with tumor staging, immune evasion, poor prognosis, and therapy resistance. Transla-
tionally, we intended to identify a drug candidate with the potential for targeting the DEGs. Using a
molecular docking platform, we estimated that ovatodiolide, a bioactive anti-cancer phytochemical,
has high binding affinities to the binding pockets of the hub genes and thus could serve as a potential
drug candidate for targeting the DEGs.

Abstract: Despite the significant advancement in therapeutic strategies, breast, colorectal, gastric,
lung, liver, and prostate cancers remain the most prevalent cancers in terms of incidence and
mortality worldwide. The major causes ascribed to these burdens are lack of early diagnosis, high
metastatic tendency, and drug resistance. Therefore, exploring reliable early diagnostic and prognostic
biomarkers universal to most cancer types is a clinical emergency. Consequently, in the present
study, the differentially expressed genes (DEGs) from the publicly available microarray datasets of
six cancer types (liver, lung colorectal, gastric, prostate, and breast cancers), termed hub cancers,
were analyzed to identify the universal DEGs, termed hub genes. Gene set enrichment analysis
(GSEA) and KEGG mapping of the hub genes suggested their crucial involvement in the tumorigenic
properties, including distant metastases, treatment failure, and survival prognosis. Notably, our
results suggested high frequencies of genetic and epigenetic alterations of the DEGs in association
with tumor staging, immune evasion, poor prognosis, and therapy resistance. Translationally, we
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intended to identify a drug candidate with the potential for targeting the hub genes. Using a molecular
docking platform, we estimated that ovatodiolide, a bioactive anti-cancer phytochemical, has high
binding affinities to the binding pockets of the hub genes. Collectively, our results suggested that
the hub genes were associated with establishing an immune-suppressive tumor microenvironment
favorable for disease progression and promising biomarkers for the early diagnosis and prognosis in
multiple cancer types and could serve as potential druggable targets for ovatodiolide.

Keywords: cancer hub; tumor microenvironments; onco-immune profiling; differentially expressed
genes; ovatodiolide; cancer immunotherapy

1. Introduction

The current global burden of cancer was estimated to be 19.3 million cases in 2020
and is expected to be 28.4 million cases in 2040 [1], a 47% rise from 2020. In line with
the previous trend [2,3], the 2020 global cancer statistic report of cancer incidences and
mortality indicate that breast (11.7% and 6.9%), lung (11.4% and 18%), colorectal (10.0% and
9.4%), prostate (7.3% and 3.8%), stomach (5.6% and 7.7%), and liver (4.7% and 8.3%) cancers
are the most commonly diagnosed and the leading cause of cancer mortality globally [1].
With the exception of prostate and breast cancers, which are sex-specific, the prevalence
and mortality rates of these cancers combined were higher in men than in women, at 45.5%
and 42.1%, respectively. These six cancers, which constituted 50.7% and 54.1% of the total
global cases and cancer deaths, respectively, are the primary focus of the current study
and are collectively referred to as hub cancers hereafter. Therefore, it is crucial to identify
the promising early diagnostic and prognostic biomarkers that may assist in elucidating
the underlying molecular mechanisms of these cancers and simultaneously improve the
clinical therapeutics [4].

Microarray technology and bioinformatics analysis have become a promising and
valuable tool for screening significant genetic or epigenetic variations that occur during
carcinogenesis and understanding the pathogenesis of the diseases for effective diagnosis,
prognosis and planning adequate therapeutic strategies [5–8]. However, the outcome
from most of these findings has not yielded significant translational success in predicting
reliable universal biomarkers for the diagnosis and prognosis of the hub cancers. Thus,
independent analysis of microarray and RNAseq data from different cancer datasets with
subsequent integration of differentially expressed genes (DEGs) across the cancer types
may help identify the universal markers concordant across multiple cancer studies with
increased confidence and translational relevance to the clinics. In addition to the lack of
reliable and early diagnostic biomarkers, the resistance to chemotherapy and adverse effects
associated with chemotherapeutic agents currently use in clinics are jointly responsible for
the poor prognosis of the hub cancer patients [9,10]. Therefore, there is an urgent need to
develop new, affordable, effective and safer anticancer drugs [11].

Ovatodiolide, is a phytochemical isolated from Anisomeles indica (L.) Kuntze [12].
This plant originates from Taiwan and is commonly known as “Fang Feng Cao” by the
traditional Taiwanese herbalist where it is commonly used as an oral remedy for stom-
achache, swelling, abdominal pain, hypertension, arthritis, immunodeficiency disease,
hepatic diseases, hemorrhoids, and arthritis [13]. The plant has been reported for various
biological activities, including analgesic, anti-inflammatory, antimicrobial, hypotensive,
hepatoprotective, and anti-proliferative activities [14]. Ovatodiolide has been identified as
the major bioactive compound responsible for the biological activities of this plant and has
been previously isolated and evaluated for anti-cancer activities against several human can-
cer cell lines [12]. In our previous studies, we found that ovatodiolide sensitizes aggressive
human cancer cells to chemotherapy and ameliorates the cancer stemness phenotype and
chemotherapy-associated toxicity in an in vitro or/and in vivo models of breast cancer [15],
glioblastoma [16], oral squamous cell carcinoma [17,18], colon cancer [19], and nasopha-
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ryngeal carcinoma [20]. Studies elsewhere have also reported ovatodiolide for significant
anti-cancer activities against hepatic cancer stem cells [21], renal [22], and oral [23] cancers.

Our earlier mechanistic study indicated that inhibition of numerous oncogenic
molecules and signaling pathways such as Wnt/β-catenin, Hippo/YAP1, PI3K/mTOR, ex-
osomal Mir-21/STAT3/β-Catenin, JAK2/STAT3/JARID1B, tumor necrosis factor (TNF)-α,
nuclear factor (NF)-κB, matrix metalloproteinases (MMPs), and FLICE inhibitory pro-
tein (FLIP) were associated with the anti-cancer activity of this bioactive phytochemi-
cal [15,17,18,20,22]. However, the therapeutic potential of ovatodiolide against the hub
genes identified in the current study via bioinformatics integrations of DEGs from the hub
cancers has never been explored. Herein, our molecular docking analysis suggested that
ovatodiolide docked well into the binding sites of these hub genes with estimated higher
binding preferences for IRAK3, SEC168, and TNPO2; this suggested that ovatodiolide could
be a drug candidate for targeting these oncogenic hub genes. In summary, the identified
hub genes may provide novel insights on the early diagnosis and prognosis of hub cancers
by serving as promising biomarkers/druggable targets for ovatodiolide.

2. Methods
2.1. Collection of Microarray of Cancer and Normal Samples

The microarray datasets of six cancer types (lung, liver, colorectal, prostate, gastric, and
breast cancers) were collected from the NCBI Gene Expression Omnibus (GEO), a public
functional genomics data repository of high throughput gene expression
(http://www.ncbi.nlm.nih.gov/geo/, accessed on 11 May 2021, Figure 1). The dataset
containing primary or metastatic cancer tissues (tumor samples) and normal human sam-
ples (normal counterparts) were included (Table 1). Identification of DEGs was performed
using the LIMMA R package. The Benjamini–Hochberg correction method was used
for p-value adjustment to false discovery rate (FDR). FDR < 0.05 and |logFC| > 1.5
was set as a cutoff point for DEGs selection. Online tool Multiple List Comparator
(https://www.molbiotools.com/listcompare.html, accessed on 19 May 2021) was used
to visualize the intersected DEGs and generate a Venn diagram for the visualization of
the overlapping DEGs. In addition, we collected TCGA data of mRNA expression levels,
copy number variation (CNV), single nucleotide variation (SNV), and methylation levels
of the six hub genes in LUAD, BRCA, STAD, COAD, and LICH patients as well as the
survival duration of these patients from the National Cancer Institute (NCI) Genomic Data
Commons (GDC) (https://gdc.cancer.gov/, accessed on 27 May 2021). The distribution of
the sample collection is presented in Table 2. All analyses of GDC data were conducted
using the GSCLite web package.

Table 1. Characteristics of datasets used for the identification of the differentially expressed genes (DEGs).

Cancers Dataset Platform Tumor Normal

Breast GSE103512 GPL13158 [HT_HG-U133_Plus_PM] Affymetrix HT HG-U133+ PM Array Plate 65 10
Colorectal GSE103512 GPL13158 [HT_HG-U133_Plus_PM] Affymetrix HT HG-U133+ PM Array Plate 57 12

Lung GSE103512 GPL13158 [HT_HG-U133_Plus_PM] Affymetrix HT HG-U133+ PM Array Plate 60 9
Prostate GSE72220 GPL5175 [HuEx-1_0-st] Affymetrix Human Exon 1.0 ST Array 57 90

Liver GSE19665 GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array 10 10
Stomach GSE79973 GPL570 HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array 10 10

Table 2. Distribution of data collection from the NCI Genomic Data Commons.

Cancers mRNA Expression Survival Stage CNV SNV Methylation

LUAD 578 481 473 517 567 528
BRCA 1220 1037 1034 1081 1026 816
STAD 452 373 341 442 439 416
PRAD 552 354 0 493 498 576
COAD 331 442 433 452 407 361
LIHC 426 197 176 371 365 453

CNV: copy number variation, SNV: single nucleotide variation.

http://www.ncbi.nlm.nih.gov/geo/
https://www.molbiotools.com/listcompare.html
https://gdc.cancer.gov/
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Figure 1. The flow chart of the study design for identifying the key DEGs in the pathology of the six cancers and predicting
their potential druggability for ovatodiolide.

2.2. Differential Expression Analysis of the Hub Genes between Tumor Stage and
Molecular Subtypes

In order to predict the clinical relevance of the hub genes, we analyzed the differential
expression levels of the hub genes between tumor stage and molecular subtypes. To
make the subtypes analysis feasible, the number of subgroups of subtypes must have
at least 10 samples. Only lung, stomach, and breast cancer met this criterion and hence
were included for the subtype analysis. The RNA-Seq by Expectation-Maximization
(RSEM) normalized expression values were used for the differential expression levels of
the hub genes between the molecular subtypes of gastric cancer (Epstein–Barr virus (EBV),
microsatellite instability (MSI), genomically stable (GS) and chromosomally unstable (CIN)),
breast cancer (basal, Her2, LumA, and LumB) and lung cancer (subtypes 1–6). Analysis of
variance (ANOVA) t-test was used for the statistical analysis. A p-value of less than 0.05
was considered significant.

2.3. Prognosis Analysis of the Hub Genes

We queried the associations between the gene expression profile and prognosis of the
cohorts by integrating tumor gene expression levels of the hub genes and overall survival data
from the patients of each of the hub cancers using the PREdiction of Clinical Outcomes from
Genomic profiles (PRECOG) server (https://precog.stanford.edu/index.php, accessed on
29 May 2021). Similarly, we queried the survival differences between the mRNA expression
levels of each hub gene across the combined cohorts of the hub cancers using the Gene
Expression Profiling Interactive Analysis (GEPIA) webtool. Kaplan–Meir plots were used
to visualized the survival differences between hub cancer cohorts with high and low gene
expression levels.

2.4. Functional Enrichment Analysis of the Hub Genes

Online databases (https://maayanlab.cloud/Enrichr/, accessed on 29 May 2021)
were used for the gene ontology function and KEGG (Kyoto Encyclopedia of Genes and
Genomes) pathway enrichment analyses of the DEGs. The GO and KEGG terms with

https://precog.stanford.edu/index.php
https://maayanlab.cloud/Enrichr/
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FDR < 0.05 were regarded as significant functions and pathways and were visualized using
the R package cluster Profiler.

2.5. Gene–Gene and Protein–Protein Interaction Network Construction Analysis

Network construction for gene—gene interaction (GGI) and protein–protein interac-
tion (PPI) of the hub genes were performed via the GENEMANIA (https://genemania.org/,
accessed on 1 June 2021) and the Search Tool for the Retrieval of Interacting Genes (STRING;
http://string.embl.de/, accessed on 23 May 2021), respectively. The PPIs of the DEGs were
constructed with a confidence score of 0.70.

2.6. Analysis of Single Nucleotide Variation (SNV) and Copy Number Variation (CNV) of the
Hub Genes

We collected SNV data of seven variant types of effective mutations (Missense_Mutation,
Nonsense_Mutation, Frame_Shift_Ins, Splice_Site, Frame_Shift_Del, In_Frame_Del,
In_Frame_Ins) of lung, breast, colon prostate, gastric, and liver cancer from the NCI Ge-
nomic Data Commons (https://gdc.cancer.gov/, accessed on 29 May 2021), and analyzed
the frequencies and occurrence of these SNV in the hub genes across the six hub cancers via
the GSCALite (http://bioinfo.life.hust.edu.cn/web/GSCALite/, accessed on 29 May 2021)
server [24]. SNV percentage of each gene’s coding region was calculated by: Num of Mutated
Sample/Num of Cancer Sample. Mutation Annotation Format (MAF) tools were used for
data visualization and to generate the waterfall plot [25]. The CNV data were processed with
GISTICS2.0 [26]. The frequency of four types of CNV—Hete Amp: heterozygous amplifica-
tion (CNV = 1), Hete Del: heterozygous deletion, (CNV = −1), Homo Amp: homozygous
amplification (CNV = 2), and Homo Del: homozygous deletion (CNV = −2)—in the six hub
genes across the six cancer types were visualized. The SNV or CNV data and clinical overall
survival data were combined and analyzed for survival differences between mutated and
non-mutated genes (SNV) and between CNV using R package survival. A log-rank test [27]
was also performed to compare the distributions of groups while Cox regression [28] was
performed to estimate the hazards. A p-value < 0.05 was considered as significant.

2.7. Methylation Analysis of the Hub Genes

We used Pearson’s product–moment correlation coefficient and followed a t-distribution
to analyze the correlation between the mRNA expression and methylation levels of the
hub genes across the six cancer types. The p-value was adjusted by FDR and genes with
FDR ≤ 0.05 were considered as significant. In addition, we collected the clinical overall
survival data of the cohorts and analyzed the survival differences between hyper and hypo-
methylation levels of the hub genes across the six cancers. A log-rank test was also performed
to compare the distributions of two groups while Cox regression analysis was conducted to
estimate the hazards (risk of death). A p-value < 0.05 was considered as significant.

2.8. Analysis of the Hub Genes Expressions Correlation with Gene Expression Profiles Suggestive
of Immune and Immuno-Suppressive Cell Infiltrations

We used the Tumor Immune Estimation Resource (TIMER2.0) (http://timer.cistrome.org/,
accessed on 21 May 2021) [29] to analyze the hub gene expression correlations with the levels
of gene expression suggestive of immune infiltrations (B Cell, CD8+ T Cell, CD4+ T Cell,
macrophage, neutrophil, and dendritic cells) in the six cancer types. We also analyzed the
hub gene expression correlations with the gene expression profiles suggestive of immuno-
suppressive cells infiltration. Four immunosuppressive cells that are known to promote T
cell exclusion—vis myeloid-derived suppressor cell (MDSCs), cancer-associated fibroblast
(CAF), tumor-associated macrophages (M2-TAM), and regulatory T cell (Treg)—were included.
The correlation analysis was conducted using the purity-corrected partial Spearman’s rho
value and statistical significance (p < 0.05). We used GraphPad Prism Software (version 8.0.0
for Windows) for data visualization. Heat maps were used to visualize the correlations
between the hub genes expression levels and the gene expression profiles suggestive of im-
mune/immunosuppressive cell infiltrations across the six cancers. In addition, we used the

https://genemania.org/
http://string.embl.de/
https://gdc.cancer.gov/
http://bioinfo.life.hust.edu.cn/web/GSCALite/
http://timer.cistrome.org/
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QUERY module of the TIDE algorithm to evaluate the correlations between the hub gene
expression and levels of gene expression suggestive of T cell exclusion and dysfunctional T cell
phenotypes of the six hub cancers [30].

2.9. Gene Prioritization Analysis of The Hub Genes

We access the gene prioritization of the hub genes across two parameters, namely the
response to ICB therapy and gene knockout phenotype in CRISPR screens. The z-score in
the Cox-PH regression was used to evaluate the effect of the gene on the expression on
patient survival in ICB treatment cohorts. The normalized logFC in CRISPR screens was
employed to evaluate the effect of gene knockout on lymphocyte-induced tumor death in
cancer models [30].

2.10. Drug Response and Sensitivity Analysis of the Hub Genes

We used the Spearman correlation analysis to explore the correlation between mRNA
expression levels of the hub genes and IC50 concentrations of small molecules against
cancer cell lines in the Therapeutics Response Portal (CTRP) database. In addition, we
also analyzed the correlation of the expression levels of the hub genes with sensitivity
to chemotherapy of the cancer patient using the ROC Plotter (http://www.rocplot.org/,
accessed on 28 May 2021) algorithm, a transcriptome-based tool for predictive biomarkers
by linking gene expression and response to therapy in cancer patients [31].

2.11. Molecular Docking Studies

The molecular docking study of the hub genes with ovatodiolide was conducted using
AutoDock VINA (version 0.8) [32] software according to the protocols described in previous
studies [33,34]. The three-dimensional (3D) structure of the hub genes RAB31 (PDB:2fg5),
IRAK3 (PDB:6ruu), OBSCN (PDB:2e01), LIN9 (PDB:6c48), TNPO2 (PDB:2z5j), and SEC16B
(PDB:3mzk) were downloaded from the protein data bank (PDB). The 3D structure of
the ovatodiolide was obtained in the Sybyl mol2 format using the Avogadro molecular
builder and visualization tool version 1.XX [35] before subsequently being transformed
into the protein data bank (PDB) format using the PyMOL Molecular Graphics System,
version 1.2r3pre. The PDB files of the crystal structures of the receptors (hub genes) were
transformed to pdbqt format by using AutoDock VINA (version 0.8) [32]. The removal of
water molecules and the addition of Kolman charges and hydrogen atoms were carried
out before docking simulation [36]. Visualization and analysis of the docked complex
were performed using the PyMOL software and Discovery studio visualizer (version
19.1.0.18287, BIOVIA, San Diego, CA, USA) [37].

3. Results
3.1. RAB31/IRAK3/OBSCN/LIN9/TNPO2/SEC16B Are Hub Genes Associated with the
Development of Breast, Lung, Colorectal, Liver, Prostate, and Stomach Cancers (Hub Cancers)

The detailed information for the GEO datasets for each of the six cancer types is
shown in Table 1 while the distribution of DEGs in the six cancer types analyzed are
represented by the volcano plots (Figure 2A). Overall, we identified 3083 DEGs in colorectal
(1545 up-regulated and 1538 downregulated), 2032 DEGs in breast (1070 up-regulated and
962 down-regulated), 4825 DEGs in prostate (2869 up-regulated and 1959 down-regulated),
3966 DEGs in lung (1500 up-regulated and 2466 down-regulated), 1589 DEGs in liver
(947 up-regulated and 642 downregulated), and 2460 DEGs in gastric cancer (1499 up-
regulated and 961 downregulated) (Figure 2B,C). We further identified six overlapping
up-regulated DEGs, RAB31, IRAK3, OBSCN, LIN9, TNPO2, and SEC16B, while four down-
regulated genes were obtained after the integrated analysis of six GEO datasets (Figure 2D).

http://www.rocplot.org/
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Figure 2. Identification of differentially expressed genes (DEG) between the cancer patients and healthy controls. (A) Vol-
cano plot showing the distribution of DEGs between the cancer patients and healthy controls. The top DEGs are repre-
sented satisfying the criteria of logFC value and p < 0.05. The color indicates high expression (red) and low expression 
(blue). (B) The Venn diagrams of the overlapping up-regulated and (C) down-regulated DEGs in the six cancers. (D) Heat 
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Figure 2. Identification of differentially expressed genes (DEG) between the cancer patients and healthy controls.
(A) Volcano plot showing the distribution of DEGs between the cancer patients and healthy controls. The top DEGs
are represented satisfying the criteria of logFC value and p < 0.05. The color indicates high expression (red) and low
expression (blue). (B) The Venn diagrams of the overlapping up-regulated and (C) down-regulated DEGs in the six cancers.
(D) Heat showing the logFC distribution of the 10 overlapping DEGs (6 up-regulated and 4 down-regulated genes) in all six
GEO datasets.

3.2. The Hub Genes Expressions Are Associated with Clinical Prognosis of the Hub
Cancer Patients

Our differential expression analysis suggested that the expression levels of the hub
genes vary with the molecular subtypes of the breast, lung, and stomach cancers and,
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in most cases, elevates with increased tumor stages of the six cancer hub (Figure 3A–C,
Figure S1). Notably, we found that the six hub genes were significantly (all p-value < 0.05)
associated with shorter survival duration of the breast cancer cohorts while none of the
genes was significantly associated (all p > 0.05) with a prognosis of prostate cancer cohorts
(Figure 3D). Furthermore, with the exception of TNPO2 in lung cancer, OBSCN in liver
cancer, and SEC16 in gastric and colon cancers, the high expression levels of the hub genes
predicted a worse prognosis of the patients. Similarly, we queried the survival differences
between the mRNA expression levels of each hub gene across the combined cohorts of the
hub cancers and found that higher mRNA expression levels of RAB31, IRAK3, SEC16B,
and LIN9 predicted shorter survival durations of the hub cancer cohorts. However, our
results predicted that the mRNA expression levels of SEC16B and TNPO2 had no survival
significance to the cohorts (Figure S2).
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3.3. Gene–Gene and Protein–Proteins Interactions, and Functional Enrichment of the Hub Genes

To predict the biological roles of the identified DEGs, we conducted GO and KEGG
pathway enrichment analyses. In terms of the KEGG pathways, the up-regulated genes
were enriched in cellular senescence and neurotrophin signaling pathways (Figure 4A).
These DEGs were, however, significantly enriched in multiple biological processes related
to cellular protein trafficking, regulation of cellular immune responses, and immune system
evasion (Figure 4B and Table S1). Our KEGG pathway enrichment analysis predicted that
the down-regulated genes mainly participated in longevity-associated signaling pathways,
including autophagy, AMPK, and insulin signaling pathways, while the enriched biological
functions of the downregulated DEGs were autophagy, exocrine system development, and
protein ubiquitination. Analysis of gene–gene interaction suggested that these six gene sets
form a gene co-expression network interaction with known oncogenes including TRIM41,
RHOQ, ZNF746, SBSPON, TRIR, AFMID, APOB, CAPN14, HSPB9, AURKB, PLPPR3, CDR1,
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ZNF683, SLC43A3, WRN, PSD, CPAMD8, BCL6, and FAM24OC (Figure 4C), while the
PPI network of up-regulated DEGs consists of 66 nodes and 284 edges with a mean node
degree of 8.60 (Figure 4D). Our further analysis of gene and pathway interaction suggested
a high probability of inhibition of DNA damage response and apoptosis while activating
RAS/MAPK, RTK, EMT, and PI3K/AKT signaling by the hub genes (Figure S3).
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Figure 4. Enrichment and interaction analysis of the DEGs. (A) Bubble plot of KEGG pathway
enrichment analysis of DEGs. (B) Bubble plot of GO biological enrichment analysis of DEGs. GO
and pathways enrichment is ranked by their p-value. KEGG, Kyoto Encyclopedia of Genes and
Genomes. (C) Cycle plot of the DEGs’ (C) gene–gene and (D) protein–protein interaction network
(PPI). Node sizes are based on the degree of connectivity of the nodes. (E) Immunofluorescence
stain of the subcellular distribution of the hub genes within the nucleus and ER of cancer cells. Gene
localizations were detected based on immunofluorescence microscopy of HPA database using the
following antibodies: IRAK3 (#HPA043097), OBSCN (#HPA021186), LIN9 (#HPA030241), TNPO2
(#HPA071498), SEC16B (#HPA054292).

To further characterize the hub genes, we acquired the experimental evidence about
the sub-localization of RAB31, IRAK3, OBSCN, LIN9, TNPO2, and SEC16B in human cell
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lines via the Human Protein Atlas database. Our results suggested that IRAK3 and OBSCN
are localized to the vesicle and plasma membrane, respectively, SEC16B is localized to ER
and plasma membrane, and LIN9 and TNPO2 are localized to the nucleoplasm (Figure 4E).

3.4. Distribution and Effect of Genetic and Epigenetic Alteration of the Hub Genes in the
Hub Cancers

Our analysis of the frequencies of genetic alterations of the hub genes from the TCGA
cancer cohorts suggested that the genetic alterations of the hub genes occur at frequencies
of 30.77%, 23.27%, 21.41%, 20.88%, 20.57%, and 8.5% in stomach, lung, liver, colorectal,
breast, and prostate cancer cohorts, respectively (Figure 5A). Specifically, single nucleotide
variation (SNV) of OBSCN is the most frequently predicted gene alteration, while SNV
of SEC16B, IRAK3, TNPO2, LIN9, and RAB31 constituted 9%, 5%, 5%, 4%, and 2% of
genetic alterations in the TCGA cohort of the hub cancers (Figure 5B–D). In addition, our
results also suggested that the missense mutation is the most frequent effective mutation
of the hub genes, having the occurrence counts of >70%, while other effective mutations
including the nonsense, frame_shift_ins, splice_site, frame_shift_del, in_frame_del, and
in_frame_ins constituted a smaller proportion of the SNV of the gene hub in the TCGA
samples of the hub cancers (Figure 4D, Table S1). The majority of the mutations were
predicted to be C > T and T > C transitioned, and C > G and C > A transversion (Figure 5E).
However, our survival analysis indicated that SNV of TNPO2 and IRAK3 are associated
with a worse prognosis of LUAD and BRCA cohorts. OBSCN predicted a poor prognosis of
LIHC and PRAD while LIN is associated with poor survival of BRCA cohorts (Figure 5F).
Our correlation analysis also suggested that the copy number alterations of the hub genes
occur most frequently in BRCA, LIHC, and LUAD, while the least CNA occurs in PRAD.
These CNA were mostly heterozygous amplification and heterozygous deletion. Our
results predicted distinct types of CNA of the hub genes; OBSCN, LIN9, and SEC16B
were predicted to exhibit amplification (heterozygous and homozygous) type of CNA
while RAB31, TNPO2, and IRAK3 were predicted to exhibit heterozygous deletion and
amplification types of CNA (Figure 5G). Despite the low frequencies of CNV of the hub
genes in PRAD, survival analysis predicted a shorter survival duration for those cohorts
having CNV of OBSCN and LIN9 (Figure 5H). CNA of RAB31 and SEC16B predicted poor
prognosis of BRCA and LICH, respectively. With the exception of SEC16B in BRCA, the
methylation levels of the six hub genes were in negative correlation (all cor < 0 and all
p < 0.05) with the mRNA expression levels in the six cancer types (Figure 5I). Surprisingly,
only the methylation of SEC116B in BRCA predicted a significant (p < 0.05) poor prognosis
of the cohorts (Figure 5J,K).
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distribution of genetic alteration frequency of the hub gene set across the six cancer types. (B) The waterfall plot showing
the mutation distribution of the hub genes in the hub cancers. (C) Bar plot showing the percentage mutation frequency of
each of the genes across the six cancer types. (D) The summary plot of the count and type of variants in the sample and gene
levels. Plot 1 (Variant Classification) shows the count of each type of effective mutation. Plot 2 (SNV class) shows the count
of each SNV class of the hub gene set in the six cancer types. Plot 3 (top mutated genes per sample) shows the top mutated
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of the hub gene set in the hub cancers. (F) The bubble plot showing the patient survival differences between the mutant and
wild type of the six gene hub in the six cancer types. (G) A pie plot showing the proportion of different types of CNV of
each of the genes in each cancer. (H) Bubble plot of the survival difference between each gene CNV (amplification, deletion,
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The black outline border indicates Log-rank p < 0.05.

3.5. The Hub Genes Expressions Are Associated with the Gene Expression Profiles Suggestive of
Tumor Immune Evasion

We assessed the correlation between the expression levels of the hub genes and the
gene expression profiles suggestive of B cell, CD8+ T Cell, CD4+ T Cell, macrophage,
neutrophil, and dendritic cell infiltrations across the hub cancers. We found that in all
the six cancer types analyzed, the expression levels of RAB31 and IRAK3 were positively
correlated (all p-value < 0.05) with the gene expression profiles suggestive of infiltrations
of all immune cell types analyzed (except B cells) (Figure 6A). The degree of correction
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between the expression level of RAB31 and gene expression profiles suggestive of immune
infiltration were weak to strong (r = 0.128–0.452) in breast and lung cancers, and strong
to very strong (r = 0.38–0.70) in colorectal, liver, stomach, and prostate cancers. IRAK3
correlated strongly with the gene expression profile suggestive of the six immune cell
infiltrations in all the cancer types, while a strong correlation between the expression of
OBSCN, LIN9, TNPO2, and SEC16B and the levels of gene expression suggestive of immune
infiltration was observed for prostate cancer. LIN9 and TNPO2 expressions correlated
strongly with the gene expression profiles suggestive of immune infiltrations in LICH,
while no significant association was predicted between the expressions of other genes and
the levels of gene expression suggestive of immune infiltration in LICH cohorts (Figure 6A,
Table S2). In all the six cancers, the expression levels of the hub genes were strongly
correlated with gene expression profiles suggestive of macrophage infiltration, while a
lesser or negative correlation with the levels of the gene expression profiles suggestive of
B-cell infiltrations was recorded.
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Figure 6. The hub genes expression correlate with the gene expression profiles suggestive of tumor immune evasion.
Heat map showing the correlation between the expression levels of the six hub genes with the levels of gene expression
suggestive of (A) six immune cells (B cell, CD8+ T Cell, CD4+ T Cell, macrophage, neutrophil and dendritic) infiltration,
and (B) four immunosuppressive cell types, myeloid-derived suppressor cell (MDSCs), cancer-associated fibroblasts (CAF),
tumor-associated macrophages (M2-TAM), and regulatory T cell (Treg) infiltration across the hub cancers. (C) Heat map
showing the correlation between the expression levels of the six hub genes with the level of active cytotoxic lymphocyte and
dysfunctional T cell phenotypes of the six hub cancer cohorts. (D) Summary heat map of the association between the gene
expression levels and T cell exclusion phenotypes using data from 3 immunosuppressive cells. Z-score (T cell exclusion
score); The interaction coefficient “(d)” of the gene divided by its standard error. Condition; T cell exclusion signature.
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In addition, we assessed the correlation between the expression levels of the hub
genes and the gene expression profiles suggestive of immunosuppressive cells (MDSCs,
CAF, M2-TAM, and Treg) infiltrations. Surprisingly, we observed a strong to very strong
correlation between the expression levels of RAB31 and IRAK3, and the gene expression
profiles suggestive of Treg infiltration, while a very strong to excellent correlation was
observed with the levels of the gene expression profiles suggestive of CAF infiltrations in
the hub cancers. The expression levels of OBSCN, LIN9, TNPO2, and SEC16B correlates
positively with the gene expression profiles suggestive of Treg infiltration. TNP02 and
OBSCN expressions were weakly correlated, while LIN9 expression correlates negatively
with the gene expression profiles suggestive of CAF infiltration in the hub cancers. SEC16B
expression was weakly correlated with the gene expression profiles suggestive of CAF
infiltration of BRCA and PRAD, and inversely correlated with the gene expression profiles
suggestive of CAF infiltration in COAD and STAD. In sharp contrast with the correlation
between the expression levels of the hub genes and the gene expression profiles suggestive
of M1 macrophages infiltration, we observed that the expressions of the hub genes were
inversely correlated with the gene expression profiles suggestive of M2-TAM infiltrations
in the six cancer types. Similarly, the expression levels of RAB31, IRAK3, and SEC16B
were inversely correlated, while TNPO2 and LIN9 were positively correlated with gene
expression profiles suggestive of MDSCs infiltration in the six cancer types (Figure 6B,
Table S3).

In order to summarize the correlation between the hub gene expression level and the
gene expression profiles suggestive of the immune/immunosuppressive cell infiltrations,
we queried the associations between the expression levels of these hub genes and the gene
expression profile suggestive of CTL, dysfunctional T cell phenotypes, and T cell exclusion
in the hub cancers. Interestingly, our results suggested that the expression levels of the
hub genes were inversely correlated with the levels of gene expression suggestive of CTL
infiltration in the six cancers (Figure 6C).

The high expression levels of RAB31, IRAK3, and TNPO2 were strongly correlated with
gene expression profiles suggestive of dysfunctional T cell phenotypes in the six cancers.
High expression levels of OBSCN correlated with gene expression profiles suggestive of
dysfunctional T cells only in lung and breast cancers, and LIN9 only in colorectal and
lung cancers, while the expression of SEC16B correlates with gene expression profiles
suggestive of dysfunctional T cells in breast, lung, and colorectal cancers (Figure 6C).
Furthermore, our analysis suggested that the expression of RAB31 could be associated with
the gene expression profiles suggestive of T cell exclusion phenotypes via cancer-associated
fibroblast while the expression levels of TNPO2 and LIN9 could be associated with the
gene expression profiles suggestive of T cell exclusion phenotypes via MDSC (Figure 6D).

3.6. The Hub Genes Expressions Predicted Chemo- and Immune Checkpoint Blockade
Therapies Resistance

The results of the present study suggested a significant correlation between the mRNA
expression levels of the hub genes and IC50 values of 70 small molecules. Interestingly, high
mRNA expression levels of RAB31 and SEC16B predicted cancer cell lines resistant to 62 and
17 small molecule anticancer drugs, respectively. The mRNA expression levels of OBSCN
and IRAK3 were associated with resistance to vemurafenib, while the IC50 concentrations of
other drugs correlate negatively with the expression levels of the hub genes in the cancer cell
lines (Figure 7A). In addition, we link the expression levels of the hub genes and response
to anti-cancer therapy using transcriptome-level data of the cancer patients. Interestingly,
our results suggested that IRAK3, RAB31, LIN9, and OBSCN has strong prognostic power
with estimated AUC values of 0.695, 0.644, 0.689, and 0.79, respectively. The expression
level of TNPO2 predicted week prognostic power for clinical utility (AUC = 0.546) while
the expression levels of SEC16B predicted no significant association with chemotherapy
sensitivity of the hub cancers (Figure 7B). Finally, we access the gene prioritization of hub
genes in order to predict a generalized role of each gene’s associations with ICB response
outcome and phenotypes in genetic screens (CRISPR screens). Our results suggested that
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high gene expression levels of the hub genes are associated with resistance to worse patient
outcomes to PD1, CTL4A, and PDL1 immunotherapies in the immune checkpoint blockage
datasets (Figure 7C, upper panel). The prioritization of the hub genes in the gene expression
profiles suggestive of tumor immune evasion and immunotherapy response occurs in the
order of RAB31 > TNPO2 > OBSCN > IRAK3 > LIN9 > SEC16B (Figure 7C).
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Figure 7. The cancer hub genes are associated with poor response to chemotherapy and immune checkpoint blockage
therapy outcome. (A) Bubble plot of the correlation between mRNA expression levels of the hub genes and CTRP drug
sensitivity. The color from blue to red represents the correlation between mRNA expression and the IC50 value of the small
molecule drugs. The positive correlation means that the gene’s high expression is resistant to the drug, and vice versa. The
bubble size positively correlates with the FDR significance. The black outline border indicates FDR < 0.05. (B) The ROC
plotter of the association between the gene expression and sensitivity to chemotherapy in the hub cancer. (C) Heat map
depicting the association between the hub genes with lymphocyte-mediated tumor killing in CRISPR screens and outcome
in ICB sub cohort.

3.7. The Cancer Hub Genes Are Potentia Druggable Targets of Ovatodiolide

We analyzed the potential druggability of the hub genes by ovatodiolide, an anti-
cancer phytochemical identified by our group previously [17,19]. Hence, we performed
a molecular docking simulation for ovatodiolide and the cancer hub genes. Our results
suggested that ovatodiolide has high possibilities of interacting with the crystal structure of
the hub genes RAB31 (PDB:2fg5), IRAK3 (PDB:6ruu), OBSCN (PDB:2e01), LIN9 (PDB:6c48),
TNPO2 (PDB:2z5j), and SEC16B (PDB:3mzk) with estimated binding affinities of −6.5,
−8.4, −6.2, −6.5, −8.1, and −8.5 Kcal/mol, respectively. Our analysis of the interactions
between the hub genes (receptors) and the ligand (ovatodiolide) suggested that ovatodi-
olide interacts with the hub genes by several hydrogen bonding and alky interactions. The
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receptors and ligand complexes were predicted to be further stabilized by various Vander
wall forces around the ovatodiolide backbone with the respective amino acid residue of the
receptors. Several hydrophobic contacts were predictively observed between the hub genes
and ovatodiolide. The predicted interactions and binding affinities suggested that IRAK3,
SEC168, and TNPO2 were likely the most favored receptors for ovatodiolide (Figure 8,
Table 3).
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Table 3. Docking profile of ovatodiolide with the cancer hub genes.

Cancer Hub Genes

Interactions IRAK3 LIN9 OBSCN RAB31 SEC16B TNPO2

∆G =
(Kcal/mol)

−8.4 −6.5 −6.2 −6.5 −8.5 −8.1

Conventional
H-bond

SER295
(2.92 А)

GLN401
(2.21 А)

GLN88
(2.50 А)
ALA12
(3.77 А)

GLY15
(3.57 А)

ALA156
(2.33 А)
GLN106
(3.34 А)

π-alkyl TYR340
ALA297

ILE396
ALA386
PHE400
LYS390
TYR404

LEU90 ILE34
PHE30

LEU264
PRO214
PRO155
PRO109

ALA380
ARG376
LEU419
LYS377
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Table 3. Cont.

Cancer Hub Genes

Interactions IRAK3 LIN9 OBSCN RAB31 SEC16B TNPO2

Van der waal
forces

ASN298
ASP311
SER293
ILE294
LEU338
TRP339
HIS337
VAL373

ALA405
VAL408

ALA17
PRO16
GLN15
PHE11
VAL9
LYS13

LYS119
GLY17
HIS32
ASP31

TRP212
ALA108
TRP107
TRP153

ILE457
ARG495
TRP460
ARG464
ASP384
ALA423
ALA381

Hydrophobic
Interaction (А)

ALA297 (3.68)
HIS337 (3.71)
TYR340 (3.80)

ILE396 (3.77)
GLN401 (3.95)
TYR404 (3.75)

LEU90A
(3.70)

PHE30
(3.80)

PRO109 (3.70)
PRO155 (3.60)

LEU419 (3.57)
ALA423 (3.62)
TRP460 (3.58)

4. Discussion

In the current study, six up-regulated DEGs were universally identified via integrated
analysis of datasets of the six hub cancers. The identification of these DEGs in these
hub cancers is suggestive of their concrete contribution in tumor-driving events and
potential association with tumor progression and metastasis. These hub genes are likely to
hold significance in the genesis of the hub cancers and might be prioritized for common
biomarker detection among different cancers. The KEGG enrichment analysis suggests
that the DEGs aid in cellular senescence and neurotrophin signaling pathways. The DEGs
were, however, significantly enriched in multiple biological processes related to cellular
protein trafficking, regulation of cellular immune responses, and immune system evasion,
which are critical parameters involved in the tumor progression, metastatic progression,
and treatment failure, and a major cause of patient death. Similarly, our analysis of
gene and pathway interaction suggests a high probability of inhibition of DNA damage
response and apoptosis while activating RAS/MAPK, RTK, EMT, and PI3K/AKT by the
hub genes. RAS/MAPK, RTK, EMT, and PI3K/AKT signaling pathways are considered
master regulators of normal physiological processes and their hyper-activation has been
significantly correlated with growth, proliferation, metastasis, and drug resistance across
various human cancers [34,38]. Furthermore, our enrichment analysis suggested that the
down-regulated DEGs mainly participated in longevity-associated signaling pathways,
such as autophagy, AMPK, and insulin signaling pathways. Thus, both GO and pathway
enrichments suggest the involvement of the DEGs in immune invasion and migratory
events of cancer development and the shorter lifespan of the cohorts. Subsequently,
the six up-regulated DEGs were explored for tumor stage and subtypes expressions,
and prognostic analysis, using the transcriptome data from TCGA, found that the DEGs
correlated with differential expression in the molecular subtypes of the breast, lung, and
stomach cancers and were significantly associated with worse overall survival of the liver,
breast, lung, colorectal, and stomach cancers. Collectively, these findings suggest the
significance of the hub genes as a universal biomarker signature for the six major cancer
types. More importantly, our results suggest that these hub genes could serve as both early
diagnostic and prognostic indicators for the six major cancer types.

The tumor microenvironment consists of tumor cells, stromal cells, and the infiltrating
immune cells [39]. Immunotherapy has revolutionized the treatment of cancers, but the
mechanisms that regulate immunity in the TME are complex and require more investi-
gation. The connections among these cancer hub genes and their roles within the TME,
therapeutic responses, and patient survival were predicted in this study. Our results sug-
gest that the expression levels of RAB31, IRAK3, OBSCN, LIN9, TNPO2, and SEC16B were
positively associated with the levels of the gene expression suggestive of B cell, CD8+ T
Cell, CD4+ T Cell, macrophage, neutrophil, and dendritic cell infiltrations. Consistently,
the gene expression profiles suggestive of immune infiltration appeared to be a predictor
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of dysfunctional T cell phenotypes and a worse prognosis of the cohort of those cancers. In
agreement with our findings, previous studies indicated that NK (resting and activated)
cell, monocyte, resting mast cell, neutrophil, M1 and M2 TAM, activated dendritic cell,
CD4+ T cell, and CD8+ T cell infiltrations were significant predictors of disease relapse,
even after accounting for known prognostic indicators, including adjuvant therapy [40].

The functional differences between M1- and M2-polarized tumor-associated
macrophages (TAMs) play essential roles in tumorigenesis and therapeutic develop-
ment [41]. Tumors are likely to contain macrophages in any of these states. The M1
and M2 TAMs are associated with distinct immunomodulatory roles; they represent ex-
tremes of a spectrum of functional states rather than truly distinct cell types [41]. The
present study suggested a strong positive association between the expression levels of the
hub genes and the gene expression profiles suggestive of M0 macrophages and a negative
association with M2 subtypes in the six cancers. Furthermore, the hub genes expression
signatures of M2 TAMs are inversely associated with gene expression profiles suggestive
of T cell exclusion phenotypes (Figure 6D), indicating that the hub genes are unlikely to
play a role in macrophages dependent regulation of T cell exclusion phenotypes in the
hub cancers. Conversely, the gene expression profiles suggestive of dysfunctional T cell
phenotypes and high survival risk (Figure 6C) predicted in cohorts with high expression
levels of the hub genes suggest the oncogenic role of Mo macrophages in these cancers, a
conclusion supported by previous studies [40,42].

We found that the expression levels of the hub genes positively correlated with the
gene expression profiles suggestive of CAF and Treg infiltration in all the cancers. Previous
experiments have shown that tumors attract Tregs to evasion of the anti-cancer immune
response [43,44]. Our findings suggested that the six hub genes are likely to be associated
with the regulation of Treg infiltration and supported the tumor-promoting role of Tregs,
which facilitated T cell exclusion. CAFs inhibit T cell expansion by promoting the secretion
and expression of immune checkpoint molecules and consequently impede anti-tumor
immune response [45]. The strong correlation between the expression levels of RAB31,
IRAK3, and OBSCN and the gene expression profile suggestive of CAF infiltrations strongly
supported the tumor-promoting role of these genes in the hub cancers. However, the
negative association between the levels of LIN9 and SEC16B and the gene expression
profile suggestive of CAFs infiltrations of the hub cancers suggested that the hub genes are
likely to be involved in the regulation of tumor immune evasion via different mechanisms.

Genes highly expressed in tumor cells were expected to have positive associations with
tumor purity, while those highly expressed in the tumor microenvironment are in negative
associations with tumor purity [46]. Notably, RAB31, IRAK3, OBSCN, LIN9, TNPO2, and
SEC16B expressions were inversely correlated with the gene expression profiles suggestive
of tumor purity of the hub cancer. Based on these findings, we proposed that RAB31,
IRAK3, OBSCN, LIN9, TNPO2, and SEC16B are mainly expressed in the TME rather than
in the tumor cells; our results suggested that these cancer hub genes are associated with
the regulation of infiltration of immune and immunosuppressive cells from the tumor
microenvironment into the tumor tissues.

In addition, our results suggested an association between high mRNA expression
levels of RAB31 and SEC16B and the resistance of various cancer cell lines to 62 and 17
of small molecule anti-cancer drugs, respectively. Furthermore, we link the expression
levels of the hub genes and response to anti-cancer therapy using transcriptome-level data
of the cancer patients. Interestingly, the high expression levels of IRAK3, RAB31, LIN9,
and OBSCN predicted resistance of the cohort to chemotherapy. Moreover, these high
expression levels of the hub genes also predicted worse patient outcomes to PD1, CTL4A,
and PDL1 immunotherapies in the immune checkpoint blockage datasets.

Molecular docking is valuable in silico tool for modelling the possible interactions
between a drug candidate and a target molecule [47], allowing for the depiction of the
behavior of the drug candidate at the binding cavity of the receptor and elucidating the
possible biological processes regulated by the drug candidate [48,49]. Interestingly, our
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molecular docking study suggested that the ovatodiolide docked well into the binding
cavity of RAB31, IRAK3, OBSCN, LIN9, TNPO2, and SEC16B with estimated binding
affinities ranging from 6.2–8.5 Kcal/mol. Non-covalent interactions such as hydrogen
bonding, hydrophobic and ionic interactions, and Van der Waals forces play crucial roles in
stabilizing the interaction between the drug candidate and protein targets [50]. Our docking
analysis suggested that the interactions of ovatodiolide with the hub genes predominantly
involved hydrogen bonds, Van der Waals forces, alkyl interaction, and various hydrophobic
contacts (Figure 8, Table 3), having higher estimated binding affinities for the binding
pockets of RAK3, SEC168, and TNPO2 than it does for other genes.

The predicted Van der Waals forces around the ovatodiolide backbone with the respec-
tive amino acid of the receptors would likely create a strong cohesive environment, which
could further stabilize the complexes [51]. Altogether, these molecular docking suggested
that ovatodiolide has the molecular properties to interact with the binding site of RAB31,
IRAK3, OBSCN, LIN9, TNPO2, and SEC16B. However, the higher numbers of interactions
and binding affinities predicted between the ovatodiolide and RAK3, SEC168, and TNPO2
suggested that the ovatodiolide would likely have higher druggable potentials against
these genes than it does for OBSCN, LIN9, and IRAK3. Further in vitro and in vivo studies
are ongoing in order to validate our in silico findings and to fully evaluate the therapeutic
efficacy of this compound against the hub genes and cancers.

5. Conclusions

Collectively, our study suggested that the cancer hub genes, namely, RAB31, IRAK3,
OBSCN, LIN9, TNPO2, and SEC16B, are crucial biomarkers of the immuno-oncology context
of the tumor microenvironment, tumor staging, prognosis, and therapy response in liver,
lung, stomach prostate, and colorectal cancer. Our results suggested that the cancer hub
genes were associated with the suppressive nature of the TME and the poor prognosis of
the patients. This cancer hub gene signature may serve as a valuable theranostic signature
in the clinical setting upon further validation. On the translational forefront, our findings
suggested that ovatodiolide could be an immunotherapeutic agent for the druggability of
these hub genes.
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