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Abstract Since their introduction in 1996, animal models

of multiple system atrophy (MSA) have generated impor-

tant insights into pathogenesis and interventional therapies.

Toxin and genetic approaches have been used alone or in

combination to replicate progressive motor and non-motor

symptoms reflecting human neuropathology. Here, we

review these developments and discuss the advantages and

limitations of the MSA animal models, as well as their

application in preclinical target validation.

Keywords a-Synuclein � Parkinsonism � Cardiovascular
failure � Urinary dysfunction � Olivopontocerebellar
atrophy

Introduction

Animal models allow researchers to study disease patho-

genesis and progression in vivo. They offer the unique

opportunity to screen therapeutic approaches in living

organisms and therefore justify their suitability for clinical

trial initiation. Certainly, researchers are conscious about

the limitations of animal models of human disease in terms

of their relevance to the human pathology and to the dis-

ease duration and progression, which may be difficult to

replicate in a short-living rodent. However, it has also

become clear that living models provide a window to

pathogenic mechanisms as well as identification and

development of novel biomarker and therapeutic targets for

multiple system atrophy (MSA).

To our knowledge, there are no spontaneously occurring

animal species featuring salient hallmarks of MSA. During

the last two decades, experimental MSA research has

therefore focused on the replication of human neuropa-

thology in mice, rats, or monkeys. MSA neuropathology is

characterized by: (1) selective striatonigral degeneration

(SND) and/or olivopontocerebellar atrophy (OPCA),

accompanied by neurodegeneration in autonomic centers;

(2) the hallmark of the disease—widespread a-synuclein
(aSyn) positive oligodendroglial cytoplasmic inclusions

(GCIs) along with less common neuronal cytoplasmic

(NCIs) and neuronal or glial nuclear inclusions (NNIs,

GNIs); and, finally, (3) astrogliosis and microgliosis which

accompany the neurodegeneration and the a-synucleinop-
athy in MSA brains. Importantly, the applicability of MSA

models for preclinical target validation is strengthened by

functional outcome measures of progression, which would

replicate the clinical features of the disease: (1) motor

syndromes related to SND (parkinsonism) and OPCA

(ataxia), as well as (2) non-motor presentation, including

cardiovascular, urogenital, respiratory, gastrointestinal,

sudomotor, and sleep disorders [1–3].

The approaches undertaken to achieve the goal of cre-

ating a relevant MSA animal model range from neurotoxic

to transgenic techniques.

The neurotoxin approach

Intracerebral neurotoxin application

Classical modeling of neurodegenerative diseases like

Parkinson’s disease (PD) and Huntington’s disease (HD)

has been based on the use of selective nigral and striatal

toxins to trigger the specific nigral and striatal pathology of
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these disorders. As MSA presents with combined loss of

both dopaminergic substantia nigra pars compacta (SNc)

neurons and GABAergic striatal medium spiny neurons,

David Marsden generated the concept of combining nigral

and striatal toxins to model the parkinsonian variant of

MSA, and Gregor Wenning further developed this

approach [4]. In the initial study, 6-hydroxydopamine (6-

OHDA) was applied unilaterally in the medial forebrain

bundle to trigger nigral dopaminergic loss, followed by

quinolinic acid (QA) injection in the striatum. The com-

bination of both toxins completes the pathological picture

of SND as follows: 6-OHDA is a dopamine derivative that

enters catecholaminergic terminals through dopamine and

noradrenaline reuptake transporters, and generates reactive

oxygen species, finally leading to dopaminergic cell death

[5]. QA is a NMDA-receptor agonist inducing excitotoxic

cell death in the striatum [6]. Further analysis of the

interaction between nigral and striatal neuronal loss was

assessed by exchanging the sequence of stereotaxic lesions:

(1) 6-OHDA injections into the medial forebrain bundle

followed by intrastriatal QA injections 8 weeks later or, (2)

QA lesions with subsequent 6-OHDA injections. Histo-

logical analysis showed that the group with primary QA

lesions suffered from more widespread striatal pathology,

while the loss of tyrosine hydroxylase (TH)-immunoreac-

tive neurons in SNC was comparable in the two different

approaches. Microglial and astroglial reactivity accompa-

nied the neurodegeneration. The neuropathology in the

unilateral double lesion rat model correlated with func-

tional readouts, including the stepping and the paw-

reaching test (indicators of spontaneous and skilful paw

use, respectively). The classical rotometer test measures

the imbalance between the left and right striatonigral

dopaminergic system after exposure to apomorphine (a

dopamine receptor agonist) or amphetamine (a dopamine

releasing agent). While ipsiversive rotations under

amphetamine challenge were observed in unilateral SND

rats, the apomorphine-induced contraversive rotations were

abolished [4, 7]. It has been suggested that the protective

effect of the primary lesion towards the effects of the

secondary neurotoxin likely involves the release of neu-

rotrophic factors, e.g., brain-derived neurotrophic factor or

glial-cell derived neurotrophic factor induced by the first

lesion and having protective effects in the striatonigral

pathways to further damage [7–9]. Further, it was shown

that after inducing 6-OHDA lesion, a clear preference of

wall contacts towards the ipsilateral paw corresponding to

the unaffected side of the striatum was observed in the

cylinder test, and a dopaminergic response reversing the

asymmetry was present at this stage. The additional QA

striatal lesion reinforced preference of the non-lesioned

side in the cylinder test and abolished dopaminergic

responsiveness [10]. Grafting of striatal embryonic tissue

in the lesioned striatum was shown to partly restore the

dopamine response with regard to rotation behavior [4].

This model has been acknowledged as an important tool to

study degeneration of the dopaminergic nigrostriatal and

GABAergic striatopallidal pathways; however, the almost

complete nigral and striatal degeneration made it difficult

to reflect the human pathology. A model of early stage

SND was proposed by inducing a partial 6-OHDA lesion

through targeting the dorsolateral striatum followed by QA

[11] or through simultaneous application of 6-OHDA and

QA intrastriatally [8]. The lateral striatum was considered

the target region for the stereotaxic injections in these

partial lesion models [12]. Due to the simultaneous injec-

tions approach, the characteristic 6-OHDA behavior of

ipsiversive amphetamine-induced and contraversive apo-

morphine-induced rotation patterns was reduced compared

to the 6-OHDA only control groups. 3-Nitropropionic acid

(3-NP), a mitochondrial complex II inhibitor, had been

initially used to reproduce the human pathology of HD, but

the degeneration of intrinsic striatal neurons, as well as the

dopaminergic loss in the nigrostriatal system, suggested

that it could also be employed as a single-toxin approach to

preclinically model MSA [13, 14]. 3-NP-lesioned animals

were characterized by impaired paw reaching, ipsiversive

amphetamine-induced rotations, as well as ipsiversive

apomorphine-induced rotations. The difference from the

6-OHDA nigral lesion model could be explained by the

accompanying striatal lesion and suggested that the partial

reduction of dopaminergic nigral neurons after 3-NP lesion

was not sufficient to alter the rotation pattern.

Systemic neurotoxin application

Next, systemic application of neurotoxins was introduced

to model the pathology of MSA. In mice, intraperitoneal

administration of 3-NP induced a distinct motor syndrome

associated with dose-dependent neurodegeneration in the

lateral striatum and a moderate (30–40 %) loss of dopa-

minergic nigral neurons, offering a model of mild SND

[15]. The sequential, systemic application of 1-methyl-4-

phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 3-NP was

approached alternatively to replicate SND in mice [16].

Two different systemic approaches were tested: (a) a

primary MPTP intoxication, followed by 3-NP compared

to (b) primary 3-NP-induced excitotoxicity followed by

secondary administration of MPTP. In both paradigms,

the neurotoxins were injected intraperitoneally. Primary

MPTP administration reduced the striatal vulnerability to

3-NP, while prior administration of 3-NP protected nigral

dopaminergic neurons from MPTP-induced oxidative

stress. In a following step towards identifying a better

approach to model MSA, simultaneous systemic injec-

tions of the two neurotoxins MPTP and 3-NP were
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examined [17]. Complex motor tests including rotarod,

beam walking, pole test, or open-field activity revealed a

significant motor impairment and gait pattern changes

associated with striatal dysfunction. The histopathology of

this model comprised bilateral striatal lesions with

increased neuronal loss in the medial part of the striatum,

significant reduction of striatal volume, and significant

loss of dopaminergic neurons in the mid and caudal levels

of the SNc. However, spontaneous improvement was

reported, with full recovery from motor impairment being

observed 3 weeks after intoxication, which limits the use

of this type of model.

The systemic intoxication approach to model SND was

also reported in nonhuman primates [18]. Systemic

injection of MPTP followed by subsequent 3-NP chal-

lenge was performed in monkeys. While the intravenous

administration of MPTP induced levodopa-responsive

parkinsonism featuring akinesia, bilateral rigidity, and

flexed posture, as well as tremor episodes, the subsequent

chronic intoxication with 3-NP induced a progressive

deterioration of the motor behavior associated with dis-

appearing levodopa response. The model was neuropa-

thologically characterized by severe degeneration of the

SNc accompanied by dorsolateral putamen degeneration

and neuronal loss in the head of the caudate nucleus. A

follow-up study suggested that dystonia induced by 3-NP

in MPTP-treated monkeys predicted the loss of dopami-

nergic response [19]. The ethical and methodological

limitations of the model restrict its broad application in

preclinical MSA research.

In summary, MSA modeling via neurotoxins has proven

over the years to provide a good mechanistic approach to

study the interactions of striatal and nigral projections

under the conditions of neurodegeneration. The neurotoxin

models have been important to identify striatal grafting as a

possible way to restore levodopa responsiveness in MSA-P.

However, these models are insufficient to address scientific

questions related to the role of aSyn misfolding and

accumulation in MSA. To aid this, transgenic models were

developed.

Transgenic approach

Overexpression of aSyn in oligodendrocytes

Based on the constitutive ectopic overexpression of aSyn
in oligodendrocytes, a new experimental approach to

mimic human MSA was developed [20–22]. Three oligo-

dendroglia-specific promotors were used to induce over-

expression of human wild type aSyn in transgenic mice,

and the outcomes confirmed that aSyn accumulation in

oligodendrocytes might trigger neurodegeneration.

Dependent on the specific promotor and on the amount of

aSyn overexpression, certain differences among the mod-

els were reported.

The CNP-aSyn model

The group of Lee and Trojanowski [21] proposed the

application of the 20,30-cyclic nucleotide 30-phosphodies-
terase (CNP) promoter to induce aSyn overexpression in

oligodendrocytes. The mouse model was characterized by

aSyn aggregates in oligodendrocytes, as well as extensive

degeneration affecting the spinal cord motor neurons and

the pyramidal tracts, accompanied by oligodendroglial loss

and demyelination in the presence of severe gliosis in the

brain and spinal cord. The motor analysis showed reduced

performances in the rotarod examination, starting at an

average age of 7–9 months, however, the pathological

substrate of the motor deterioration seemed to be different

from the typical MSA pattern of SND and OPCA. How-

ever, the CNP-aSyn model was valuable to address protein

interactions, suggesting that the presence of oligoden-

droglial human aSyn may lead to the accumulation of

endogenous mouse aSyn and trigger axonal degeneration.

Furthermore, beta-III tubulin was identified as an important

interaction partner of aSyn, which may participate in the

neuronal aggregate formation in MSA [23, 24]. Recent

observations in the CNP-aSyn transgenic mouse suggested

that the neuronal, pre-synaptic accumulation of aSyn may

induce synaptic dysfunction of GABAergic interneurons

[25]. These findings may prove to be of relevance for the

development of therapeutic strategies interfering with

MSA disease mechanisms.

The MBP-aSyn model

The San Diego group around Shults and Masliah [22]

approached genetic modeling of MSA through overex-

pression of human aSyn in the mouse brain under the

myelin basic protein (MBP) promoter. Through develop-

ing several transgenic lines with different degrees of

human aSyn overexpression in the mouse oligodendro-

cytes, they were the first to show that there is a clear cut

correlation between the oligodendroglial aSyn dose the

severity of the phenotype. The highest expresser line 29

of the MBP-aSyn mice showed shortened survival. The

animals of line 29 died prematurely by 6 months of age,

and neuropathological examination revealed severe

widespread axonal and dendritic degeneration, astroglio-

sis, and demyelination. In comparison, the moderate

expresser line 1 of the MBP-aSyn mice showed preserved

survival. Evidence of motor disability in the pole test

became overt in this line after 6 months of age. The

neuropathology was characterized by a milder
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neurodegeneration profile featuring mild astrogliosis and

demyelination in the white matter tracts, accompanied by

disrupted axonal integrity in the striatum, brainstem, and

cerebellum, and demonstrated by neurofilament and

microtubule-associated protein 2 (MAP2) immunostain-

ing. Although about 45 % loss of dopaminergic terminals

was identified in the striatum, the MBP-aSyn mouse did

not show neuronal loss in SNc even in the high expresser

line 29. Ultrastructural analysis provided evidence of

mitochondrial dysfunction linked to fibrillar aSyn aggre-

gation in the oligodendrocytes. Exogenous oxidative stress

induced by 3NP in the MBP-aSyn mouse altered the

levels of nitrated and oxidized aSyn, accompanied by

aggravation of the neurodegeneration and the motor phe-

notype of the transgenic animals [26]. Later on, neuro-

trophic factors were assessed in models with human aSyn
overexpression. While PD models with neuronal aSyn
overexpression showed a similar decrease of brain derived

neurotrophic factor (BDNF) and insulin-like growth factor

1 (IGF-1) expression like the MSA mouse, it was dem-

onstrated that the MBP-aSyn mouse had a specific decline

of glial cell-line derived neurotrophic factor (GDNF)

levels, suggesting a pivotal role of disrupted trophic

support by oligodendrocytes in MSA [27]. Oligoden-

droglial accumulation of aSyn in the MBP-aSyn model

was linked to prodegenerative up-regulation of IjBa
(nuclear factor of kappa light polypeptide gene enhancer

in B-cells inhibitor, alpha) in oligodendrocytes that pre-

ceded gliosis in this model [28]. The model was further

characterized by widespread dysregulation of the micr-

oRNA profile similar to the human disease, suggesting

miR-96 up-regulation and effects on its target genes as a

possible candidate involved in the pathogenesis of MSA

[29]. Finally, examinations in the MBP-aSyn transgenic

mouse have proposed that human aSyn accumulation in

oligodendrocytes may delay oligodendroglial progenitor

maturation and impact the neurodegenerative process [30].

In summary, the MBP-aSyn model of MSA is charac-

terized by a mild motor phenotype with onset after

6 months of age associated with demyelination, astrogli-

osis, and axonal degeneration. All these neurodegenera-

tion readouts in the MBP-aSyn model are linked to

accumulation of fibrillar aSyn in oligodendrocytes that

triggers GDNF deficiency, IjBa up-regulation, miR-96

up-regulation, and delays oligodendroglial progenitor

maturation. Although the MBP-aSyn mouse cannot rep-

licate the MSA-specific and selective pattern of neurode-

generation and lacks major features of the human MSA

neuropathology like nigral neuronal loss or microglial

activation, the model has proven over the years to be a

valuable tool to identify relevant pathogenic mechanisms

and candidate targets for therapeutic development.

The PLP-aSyn model

The third transgenic mouse model with great impact in the

preclinical studies on MSA was developed by Philipp

Kahle in the group of Christian Haas in Munich, with

extensive phenotypical characterization, and further pre-

clinical application of the model followed in our lab in

Innsbruck. The transgenic overexpression of human aSyn
in oligodendrocytes was driven by the proteolipid protein

(PLP) promoter [20]. The resulting oligodendroglial a-
synucleinopathy was characterized by prominent insolu-

bility and hyperphosphorylation of aSyn similar to the one

observed in human MSA. The characterization of the PLP-

aSyn mouse functional phenotype over the years has

shown that the life span of the mice is preserved, but

provided evidence for mild motor and autonomic failure

with a slowly progressive course. Gait analysis has indi-

cated mild but stable shortening of the stride length in PLP-

aSyn mice compared to wild type animals followed after

12 months of age by changes in the pole test, the beam

walking test, grip strength and stride variability [31, 32]. In

contrast to the motor disability that seems to get pro-

nounced rather late in the individual life, autonomic fea-

tures may occur earlier. Already, at 5 months of age, PLP-

aSyn mice show reduced heart rate variability in both time

and frequency domains, indicative of changed sympath-

ovagal balance similar to the human disease [33]. Even

earlier, at 2 months of age, changes seem to be detected in

the urinary bladder function related to detrusor-sphincter

dyssynergia as indirectly suggested by the morphological

changes of the bladder wall and progress to result in

increased post-void residual volume [34]. The autonomic

dysfunction profile of the PLP-aSyn mice also comprises

respiratory dysfunction measured at 13 months of age,

further replicating the human pathology [35]. Importantly,

the MSA-like selectivity of the pathology in the PLP-aSyn
mouse has been proven further proven by a recent ‘‘nega-

tive’’ study, indicating that in spite the progressive accu-

mulation of aSyn in the olfactory bulbs up to 18 months of

age, no olfactory dysfunction was identified [36].

The neuropathological substrate of the described dys-

function profile includes progressive SND, starting with

nigral neuronal loss at about 4 months of age, followed by

striatal neuronal loss after 12 months of age; however, no

OPCA appears to be triggered by the oligodendroglial a-
synucleinopathy in the PLP-aSyn model [37, 38]. Neuronal

loss in central autonomic centers in the brain stem and the

spinal cord of the PLP-aSyn mice appears much earlier

than striatonigral pathology. Already, at 2 months of age,

neurodegeneration can be detected in the intermediolateral

columns of the spinal cord (the parasympathetic outflow),

the laterodorsal tegmental nucleus, the pedunculopontine
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tegmental nucleus, and the Onuf’s nucleus; at 5 months of

age, neuronal loss can be detected in nucleus ambiguus,

followed later on by the Barrington’s nucleus, raphe

obscurus and pallidus [33–35, 39].

Along with the selective progressive neuronal loss in the

PLP-aSyn mouse model of MSA, microglial activation

accompanies the GCI-like pathology and shows significant

progression between 2 and 4 months of age [38]. Activated

microglia was shown to interfere with the progression of

neuronal loss mediated through inducible nitric oxide

synthase (iNOS), myeloperoxidase (MPO), and toll-like

receptor 4 (TLR4) up-regulation, identifying those as both

therapeutic targets and biomarkers of disease progression

[38, 40, 41]. Intriguingly, exposure of the PLP-aSyn mice

to systemic environmental stress, e.g., oxidative stress

through 3NP-induced mitochondrial dysfunction [31] or

transient proteasomal dysfunction through exposure to

reversible proteasome inhibitor [42], was able not only to

aggravate the existing SND pathology but also to trigger

OPCA, supporting the notion that genetic predisposition

and environmental risk factors interact as significant con-

tributors to the heterogeneous and sometimes fulminant

MSA-like type of neurodegeneration.

In summary, the PLP-aSyn transgenic mouse is valuable

in terms of replicating the selective progressive MSA-like

neurodegeneration pattern, including SND and autonomic

failure (urinary, cardiovascular, and respiratory) that can be

accelerated by environmental toxins and to further trigger

OPCA. This is the only one among the transgenic MSA

models that shows microglial activation accompanying the

GCI-like pathology similar to the human disease and pro-

vides an important preclinical tool to address this player in

the pathogenesis of the disease. The difficulty working with

the PLP-aSyn mouse has been the mild motor phenotype,

which has been the major functional readout up to now.

However, the identification of the autonomic disorder in

the PLP-aSyn mouse may provide an improved functional

readout in future preclinical therapeutic screening for

MSA.

In summary, the MSA models with aSyn overexpression
in oligodendrocytes are a useful tool to study GCI-linked

downstream pathogenic mechanisms and to identify both

therapeutic targets and biomarkers of disease. One should

acknowledge, however, the limitations of this approach

including: (1) the constitutive oligodendroglial overex-

pression of aSyn, which may be not comparable to the

events in the human pathology that may involve oligo-

dendroglial uptake of aSyn from a pathological extracel-

lular surrounding; (2) possible MSA specific

oligodendrogliopathy preceding the GCI formation; and (3)

a long-lasting pathogenic process in the human MSA brain

that may not be fully reflected in the rodent CNS during a

comparatively shorter life span.

Overexpression of a1B-adrenergic receptor

A research group in molecular cardiology at the Cleveland

Clinic Lerner Research Institute claimed a more uncon-

ventional approach to model MSA. The description of a

transgenic mouse with overexpression of the a1B-adren-
ergic receptor (a1B-AR), designed to discern the patho-

physiological role of this specific receptor, provided

evidence for a neurodegenerative condition, including a

Parkinson-like levodopa-responsive motor disorder and

autonomic dysfunction [43, 44]. Intriguingly, this model

was also shown to provide aSyn aggregation in oligoden-

drocytes; however, the exact mechanisms of this patho-

logical event and their relevance to human MSA remain

poorly understood [45]. In spite of the extensive overlap

between the neuropathology of the a1B-AR transgenic

mice with MSA, atypical features such as recurrent sei-

zures have limited the relevance and, thus, the application

of this model in MSA research [46]. Finally, the a1B-AR
transgenic mouse has been claimed to provide a model of

epilepsy [47], which has shifted the focus from preclinical

MSA applications.

Application of the MSA animal models in preclinical

target development

Both toxin and transgenic models have been widely used in

preclinical studies to assess novel therapeutic approaches

for MSA (see Table 1). Several targets are of potential

interest for developing novel therapies of MSA, including

microglial activation, dysfunctional neurotrophic support,

and aSyn aggregation. Many of the substances with posi-

tive preclinical evaluation have been translated into clinical

trials; however, the clinical efforts to slow disease pro-

gression in MSA remain futile to date (Table 1). Going

back to the experimental studies, one can identify several

issues that may be linked to the translational gap between

preclinical data and clinical success. Those comprise: (1)

the limitations of the animal models to completely replicate

the human pathology as discussed above; (2) the high

heterogeneity of the clinical presentation of MSA, as well

as differences linked to population specifics, which may

make it difficult to measure effects in a limited number of

patients included in a clinical trial; (3) the different read-

outs to evaluate therapeutic efficacy may be a critical cause

of discordant results: while in preclinical studies, the

readouts are rather linked to neuropathological measures,

and in clinical trials, treatment efficacy is usually measured

by slowing of disease progression; (4) dissociation between

the high dosage used in the preclinical setting and the lower

one (usually defined by occurring side effects) in clinical

trials; and (5) dissociation between the timing of the
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therapeutic intervention, which usually precedes overt

neurodegeneration in preclinical studies, in contrast to

advanced disease stages that are characteristic of patient

cohorts in MSA trials. The latter indicates the need for

early disease biomarkers, not only to support the diagnosis

of the disease, but also to provide the possibility for earlier

initiation of therapy, as well as screening of therapeutic

effects parallel to symptom progression.

In conclusion, the animal models of MSA are an

important preclinical tool to study underlying pathogenic

mechanisms, and for biomarker and therapeutic target

development and evaluation. Although a translational gap

still exists, we have been able in recent years to learn a lot

through the two-way translational approach and identify

pitfalls that restrain the clinical success of disease modi-

fying therapies for MSA.
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