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Trophic assimilation efficiency (conversion of resource biomass into consumer

biomass) is thought to be a limiting factor for food chain length in natural

communities. In host–parasitoid systems, which account for the majority of

terrestrial consumer interactions, a high trophic assimilation efficiency may

be expected at higher trophic levels because of the close match of resource

composition of host tissue and the consumer’s resource requirements, which

would allow for longer food chains. We measured efficiency of biomass trans-

fer along an aphid-primary–secondary–tertiary parasitoid food chain and

used stable isotope analysis to confirm trophic levels. We show high efficiency

in biomass transfer along the food chain. From the third to the fourth trophic

level, the proportion of host biomass transferred was 45%, 65% and 73%,

respectively, for three secondary parasitoid species. For two parasitoid species

that can act at the fourth and fifth trophic levels, we show markedly increased

trophic assimilation efficiencies at the higher trophic level, which increa-

sed from 45 to 63% and 73 to 93%, respectively. In common with other food

chains, d15N increased with trophic level, with trophic discrimination factors

(D15N) 1.34 and 1.49‰ from primary parasitoids to endoparasitic and ecto-

parasitic secondary parasitoids, respectively, and 0.78‰ from secondary to

tertiary parasitoids. Owing to the extraordinarily high efficiency of hyper-

parasitoids, cryptic higher trophic levels may exist in host–parasitoid

communities, which could alter our understanding of the dynamics and

drivers of community structure of these important systems.
1. Introduction
It has long been recognized [1] that food webs rarely have more than five trophic

levels and most often fewer [2], constraining major aspects of food web structure

[3]. A number of interacting factors, especially ecosystem size and primary pro-

ductivity, are found to be related to food chain length [4–7]. An important

mechanism behind these relationships is the (in)efficiency of transfer of pro-

ductivity from one trophic level to the next, so that only large and/or highly

productive ecosystems contain sufficient resources to sustain viable populations

at high trophic levels [8–11]. A crucial component of this ecological efficiency

is the trophic assimilation efficiency: the proportion of consumed resource bio-

mass that is converted into consumer biomass. Theoretical work predicts

trophic assimilation efficiency to be in the range of 13–50%, depending on pred-

ator–prey mass ratio [12], which is in accordance with the few empirical estimates

that exist [13,14] and is generally assumed to be unrelated to trophic level or to

decrease with increasing trophic level [15]. Trophic assimilation efficiency of con-

sumer species can be an important factor determining ecosystem stability [16,17],

as shown for lakes where during re-oligotrophication an increase in consumer
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tertiary parasitism

secondary parasitism

primary parasitism

add 20 adult 
M. viciae aphids

add 8–14 
A. megourae
parasitoids

collect mummies
add 3 mummy
parasitoids 

collect mummies
add 3 mummy
parasitoids

put 80–110 of the
parasitized aphids
on a new plant 

add 5–10
Alloxysta sp
females and 1–5
Alloxysta males
into the cage 

Figure 1. Experimental protocol for creating the food chains. Mummy para-
sitoids that were added to the food chain as secondary or tertiary parasitoids
were either D. carpenteri or C. clavata.
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assimilation efficiency resulted in a destabilizing increase in

interaction strengths [18].

Host–parasitoid communities are widely used as model

systems in population and multi-trophic community ecology

as they arguably represent the majority of trophic interactions

in terrestrial ecosystems [19], and a large body of ecological

knowledge has been derived from these systems (e.g. [20–22]).

Parasitoids are restricted to consuming a single host individual,

representing a finite amount of resources with which to com-

plete development from egg to adult, and there is therefore

likely to be strong selection for using the resource with high

efficiency [23]. Indeed, in host–parasitoid systems, trophic

assimilation efficiency seems to be relatively high [23] and

may be especially high for high trophic level hyperparasitoids

(parasitoids whose hosts are also parasitoids) owing to the

close match of resource content of the host and resource

requirements of the hyperparasitoid, given their close phyloge-

netic relationships and similar lifestyles [24]. Therefore, we

expect higher trophic assimilation efficiencies for species

acting at higher trophic levels. It has been suggested that

high competition among hyperparasitoids, and the fact that

they are adapted to feeding on fellow Hymenoptera, may

lead to frequent facultative tertiary and possibly even higher

orders of parasitism [25,26]. However, there is a general

assumption that, owing to physiological constraints, such

interactions are negligibly rare in the wild. This assumption,

and the fact that instances of higher-order parasitism are diffi-

cult to identify in the field, means that hyperparasitoids are

generally treated as a fixed trophic level [27,28].

Here, we test this fundamental assumption by measuring

assimilation efficiency along food chains in host–parasitoid sys-

tems. First, we used nitrogen stable isotope analysis (d15N) [29]

to test whether hyperparasitoids can truly act as tertiary parasi-

toids, feeding on other hyperparasitoids, as d15N systematically

increases with trophic level in other systems [30,31]. Then we

measured efficiency of biomass transfer from primary parasi-

toid hosts to three hyperparasitoid species in the laboratory,

and for two of these hyperparasitoid species we also measured

the efficiency of biomass transfer when they feed on the other

hyperparasitoid. We further compared carbon content and

the carbon to nitrogen (C/N) ratio for the different trophic

levels along the food chain, to test for the nutritional quality

of the hosts at different trophic levels for the parasitoids. We

use these data to test the hypothesis that trophic assimilation

efficiency increases at the higher trophic level, reducing

constraints on food chain length in host–parasitoid systems.
2. Material and methods
(a) Study system
All species were collected in the field around Bern, Switzerland.

Cultures were kept in climate chambers at 20/188C with a 16 L :

8 D cycle. The primary parasitoid Aphidius megourae (Stary 1965)

was reared on the aphid Megoura viciae (Buckton 1876) feeding

on bean plants (Vicia faba L.). The larvae of primary aphid parasi-

toids first feed on the aphids’ haemolymph and later kill the aphid

by feeding on other tissues. They then pupate within the mummi-

fied skin of the aphid, creating the so-called mummy. They are

commonly attacked by a diverse guild of hyperparasitoids belong-

ing to two functional groups: (i) the secondary endophagous

koinobiont parasitoids, which lay their eggs in the parasitoid

larva within the still-living aphid, where they remain to hatch

after mummification of the aphids [25] (from here on called
endoparasitoids) and (ii) the so-called mummy parasitoids or sec-

ondary ectophagous idiobiont parasitoids, which attack their host

at the pupal stage within the aphid mummy by depositing the eggs

on the parasitoid host [26] (from here on mummy parasitoids). We

used (i) the endoparasitoid Alloxysta sp. (Foerster 1869), and the

two mummy parasitoids (ii) Coruna clavata (Walker 1833)

and (iii) Dendrocerus carpenteri (Curtis 1829). Alloxysta lays an

egg in the primary parasitoid larva in the still-living parasitized

aphid host, where it remains and hatches only after mummifica-

tion of the aphid [32]: this means the primary parasitoid larvae

has stopped feeding on the aphid host, which allows us to estimate

true trophic assimilation efficiencies even from the primary parasi-

toid to the next level (Alloxysta). All parasitoids used in this

experiment had their host inside the aphid mummy as single

resource as they were reared in individual gel capsules with no

other resources available.
(b) Study design and experimental set-up
One 14-day-old plant with 20 adult aphids was placed in each of

10 cages (24.5 � 24.5 � 24.5 cm, MegaView Science Co., Taiwan).

Adult aphids were removed from cages after 3 days to obtain

cohorts of 160–200 juveniles, which were parasitized by the

parasitoid A. megourae (8–14 individuals added at day 6 and

stayed for 48 h; parasitism rate 80–90%). Parasitized aphids

were split at day 11: one-third were used to rear primary parasi-

toids and the other two-thirds were put onto another bean plant

in a new cage with 5–10 female Alloxysta and 1–5 male Alloxysta
(figure 1). At day 17 (for A. megourae cages) and day 20 (for

Alloxysta cages), half of the mummies were transferred to Petri

dishes together with three D. carpenteri or C. clavata females.

After 48 h, the hyperparasitoids were removed from the Petri

dishes to prevent multiple parasitism of hosts. Primary parasi-

toids started to eclose on day 20 after A. megourae attacked the

aphids, secondary and tertiary parasitoids on days 31 and 36,

respectively. We created the food chains in two separate runs:

one with D. carpenteri and another with C. clavata as mummy

parasitoid. Cages were daily checked for the formation of mum-

mies, which were collected separately. After eclosure, individuals

were stored in a freezer at 2308C.

Parasitoids were dried for 3 days at 658C and then weighed

(Sartorius Genius, ME +0.01 mg). Individual weights of parasi-

toids were used to calculate the biomass transfer along the food

chain and estimated as ‘individual biomass at higher trophic
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played as enrichment to the mean value of the primary parasitoid A. megourae
(including samples size). n.s., for a non-significance and *p , 0.05 for
comparisons indicated by horizontal lines above the bars. (Online version
in colour.)
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level/individual biomass at lower trophic level� 100’ (see stat-

istical analysis for exact method). For stable isotope analysis,

approximately 0.3–0.5 mg of dried insect material (two to eight

individuals) was transferred into tin capsules (5 � 9 mm, HEKA-

tech GmbH, Germany). Then samples were combusted with an

ECS 4010 elemental analyser (Costech, Milan, Italy) and analysed

using a Delta V Plus isotope ratio mass spectrometer (Thermo

Scientific, Bremen, Germany). For each sample, carbon content,

nitrogen content and C/N ratio were measured alongside

isotope ratios (d15N and d13C).

(c) Statistical analyses
All statistical analyses were performed using R v. 3.1.0 [33]. Species-

and trophic-level specific differences in dry weights and d15N

values were tested using linear models based on generalized least

squares (errors are allowed to have unequal variances) provided

by the nlme package [34]. We used VarIdent to account for variance

heterogeneity in effect sizes between groups of parasitoids. For

differences in hyperparasitoid weights according to the trophic

levels and species, we specified the following six a priori contrasts

[35], (i) the mummy parasitoid C. clavata secondary versus tertiary

level, (ii) the mummy parasitoid D. carpenteri secondary versus ter-

tiary level, (iii) the endoparasitoid versus mummy parasitoids as

secondary parasitoids, (iv) the endoparasitoid versus mummy

parasitoids as tertiary parasitoids, (v) C. clavata versus D. carpenteri
as secondary parasitoids, and (vi) C. clavata versus D. carpenteri as

tertiary parasitoids.

Biomass transfer efficiencies for all hyperparasitoid species

were estimated from dry weight data. We used the function ‘sim’

from the R-package ‘arm’ [36] to simulate values from the posterior

distribution of the species means, which were then used to esti-

mate the proportions as derived parameters. A random sample

of 5000 values from the posterior distribution of the model

parameters (model: parasitoid dry weight � parasitoid trophic

group) was drawn for each trophic group (e.g. for C. clavata as sec-

ondary parasitoid). From these we estimated the 5000 values for

the posterior distribution of the proportions ‘species A higher

trophic level/ species B lower trophic levels’ for the pairs D. carpen-
teri and C. clavata acting at the different trophic levels versus their

food base (A. megourae or Alloxysta sp.). We then tested for the pos-

terior probability of the hypothesis that proportions (i) D. carpenteri
tertiary/Alloxysta sp. . D. carpenteri secondary/A. megourae and

(ii) C. clavata tertiary/Alloxysta sp. . C. clavata secondary/

A. megourae. The Bayesian p-values presented in the results indicate

the proportion of simulated values for which the hypothesis was

true. Nitrogen content and C/N ratios in A. megourae versus

Alloxysta as hosts for the mummy parasitoids were compared

with the same Bayesian method.

For the stable isotope analysis, we tested for enrichment in
15N from (i) primary parasitoids versus secondary endoparasi-

toids and mummy parasitoids and (ii) the endoparasitoid

Alloxysta sp. versus secondary mummy parasitoids.

The response variable, d15N values for hyperparasitoids, was

corrected against the base of the parasitoid food web (the mean

for primary parasitoids for each experimental run), because pri-

mary parasitoid d15N differed significantly by 1.1+ 0.31‰

(t1,14 ¼ 23.293, p ¼ 0.0064) between the two experimental runs

with D. carpenteri and C. clavata.
3. Results
(a) Stable isotope analysis
We found a significant increase in 15N along the food chain

with D15N ¼ 1.34 (+0.11) and 1.49 (+0.25)‰ from primary

parasitoids to endoparasitic and ectoparasitic secondary para-

sitoids, respectively, and 0.78 (+0.15)‰ from secondary to
tertiary parasitoids (for details, see electronic supplementary

material, Appendix S1). Both groups of secondary parasitoids,

the endoparasitoid Alloxysta sp. and the mummy parasitoids,

were similarly enriched in 15N (t2,35¼ 20.54, p¼ 0.5864)

but clearly separated from primary parasitoids (figure 2;

t1,35¼ 5.86, p , 0.001). d15N values significantly separated sec-

ondary mummy parasitoids from tertiary mummy parasitoids

(figure 2, t2,35 ¼ 2.15, p ¼ 0.0381).
(b) Biomass transfer between trophic levels
Body mass of D. carpenteri decreased significantly when acting

as tertiary parasitoid compared with its mass when acting as

secondary parasitoid (electronic supplementary material,

Appendix S2; table 1). By contrast, we did not find a significant

difference in mass between the two trophic levels of C. clavata
(electronic supplementary material, Appendix S2; table 1). The

mass of secondary C. clavata was significantly lower than

the mass of secondary D. carpenteri with the same pattern

when both were acting as tertiary parasitoids (electronic

supplementary material, Appendix S2; table 1).

D. carpenteri (acting as secondary or tertiary parasitoid) was

more efficient than Alloxysta or C. clavata (figure 3, table 1).

D. carpenteri converted 73% of the host’s body mass as second-

ary parasitoids and remarkably, 93% of the host’s body mass

when acting as tertiary parasitoid (figure 3, posterior prob-

ability of 0.999 that the efficiency is higher for D. carpenteri at

the tertiary level). C. clavata also showed higher efficiency

when acting as tertiary parasitoid, with 45% as secondary and

63% as tertiary (figure 3, posterior probability of 0.999 for

higher efficiency at tertiary level) but with less efficiency than

D. carpenteri (figure 3, posterior probability of 1 for higher effi-

ciency in D. carpenteri for both trophic levels). The nitrogen

content was 1.19 times higher in Alloxysta than in A. megourae
(electronic supplementary material, Appendix S3, posterior



Table 1. Results for six a priori contrasts comparing the weights (in milligrams) of different parasitoid species and for C. clavata and D. carpenteri feeding at
both the second and third level of parasitism.

species compared value s.e. t-value p-value

C. clavata 2nd to C. clavata 3rd 0.0058 0.0055 1.044 0.297

D. carpenteri 2nd to D. carpenteri 3rd 0.0124 0.0048 2.596 0.001

Alloxysta sp. to C. clavata 2nd and D. carpenteri 2nd 20.0046 0.0040 21.141 0.254

Alloxysta sp. to C. clavata 3rd and D. carpenteri 3rd 0.0135 0.0037 3.610 ,0.001

C. clavata 2nd to D. carpenteri 2nd 20.0309 0.0056 25.474 ,0.0001

C. clavata 3rd to D. carpenteri 3rd 20.0243 0.0046 25.276 ,0.0001

D. carpenteri
(N = 53)

D. carpenteri
(N = 153)

C. clavata
(N = 12)

C. clavata
(N = 10)

A. megourae
(N = 201)

A. megourae
(N = 201)

Alloxysta
(N = 128)

Alloxysta
(N = 128)

93%

(a) (b)

65% 65% 45%73%

63%

Figure 3. Biomass transfer (% of dry weight) from one trophic level to the
next higher level along the primary parasitoid – secondary parasitoid – tertiary
parasitoid trophic chain for the mummy parasitoids (a) D. carpenteri and
(b) C. clavata. The sample size is given in brackets.
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probability of 1 for higher content in Alloxysta) and the C/N

ratio dropped from 5.28 in A. megourae to 4.21 in Alloxysta
(posterior probability of 0.999 for lower ratio in Alloxysta).
4. Discussion
We found extraordinarily high trophic assimilation efficiency

for hyperparasitoids, which markedly increased along the

trophic chain for both mummy parasitoids D. carpenteri and

C. clavata. Both species can act at the secondary and tertiary

parasitism level but were far more efficient at the tertiary

level in converting host biomass. Differences in 15N enrich-

ment allowed us to confirm that both species of mummy

parasitoids were capable of acting as true tertiary parasitoids.

The high efficiency of biomass transfer indicates there is no

physiological barrier to these intraguild interactions between

hyperparasitoids at higher trophic levels, thereby falsifying

the assumption that there are strong constraints on food

chain length in host–parasitoid food webs.

These results have significant implications for our under-

standing of these important systems. In addition to predicted

effects of assimilation efficiency on community stability

[16–18], constraints on food chain length have been shown

to explain many of the universal properties found in network
structure among food webs [3]. The possibility of cryptic

higher trophic levels, owing to relaxation of these constraints,

therefore, also means that host–parasitoid networks may

contain a hidden structure that is fundamentally different

from other food webs, with implications for community

dynamics and stability [27].

Our results suggest that the higher up in the trophic chain a

hyperparasitoid acts, the more easily it can convert the host

tissue. A possible reason for this is that unprofitable food com-

ponents have already been removed earlier from the food

source and plant allelochemicals diluted, benefiting insect pre-

dators and parasitoids [37,38]. Plant defensive chemicals may

be assimilated at the first parasitism level [39], but not passed

on to the higher trophic levels. Towards the top end of the

food chain, nitrogen tends to be concentrated leading to a

closer match between the nutritional content of host and the

nutritional requirements of consumer [23]. And indeed, the

nitrogen content was higher with the C/N ratio consequently

being lower in the body of Alloxysta, the host for the tertiary

parasitoids, than in A. megourae, the host for the secondary

parasitoids. Interestingly, the C/N ratios of the mummy para-

sitoids were very similar to that of Alloxysta (electronic

supplementary material, Appendix S3). For the mummy para-

sitoids Alloxysta as host can be more efficiently exploited

than the primary parasitoid, leading to the higher trophic

assimilation efficiency at the higher trophic level. Therefore,

D. carpenteri and C. clavata were far more efficient as tertiary

parasitoids than as secondary parasitoids.

It has been suggested that higher trophic levels in arthropod

communities contain progressively fewer lipids and more

protein in their bodies, which makes carbohydrate and fat

less available for higher-order consumers and potentially limit-

ing the number of trophic levels [40,41]. However, it appears

that in host–parasitoid systems the efficiency of host exploita-

tion is high and fatty acids are consumed directly from the

host without modification, leading to stable fatty acid compo-

sitions throughout the food chains [42]. C/N ratios were very

similar for all hyperparasitoids in our study, suggesting stable

carbon availability even at higher trophic levels.

D. carpenteri was more efficient in converting host biomass

than C. clavata. C. clavata shows host-feeding prior to ovipos-

ition to accumulate enough protein to produce eggs owing to

lack of energy uptake as a larva [43]. Therefore, selection

pressure for high efficiency should be more pronounced for

D. carpenteri. Parasitoids are further capable of taking up

sugar in the wild from sources such as honeydew, nectar and

extra floral nectar [44].

Owing to the extraordinary efficiency of parasitoids at

high trophic levels, cryptic higher trophic levels may exist
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in host–parasitoid communities, which could alter our

understanding of the dynamics and drivers of community

structure of these important systems. Stable isotope analysis

can be used to study the vertical trophic structure of parasi-

toids in the field in order to reveal this hidden aspect of the

food webs.
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