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ABSTRACT

Sequence-specific DNA detection is important in
various biomedical applications such as gene
expression profiling, disease diagnosis and treat-
ment, drug discovery and forensic analysis. Here we
report a gold nanoparticle-based method that
allows DNA detection and quantification and is
capable of single nucleotide polymorphism (SNP)
discrimination. The precise quantification of single-
stranded DNA is due to the formation of defined
nanoparticle-DNA conjugate groupings in the pre-
sence of target/linker DNA. Conjugate groupings
were characterized and quantified by gel electro-
phoresis. A linear correlation between the amount of
target DNA and conjugate groupings was found. For
SNP detection, single base mismatch discrimination
was achieved for both the end- and center-base
mismatch. The method described here may be
useful for the development of a simple and quanti-
tative DNA detection assay.

INTRODUCTION

There is a major need to develop fast, cheap and precise
detection methodologies that detect DNA samples at
extremely low concentration. This ability is critical to
basic life sciences, medical diagnosis and treatment,
pharmaceutical applications, identification of biological
weapons, as well as forensic analysis (1–3). To fulfill this
goal, the scientific community is striving to develop new
methods and assays that are highly selective and sensitive.
Optical/colormetric (4–6), fluorescent (7,8) and electro-
chemical (9–11) based methods have been reported for
detection of DNA samples. Among these new methodol-
ogies, optical detection methods, which rely on the
hybridization between target DNA and substrate modified
with radioactive, fluorescent, chemiluminescent or nano-
particle tags, are of particular interest (12–14). The use of

gold nanoparticles (nAu) as labeling tags receives most
attention in recent years, due to their unique chemical and
physical properties (15–17) that can be exploited in the
development of highly sensitive detection assays (18,19).
Although still in its infancy, the application of surface-
functionalized nAu in sequence recognition has shown
great promise in achieving high sensitivity that is
difficult to achieve by conventional methods. Mirkin and
co-workers have developed a series of nAu–based DNA
detection methods, such as scanometric and bio-barcode
assays, that reach attomolar and high zeptomolar
sensitivity (2,19,20). Such sensitivity may allow the direct
detection of genomic DNA and bypass the need of
amplification that is usually done using polymerase
chain reaction (PCR).
Besides sensitivity, quantification and selectivity are the

other two important aspects for the evaluation of DNA
biosensor devices. DNA quantification is critical for gene
expression analysis, detection of DNA mutations or
genetic defects, early stage diagnosis of critical illness
such as HIV and cancers, and forensic applications
(21–23). Furthermore, diagnosis of pathogenic and genetic
diseases requires the device to have high selectivity that
can discriminate single nucleotide mismatches (1,18).
Single nucleotide polymorphisms (SNPs) are the most
abundant form of genetic variation that occur once every
100–300 bases and there are greater than 3 million SNPs in
the human genome (24). Identification of these SNPs and
associate individual SNPs with specific diseases and
pharmacological responses are clinically important for
medical diagnostics, disease prevention and prognostics
(25,26). These needs have driven intense efforts toward the
development of new methodologies that enable quantita-
tive, selective and cost-effective detection of SNP in DNA
samples (19,27). Currently, real-time polymerase chain
reaction (RT-PCR) is one of the most frequently used
methods for DNA quantification and SNP discrimination
in life science and clinical research. However RT-PCR is a
time-consuming and labor-intense process, and its selec-
tivity is not always satisfactory even with sophisticated
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optimizations (28,29). For commonly used DNA detec-
tion systems such as DNA chips, the selectivity and
quantification are dependent on the dissociation proper-
ties of target DNA hybridized with capture strands
immobilized on the chip (27). To achieve SNP discrimina-
tion, a stringent wash step has to be performed to
remove mismatched DNA binding on the capture strands.
However, the difference in binding affinity between a
perfectly matched target DNA and one with a mis-
matched base is usually too small to achieve complete
discrimination (19).
Previously, we have shown that gold

nanoparticle–DNA (nAu–DNA) conjugates bearing defi-
nite number of short DNA (<20 bases) can be prepared by
gel electrophoresis isolation followed by restriction
endonuclease manipulation of the nAu–bound DNA
(30). Simply loading short DNA onto the nAu directly
followed by gel electrophoresis separation only yields a
smear and not individual bands, which correspond to
conjugates bearing definite number of DNA. This is
because the mobility difference between conjugates bear-
ing different number of short DNA is insignificant. Thus,
we reported to first use gel electrophoresis to separate nAu
bearing definite number of >50-base DNA strands.
Subsequently restriction endonuclease can be used to
cleave the long DNA to obtain the short DNA on nAu. In
this study, we described a novel gold-nanoparticle (nAu)-
based assay methodology that has reliable quantification
ability and SNP discrimination selectivity. In this assay,
two sets of specially designed nAu–DNA conjugates are
fabricated via the gel electrophoresis and restriction
endonuclease manipulation methods. These two sets of
conjugates with definite number (1, 2, 3. . .) of short single-
stranded DNA (ssDNA) probes are not directly comple-
mentary to each other. After mixing, these conjugates do
not recognize and group each other until a target DNA
that is complementary to both sets of conjugates is
introduced. Only conjugate groupings with defined
structure (dimer or trimer) can form due to definite
number of DNA strands on each nAu. The resulting
conjugate groupings are characterized and quantified by
agarose gel electrophoresis. The size differentiation ability
of gel electrophoresis allows strict discrimination between
different conjugate structures (monomer, dimer and
trimer) and enables precise quantification of target DNA
samples. Furthermore, a strong discrimination between
perfectly matched and single base mismatched DNA is
achieved since only the perfectly matched target DNA
allows the formation of conjugate groupings.

MATERIALS AND METHODS

Materials

Hydrogen tetrachloroaurate (III) trihydrate, trisodium
citrate dihydrate, tannic acid, dithiothreitol (DTT), NaCl,
MgCl2 and tris-borate-EDTA (TBE) buffer were pur-
chased from Sigma-Aldrich. The synthetic DNA (modified
with thiol linker at the 50 end) was purchased from
Integrated DNA Technologies (IDT). Restriction endo-
nuclease EcoRV (500 000U/ml) was obtained from

New England Biolabs. Thirty percent acrylamide/Bis solu-
tion (29:1) and ethidium bromide were obtained from Bio-
Rad Laboratories. Agarose was purchased from Cambrex.
Dialysis tubing (Float-A-lyzer, MWCO: 3500) was
obtained from Spectra/Por. Milli-Q water with resistance
>18M�/cm was used throughout the experiments.

Synthesis and characterization of nAu

nAu were synthesized by the reduction of hydrogen
tetrachloroaurate (III) trihydrate by trisodium citrate
dihydrate and tannic acid (31). In order to determine the
size and size distribution of the resulting nAu, TEM
characterization was performed on a Philips CM300 FEG
system operating at 200 kV. At least 200 particles were
sized from TEM micrographs via graphics software
‘Image-Pro Express’ (Media Cybernetics). The mean
particle diameter was 10 nm and the size distribution
was within 15% of the mean diameter.

Preparation of nAu–DNA conjugates

The sequences of DNA used in this study are shown in
Figure 1 (complete sequences are shown in Figure S1,
Supplementary Data). Two complementary single-
stranded DNA (ssDNA), one modified with a thiol
linker, was allowed to hybridize to form a double-stranded
DNA (dsDNA). Two dsDNA, Strand A0 with a 50 thiol
group and Strand revA0 with a 30 thiol group, were used to
prepare two sets of conjugates (nAu–A0 and nAu–revA0)
for conjugate grouping studies. The detailed procedure of
these conjugates preparation can be found in our previous
work (30). Briefly, 2 mM dsDNA (Strand A0 or revA0) was
mixed with nAu for 2 h followed by 5-T ssDNA for
surface passivation. Excess reagents were then removed
by repeated washing and centrifuging the samples with
0.5X TBE.

Agarose gel electrophoresis isolation and extraction of
nAu–DNA conjugates

Agarose gel electrophoresis (3% agarose at 5V/cm, 0.5X
TBE as running buffer) was carried out for 4 h to separate
the conjugates bearing from one to three dsDNA
molecules. As shown previously, discrete bands can
easily be identified because of the wine-red color of nAu
(30). Desired bands were extracted from the gel and
the conjugates were then recovered by electrophoretic
dialysis (32). After recovering from agarose gel, the
conjugates were purified by repeated washing (with
50mM tris buffer, pH 8.0) and centrifuging to ensure
complete removal of EDTA which may deactivate the
restriction endonuclease.

Enzyme manipulation of nAu–bound DNA and digestion
efficiency

The restriction endonuclease digestion of nAu–bound
DNA (Strands A0 and revA0 to Strands A and revA
respectively) was performed by incubating the conjugates
with 100 units of EcoRV at 378C in a 200 ml reaction
buffer for 20 h. After incubation, the enzyme was
deactivated by adding 50mM EDTA. The digested
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conjugates were analyzed by polyacrylamide gel electro-
phoresis to confirm the high digestion efficiency and high
yield of nAu conjugated with definite number of DNA
strands (Figure S2, Supplementary Data).

Formation and analysis of nAu–DNA conjugate groupings

Two sets of nAu, each carrying a single DNA probe
(nAu–A or nAu–revA, 1.5 pmol of each) were mixed in a
buffer containing 50mM tris pH 8.0, 100mM NaCl and
2mM MgCl2 at a 1:1 molar ratio. Target/linker DNA
molecules (matched and mismatched, Figure 1) were then
added for hybridization with Strand A and rev A on the
nAu surface in a tail-to-tail configuration (Figure 2). The
ratio between the two sets of nAu–DNA conjugates and

the target DNA (nAu–A: nAu–revA: target) varied from
1:1:0.1 to 1:1:1. The hybridization of target DNA was
carried out by first heating the sample to 708C for 2min to
ensure complete melting of the DNA strands and then the
samples were slowly cooled down to 258C at a rate
of 0.28C/min to form stable duplexes. After formation
of conjugate groupings, agarose gel electrophoresis
(3% agarose at 5V/cm, 0.5X TBE as running buffer)
was carried out at 48C to characterize and quantify the
conjugate groupings. Desired bands of conjugate group-
ings were visualized by a Syngene GeneGenius UV/white
light gel documentation system or a Bio-Rad GS-800
calibrated densitometer. The grouping percentage of nAu–
DNA conjugates was calculated by quantifying the
relative optical intensity of the gel bands in the same
lane using gel analysis software from manufacture, more
specifically, by dividing the amount of conjugate group-
ings by the total amount of conjugates in the same lane
(unbound conjugates+conjugate groupings). Each value
reported was the average of three individual tests. After
that the conjugate groupings were extracted from the gel
and recovered by electrophoretic dialysis32 for TEM
characterization.

26-base target DNA   5′-CGTTATCACTGATATCTCACTATTGC-3′
24-base target DNA   5′-GTTATCACTGATATCTCACTATTG-3′
22-base target DNA   5′-TTATCACTGATATCTCACTATT-3′
20-base target DNA   5′-TATCACTGATATCTCACTAT-3′

Mismatched and non-complementary sequences
24-base (SM 1)    5′-GTT ATC ACT GAT     ATC TCCCTA TTG-3′
24-base (SM 2)    5′-GTT ATC ACT GAT    TTC TCA CTA TTG-3′
24-base (SM 3)    5′-CTT ATC ACT GAT     ATC TCA CTA TTG-3′
24-base (DM)      5′-GTT ATC TCT GAT     ATC TCC CTA TTG-3′
24-base (NC)       5′-CAA TAG TGA CTA   TAG AGT GAT AAC-3′
26-base (SM 4)  5′-CGT TAT CAC TGA TAT CTC ATT ATT GC-3′
26-base (SM 5)  5′-CGT TAT CAC TGA AAT CTC ACT ATT GC-3′ 
26-base (SM 6)    5′-AGT TAT CAC TGA TAT CTC ACT ATT GC-3′

5-T ssDNA          5′-(Thiol)TTTTT 

Strand A′

Strand revA′ 5′-CGTCAT…… TGTCGAT ATCAGTGATAACGCTGTC(Thiol)-3′
3′-GCAGTA……ACAGCTA TAGTCACT-5′

Recognition site of EcoR V 

Strand A (18b)          5′-(Thiol)CTGTCGCAATAGTGA GAT-3′

Enzyme digestion

Enzyme digestion

Strand revA (18b) 5′-ATCAGTGATAACGCTGTC(Thiol)-3′

(80bp)

(80bp)

5′-(Thiol)CTGTCGCAATAGTGA GAT ATC CTGTGA……TACTGC-3′
                                       3′-TCACTCTA TAG GACACT……ATGACG-5′ 

                                            Recognition site of EcoR V 

Figure 1. DNA sequences used in this study. For Strands A0 and revA0, the underlined sequences are the recognition site of EcoR V and the arrows
indicate the enzyme cleavage site. For the mismatched DNA sequences, the underlined base is the mismatch. SM1/SM2/SM3/SM4/SM53/SM6 refer
to single-base mismatched DNA, DM refers to double-base mismatched DNA and NC refers to non-complementary DNA.

+
Target DNA 

nAu-revAnAu-A

Figure 2. Schematic picture of the formation of nAu–DNA conjugate
groupings.
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RESULTS AND DISCUSSION

Formation of nAu–DNAconjugate dimers using target/linker
DNA of different lengths

As reported previously, agarose gel electrophoresis was
first used to isolate conjugates (nAu–A0 and nAu–revA0)
bearing different number of DNA molecules (30).
Subsequently the conjugates with definite number of
DNA strands were exposed to endonuclease EcoRV
digestion to cleave Strands A0 and revA0 (80 bp) into
Strands A and revA (18 bases). The enzyme digestion
efficiency of 10 nm nAu–bound DNA obtained from 12%
PAGE (Figure S2, Supplementary Data) shows more than
90% digestion efficiency for both Strands A0 and revA0.
The use of endonuclease to cleave nAu–bound DNA has
been reported by several groups (33–36) including
ourselves (30,37). Our high digestion efficiency here leads
to short and homogeneous DNA on nAu which is critical
for the subsequent quantitative DNA analysis.
Though nanoparticle assemblies has been studied

extensively, most studies use nanoparticles with a high
loading of DNA and lead to a coordinate effect from
multiple DNA linkages. To avoid this scenario, nAu–A
and nAu–revA conjugates with single DNA strands are
used here. nAu–DNA conjugate dimer formed with
various DNA targets/linkers (20 bases to 26 bases) was
chosen as a model system. A tail-to-tail structure was
selected to reduce the steric hindrance and allow
maximum grouping efficiency (Figure 2). The conjugate
dimers formed by nAu–A and nAu–revA grouping are
shown in Figure 3. The stoichiometric ratio of nAu–A,
nAu–revA, and target DNA used in hybridization is 1:1:1.
Since Strand A and Strand revA are not complementary
to each other, a linker is needed for the formation of
conjugate dimers. Lane A in Figure 3 corresponds to nAu
without Strand A or revA modification (control). Lanes B,
C, D, E and F correspond to nAu–A+nAu–revA
conjugates with no target DNA, with 26, 24, 22 and 20-
base target DNA respectively. Using Lane B as a reference
(contains only nAu–A and nAu–revA conjugate mono-
mers), the bands on the bottom of Lanes C/D correspond
to the unbound conjugate monomers (share the same
mobility with the band in Lane B) and the bands on the
top (with slower mobility) correspond to the conjugate
dimers. The presence of only a single band in Lane B
indicates that there is no nonspecific interaction between
the nAu–A and nAu–revA. Therefore, the hybridization
of complementary target DNA with these two conjugates,
not nonspecific interaction, drives this conjugate dimer
formation.

With DNA targets of different lengths, the dimer
grouping percentages of 26- and 24-base DNA targets
are 55.6 and 55.3% respectively, even 1:1:1 ratio is used to
allow complete grouping formation. Similar result was
previously reported by Alivisatos and co-workers in which
complete grouping of nAu–DNA conjugates could not be
achieved even when a target with complementary sequence
of 100-base was used (38,39). In our experiment, when the
20- and 22-base DNA targets are used, only a single band
corresponding to conjugate monomers is unexpectedly
found in the gel (Lanes E and F). With half of the DNA
target hybridizes to each conjugate, reducing the target
from 24 to 22 bases cuts only a single base in conjugate
hybridization. This single base cut, however, results in
total absence of dimer groupings. The modification of
nAu with 5-T ssDNA as surface passivation in our
experiment leads to a highly negatively charged surface.
The strong electrostatic repulsion between both conju-
gates and perhaps target DNA may destabilize the
hybridization of short sequences, and thus no dimer is
formed. The critical length of DNA target for this
particular system is found to be 24 bases.

Quantification of target DNA through the formation of
nAu–DNA conjugate dimers

Our nAu–DNA conjugates carry only a single DNA probe
and this allows quantitative analysis of target DNA that
acts as a linker. This is because each conjugate dimer
formation represents a hybridization event between a
single complementary target DNA and the two nAu–
DNA conjugates. By measuring the dimer formation, in
principle, the amount of the target or linker DNA can
then be quantified. In our experiments, equal molar of the
nAu–A and nAu–revA conjugates was mixed with various
ratios of 24-base target DNA (nAu–A: nAu–revA: target
DNA ranges from 1:1:0.1 to 1:1:1). The target DNA
amount was obtained by quantifying the percentage of
conjugate dimers after agarose gel electrophoresis. In
Figure 4, Lane J corresponds to the control where nAu
was conjugated without Strand A/revA, and Lanes K is
the mixture of nAu–A and nAu–revA without target
DNA. Only one band corresponding to conjugate mono-
mers is found in the gel, indicating no dimer formation.
Lanes G, H, I, L, M, N and O are samples with various
ratios of nAu–A and nAu–revA to target DNA, from
1:1:1 to 1:1:0.1 respectively. Two bands, which correspond
to conjugate monomers and dimers, are found in the gel.
The amount of the conjugate dimers increases with the
increasing molar amount of target DNA. This trend is
more clearly shown in Figure 5 after quantifying the dimer

A B C D E F 

Figure 3. Formation of nAu–DNA conjugate dimers with various
lengths of DNA target. Lane A corresponds to nAu without Strand A
or revA modification (control); Lane B corresponds to nAu–A+nAu–
revA conjugates with no target; Lanes C, D, E and F correspond to

G H I J K L M N O

Figure 4. Grouping percentage of nAu–DNA conjugates with various
ratios of target DNA. Lanes G–O correspond to nAu–A: nAu–revA:
target DNA ratio of 1:1:1, 1:1:0.8, 1:1:0.5, control (nAu without Strand
A/revA conjugation), 1:1:0, 1:1:0.3, 1:1:0.25, 1:1:0.15 and 1:1:0.1,
respectively. Gel picture shows the combined results from two
experiments.
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band intensity. When the molar ratio of the target DNA
is between 0 and 0.5, the dimer grouping percentage is
directly proportional to the target DNA ratio. Such linear
relationship between the amount of target DNA and
dimer formation has good potential for the development
of new target quantification assay.

When the molar ratio goes beyond 1:1:0.5, both
Figures 4 and 5 show that only minor increase in the
grouping percentage (less than 20%) is found. For
example, 1:1:0.8 and 1:1:1 can only result in 59 and 64%
dimer formation respectively. Similar grouping percentage
is also found when conjugates with two Strand revA
(nAu–2x revA) were used. The top bands in Lanes P, Q
and S in Figure 6 correspond to the conjugate trimers that
have the lowest mobility among all the conjugates. The
second bands from the top are conjugate dimers, and
bands at the bottom are conjugate monomers. The
maximum grouping percentage (dimers+ trimers) of
66% is achieved when molar ratio of 2:1:2 is used.
Excess target DNA, however, does not further improve
the grouping percentage as the grouping percentage falls
slightly to 60% when the ratio of target DNA increases
to 2:1:5. Further drop in grouping is observed upon
the introduction of large excess of target DNA, as the
Lanes S and T (ratio 2:1:20 and 2:1:100) show fade bands
of conjugate groupings with only 51 and 36% grouping
percentage respectively. This decrease in grouping percen-
tage can be attributed to the conjugate grouping inhibition

by the excess target DNA. Since each nAu–DNA
conjugate may hybridize with individual target DNA
molecule separately, less conjugates are available for
grouping and thus the dimer/trimer formation is impeded.
For the grouping of nAu–DNA conjugates, the highest

percentage is found to be �60–65%. This incomplete
grouping can be attributed to the low number of Strand
A/revA bound on nAu (1 or 2 strands per nAu), which
may result in a much lower collision rate between the
conjugates and target DNA. Thus extended incubation
may be necessary to reach higher degree of hybridization.
Furthermore, the relatively heavy nAu conjugates
compared with the target DNA may further reduce
the collision rate and contribute to the observed
low hybridization percentage. Hybridization data in
Supplementary Data (Figure S3 and Table S1) shows
that without nAu, hybridization between Strands A, revA
and target DNA is efficient and over 90%. This further
suggests the possibility of nAu interference in the
hybridization process. Further study is needed to obtain
clearer understanding of DNA hybridization on nAu.
To give a direct connection between conjugates with

different electrophoretic mobility and their actual struc-
ture, dimer groupings were recovered from the gel and
visualized by TEM. Figure 7 shows the structure of the
conjugate groupings from the dimer band extracted from
Lane P. The large majority of the conjugates are
participated in the same dimer grouping structure,

Figure 5. Grouping percentage of nAu–DNA conjugates with different
ratios of target DNA.

P Q R S T 

Figure 6. Grouping percentage of nAu–DNA conjugates with different
ratios of target DNA. Lanes P–T correspond to nAu–A and nAu–revA
with target DNA at a ratio of 2:1:2 (nAu–A:nAu–2x revA:target
DNA), 2:1:5, control (nAu without Strand A/revA conjugation), 2:1:20
and 2:1:100, respectively. Gel picture shows the combined results from
two experiments.

Figure 7. TEM image of nAu–DNA conjugate dimers.
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indicating that each discrete gel band does contain a single
type of grouping and not a mixture of several conjugate
structures. A small number of monomers and high-order
groupings were observed in the TEM image, and this may
be due to the disruption during sample extraction from
gels as well as during TEM preparation where solvent
evaporation may result in particle aggregation.

SNP discrimination using nAu–DNA conjugate groupings

Conventional techniques for the detection of SNP using
mass spectrometry or gel electrophoresis to discriminate
DNA fragments (25,40) are time consuming and relatively
costly. Chip-based detection methods using fluorescent
dyes or nanoparticles as labels have become popular in
recent years (19,24). These newly emerging methods are
based on the melting temperature difference between
perfectly matched and mismatched DNA duplex, and
involve a stringent wash process with precise temperature
control as well as skillful personnel and long analysis time.
Furthermore, it may be difficult to discriminate DNA
targets that exhibit insignificant melting temperature
difference. Compared with the existing techniques men-
tioned above, our newly proposed method offers the
advantage of straightforward single-base mismatch dis-
crimination without the need of stringent wash (24). As
shown in Figure 8, Lanes U-AA correspond to nAu–A
and nAu–revA plus 24-base perfectly matched DNA
(PM), single base matched DNA (SM1/SM2/SM3),
double base matched DNA (DM), non-complementary
DNA (NC) and no target DNA respectively. There is an
obvious difference in Lane U where the PM case shows a
top dimer band and a bottom monomer band. For the
DM and NC cases (Lanes Y and Z), only a single band
can be found in the gel, indicating that no dimer structure
is formed. For SM1, 2 and 3 cases (Lanes V, W and X),
only a single band corresponding to conjugate monomers
is found, and no false positive signal is observed. The
monomeric structure in these three lanes can be further
confirmed by the one without target DNA (Lane AA),
which shows exactly the same electrophoretic mobility.
Even with end-mismatched SNP (Lane X), which intro-
duces least interruption to the duplex DNA structure and
is often difficult to discriminate, this method shows very
good discrimination and no sign of conjugate dimers is
observed in Lane X. The key strategy to achieve such high
selectivity in SNP discrimination is to use unfavorable
conditions for hybridization, so that only target DNA

with a perfect match has a chance to hybridize with nAu–
bound DNA. This unfavorable condition is most likely
resulted from the highly negatively charged nAu surfaces
(nAu–A) which repel the target DNA from hybridizing
with the other conjugate (nAu–revA). As a result, even
single base mismatched at the end position (SM3) can lead
to sufficient destabilization to the dimers, and only
perfectly matched duplex is energetically stable to form
dimer grouping. To further confirm the critical role of
nAu in SNP discrimination, the melting behavior of free
dsDNA (PM, SM1, SM2 and SM3) in the absence of nAu
was conducted using real-time PCR (Figure S4,
Supplementary Data). The results show that the center-
mismatched SM1 and SM2 show wider melting transition
and lower peak value compared with PM. However, the
end-mismatched SM3 shows almost the same melting
transition and is hardly distinguishable compared with
PM. This is not unexpected since end mismatching
introduces least disturbance to the DNA duplex, the
difference in melting behavior between PM and SM3 is too
small to support an accurate discrimination. Due to
the difficulty of detecting end-mismatched sequences, the
location of SNP should be placed at the middle of the
probe in the design of probe sequences to enhance
discrimination ability.

To check the SNP discrimination ability of our system
with longer DNA, we used 26-base target DNA to test the
same nAu–DNA conjugates. We found the discrimination
is as good as that of the 24-base target. As shown in
Figure 9, we mixed, in Lane BB, perfectly matched (PM)
target with three other single mismatched sequences (SM4,
SM5 and SM6) for conjugate dimer formation. The ratio
between nAu–A, nAu–revA and PM/SM4/SM5/SM6 is
1:1:0.25/0.25/0.25/0.25. The result shows that �25% of
dimer is formed, which is the amount of PM. Therefore
the quantitative analysis of target DNA is not interfered
by the presence of mismatched DNA. Using SM4, SM5
and SM6 alone, no dimer formation can be found in
Lanes CC, DD and EE. SM6 has again an end-
mismatched sequence and our nAu conjugate system is
able to differentiate it. Therefore, we expect our system to
be applied to even longer target DNA without jeopardiz-
ing the discrimination ability.

U V W X Y Z AA

Figure 8. SNP discrimination using nAu–DNA conjugates and 24-base
target DNA. Lanes U-AA correspond to, nAu–A and nAu–revA
plus 24-base perfectly matched DNA (PM), single base matched
DNA (SM1/SM2/SM3), double base matched DNA (DM), non-
complementary DNA (NC) and no target DNA, respectively.

BB CC DD EE 

Figure 9. SNP discrimination using nAu–DNA conjugates and 26-base
target DNA. Lane BB corresponds to nAu–A and nAu–revA and
26-base perfectly matched DNA (PM) plus single base matched DNA
SM4, SM5 and SM6 (ratio of nAu–A:nAu–revA:PM/SM4/SM5/
SM6=1:1:0.25/0.25/0.25/0.25), and Lanes CC to EE correspond to
nAu–A and nAu–revA plus SM4/SM5/SM6, respectively (ratio of
nAu–A:nAu–revA:SM DNA=1:1:1).
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The data reported here show that the current conjugate
grouping method reaches only 100 fmol range sensitivity,
which is not as sensitive as other methods reported in the
literature (2,19,20). Thus, the method is likely applicable
for analyzing amplified DNA and not genomic DNA
directly. Further work to improve the sensitivity is
necessary for possible genomic DNA detection. Finally,
a possible merit of the method reported here can be its
ease of use. Most existing and highly sensitive methods
require specialized readout platforms, such as surface
plasmon resonance (SPR), fluorescent microarrays, and
scanometry. Storhoff and co-workers reported a straight-
forward DNA detection method by allowing nAu–DNA
conjugates to cross-link in the presence of target DNA in
solution (41). The cross-linked nAu shows a red shift in
the scattering spectrum and the result can be read even
with naked eyes. Our method also requires fairly simple
readout, which is a gel electrophoresis setup and is
commonly found in biology and clinical labs.

CONCLUSIONS

In this study, we have demonstrated a novel nAu–based
quantitative DNA assay method with SNP discrimination
sensitivity. This method combines gel electrophoresis
isolation and restriction endonuclease manipulation to
produce precisely controlled nAu–DNA conjugates which
allows quantitative analysis of DNA molecules based on
the formation of conjugate groupings by target DNA
linkage. A linear correlation between the amount of target
DNA and conjugate groupings was obtained at lower
target DNA concentration and can further be exploited
for target quantification. For SNP study, single base
mismatch discrimination is achieved for both the end- and
center-mismatched cases.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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