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A brief history of hormone-sensitive lipase

Basic physiology
Excessive high-calorie intake leads to various 
health problems, and further elucidation of the 
process and metabolism of fat accumulation is 
urgently required. The incidence of many meta-
bolic syndromes is determined by the balance 
between lipolysis and lipogenesis.1 Currently, 
many studies have investigated potential factors 
that could influence lipolysis, such as age, diet, 

hormones, genetics, and stress. However, more 
new technologies and target genes should be delin-
eated, and greater effort should be directed toward 
exploring new pathways of lipid metabolism.

Hormone-sensitive lipase (HSL), a multifunc-
tional enzyme, participates in fatty acid metabo-
lism.1 This enzyme hydrolyzes triacylglycerols 
(TAGs), diacylglycerols (DAGs), monoacylglyc-
erols (MAGs), retinyl esters (REs), cholesterol 
esters (CEs), and other lipids in various tissues.2 
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but also post-transcriptionally affects HSL phosphorylation by stimulating PKA and endothelin 
(ET-1), and controls its expression indirectly via regulating the activity of growth hormone 
(GH). In addition, a rapid elevation of HSL levels was detected after insulin injection in patients, 
which suggests that the inhibitory effects of insulin on HSL can be overridden by insulin-
induced hypoglycemia. Conversely, individuals with hereditary HSL deficiency, and animals 
with experimental HSL deletion, showed major disruptions in mRNA/protein expression in 
insulin signaling pathways, ultimately leading to insulin resistance, diabetes, and fatty liver. 
Notably, HSL inactivation could cause insulin-independent fatty liver, while insulin resistance 
induced by HSL deficiency may further aggravate disease progression. The common beliefs 
that HSL is the overall rate-limiting enzyme in lipolysis and that insulin is an inhibitor of 
HSL have been challenged by recent discoveries; therefore, a renewed examination of their 
relationships is required. In this review, by analyzing current data related to the role of, 
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of lipid metabolism and provide a rational basis for future research in drug development.
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In addition to adipose tissues, HSL is expressed 
in several nonadipose tissues, including the heart,3 
skeletal and smooth muscle,4 adrenal glands,5 
placenta,6 ovaries,7 and testis. Furthermore, HSL 
has been detected in various cell lines, such as 
intestinal mucosa cells,8 human bladder cancer 
cells,9 and Chinese hamster ovary (CHO) cells.10 
Based on studies performed by Sekiya and col-
leagues,11 HSL is also detected in hepatocytes, 
contributing to the activity of hepatic CE hydro-
lase. Furthermore, HSL is detected in parenchy-
mal and nonparenchymal cells. Therefore, being 
a multifunctional lipase, HSL not only plays a 
role in energy provision but also contributes to 
various other physiological processes, which 
require further exploration.

Main functions
Lipolysis requires at least three enzymes: HSL, 
monoglyceride lipase (MGL), and adipose tria-
cylglycerol lipase (ATGL). HSL participates in 
the hydrolysis of TAGs to DAGs and DAGs to 
MAGs.12 Initially, HSL was thought to be 
responsible for the first lipolytic step, and adipo-
cyte TAG lipase is now known to be the most 
important enzyme for mediating lipolysis initia-
tion. Intriguingly, in addition to hydrolyzing 
MAGs, TAGs, CEs, and REs, HSL could have a 
broader substrate specificity than the other two 
enzymes. Furthermore, HSL can catalyze the 
hydrolysis of other lipid substrates, such as lipoi-
dal esters of steroid hormones13 and water-solu-
ble butyrate substrates.14 In addition, the fatty 
acid hydrolase activity of HSL is 10-fold lower 
against TAGs than DAGs in vitro, suggesting 
that HSL may be more critical as a DAG hydro-
lase than a TAG hydrolase.15 Thus, compared 
with other lipolytic enzymes, HSL is critically 
important for lipolysis in the human body because 
of its ability to hydrolyze DAGs more strongly 
than TAGs.16 Therefore, HSL is the main focus 
of various current explorations.

HSL under the control of insulin

Activation of the HSL enzyme: PKA and H2O2
Previous studies have suggested that HSL, induced 
by catabolic hormones, could be activated by the 
cyclic AMP (cAMP)-dependent protein kinase 
(PKA) in adipocytes.17 Acute insulin treatment 
could stimulate cAMP phosphodiesterase in an 
ATP-dependent manner, accelerating cAMP 

hydrolysis, suppressing PKA activity, and inhibit-
ing PKA-dependent activation of HSL.18 A study 
performed by Holm and colleagues also confirmed 
that insulin could inhibit HSL lipolysis.19 In addi-
tion, Zentella de Piña and colleagues confirmed 
that H2O2 generated by insulin could affect the 
amplification cascade of lipolysis in adipocytes.20 
Micromolar concentrations of H2O2 inhibited 
cAMP-activation of the type IIβ-PKA holoen-
zyme, suppressing lipolysis mediated by HSL.

HSL phosphorylation: AMPK and  
endothelin (ET-1)
An important characteristic of HSL is its reversi-
ble phosphorylation, and this mechanism medi-
ates the activation of HSL by lipolytic hormones. 
Generally, HSL has two phosphorylation sites.1 
Site 1 is called the regulatory site, which is essen-
tial for HSL activation. This site is phosphorylated 
by PKA and glycogen synthase kinase-4.21 
Interestingly, this kinase is controlled hormonally, 
and specifically by insulin.22 Site 2 is called the basal 
site and is phosphorylated by the AMP-activated 
protein kinase (AMPK) and Ca2+/Calmodulin-
dependent kinase II.22,23 Previously, phosphoryla-
tion on site 2 was not believed to have a direct 
effect on HSL activity23; however, a recent study 
by Daval and colleagues demonstrated an impor-
tant role for AMPK in HSL phosphorylation.24 
Interestingly, AMPK activity can be inhibited by 
insulin, and recent evidence has also indicated 
that AMPK could play key roles in the insulin 
signaling pathway.25 Furthermore, crosstalk 
between the insulin pathway and AMPK activity 
may exist.26 In addition to phosphorylation, 
dephosphorylation by phosphatases could also be 
essential for HSL activation. Phosphatases are 
believed to be important for the antilipolytic effect 
of insulin. However, the dephosphorylation pro-
cess requires further investigation.

Briançon-Marjollet and colleagues suggested that 
endothelin-1 (ET-1) secretion could modulate 
adipocyte metabolism.27 ET-1-induced lipolysis 
could be mediated via the activation of HSL by 
Ser660 phosphorylation. Furthermore, insulin 
could exert an inhibitory effect on ET-1. However, 
the precise mechanisms underlying the regulation 
of the insulin/ET-1 pathway still require more in-
depth research. Importantly, more efforts should 
be directed toward clarifying the effect of insulin 
on AMPK, ET-1, and phosphorylation/dephos-
phorylation of HSL to promote clinical insulin 
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application for the treatment of diabetes and vari-
ous other insulin-related clinical problems.

HSL translocation: perilipin, PKA, and PKG
Upon phosphorylation, HSL translocates to lipid 
droplets to participate in lipolysis. The lipid drop-
let-associated protein perilipin may be important 
for mediating the interaction of HSL and its target 
lipid substrates in adipocytes.28 An important clue 
to the HSL translocation process came from analy-
sis of the lipolytic reaction in a perilipin-null 
mouse.29,30 Perilipins are the most heavily modified 
proteins under lipolytic activation in adipocytes.31 
Interestingly, their responses, such as phosphoryla-
tion in response to lipolytic agents, markedly paral-
lel those of HSL. These data strongly indicated 
that, in adipose cells, perilipins are essential for 
functional lipolytic activation and are strongly asso-
ciated with HSL translocation and activation.

PKA phosphorylation could mediate a conforma-
tional change to expose hydrophobic groups on 
HSL, facilitating the binding of HSL to its lipid 
substrates.32 The phosphorylation of perilipin 
proteins mediated by PKA is important for the 
translocation of HSL to lipid droplets, which 
could enhance lipolysis.33 Perilipin A is produced 
from differential splicing as perilipin B.34 
Intriguingly, various studies have also indicated 
that the translocation of HSL requires PKA-
dependent phosphorylation of perilipin A.30 In 
addition, perilipin A is phosphorylated by PKA 
and by the cGMP-dependent protein kinase G 
(PKG); however, the kinetics of phosphorylation 
in protein activation has not been elucidated.35

The interplay of perilipin and PKA has been 
found to regulate lipolysis.36 Significantly, insulin 
could regulate lipolysis through the spatially com-
partmentalized modulation of this pathway.37 
However, further studies should investigate the 
insulin signaling pathways that regulate adipocyte 
lipolysis, and, more specifically, the activation of 
HSL. The identification of these distinct path-
ways will improve the development of treatments 
that target specific components of the insulin 
signaling pathway.

Indirect regulation: GH and IGF-1
A recent study performed by Bergan-Roller and 
colleagues38 provided novel insights into the vari-
ous functions of growth hormone (GH) and 

helped clarify its lipolytic actions. The authors 
have confirmed that, during feeding, the growth-
promoting actions of GH result from GH recep-
tors (GHRs) linked to Akt/PI3K and JAK/STAT 
pathways that are activated by insulin and IGF-1. 
During fasting, the lack of insulin and IGF-1 
‘reprograms’ cells such that GHRs linked to Akt/
PI3K and JAK/STAT are inactivated and the 
GHR linked to PKC is activated, followed by the 
activation of HSL and lipolysis.38

However, the mechanisms by which insulin influ-
ences various pathways to regulate GH activation 
still require further research. Insulin and IGF-1 
signaling involves various interacting pathways,39 
such as the Akt/PI3K, ERK and JAK/STAT 
pathways, some of which also affect growth in 
mammals.40,41 Recent studies have indicated that 
when GH is present with IGF-1 and insulin (dur-
ing feeding), intracellular signaling becomes 
aligned with growth-promoting processes.38 
Additionally, insulin could degrade cAMP via 
PI3K/Akt and therefore inhibit PKA activation, 
which results in HSL phosphorylation and activa-
tion.42 In the absence of insulin (during fasting), 
cAMP is not degraded, and GH signaling shifts 
away from Akt/PI3K- and JAK/STAT-stimulated 
growth to PKC-activated lipolysis.41 Furthermore, 
in the absence of IGF-1 (during fasting), PTP1B 
inhibition is lifted, leading to JAK/STAT degra-
dation and thus contributing to the shift away 
from GH-stimulated lipolysis.

Insulin under the control of HSL

HSL deficiency in humans: clinical evidence of 
HSL deficiency in patients
Despite our detailed knowledge of the functions 
of HSL, the exact roles of HSL deficiency in vari-
ous human diseases are unclear. Interestingly, by 
first using individuals with a frameshift mutation 
in the LIPE gene encoding HSL, Albert and col-
leagues found that the lack of HSL could affect 
lipid metabolism in humans.43 The mutation 
results in decreased HSL expression in the adi-
pose tissue of carriers due to decreased enzyme 
synthesis or increased turnover. The clinical man-
ifestations of patients with defective HSL expres-
sion in carriers were found to be less pronounced 
than those in patients with neutral lipid storage 
disease with myopathy (NLSDM) (caused by 
ATGL deficiency in humans).44 Humans with 
defective HSL expression are not obese and 
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develop partial lipodystrophies with age. These 
findings are critical because they indicate that 
HSL-mediated lipolysis is also involved in cellular 
signaling processes in humans.45

The results of Albert and colleagues also sug-
gested that the absence of HSL was associated 
with the risk of type 2 diabetes mellitus 
(T2DM).43,46 Both homozygous and heterozy-
gous individuals with the mutation had an 
increased risk of developing T2DM. These results 
indicate that HSL might significantly affect insu-
lin function. In addition, individuals homozygous 
for the mutation had small adipocytes and 
increased inflammation. Furthermore, their 
results suggested that HSL activation could be a 
potential method for treating glucose intolerance 
and dyslipidemia in patients with T2DM.

HSL inactivation: experimental data regarding 
the discrepancies between mouse models and 
the human phenotype
Interestingly, Xia and colleagues demonstrated 
that HSL-deficient patients and HSL knockout 
mice both develop partial lipodystrophy.47 This 
finding could indicate that mechanistically, the 
pathogenesis and progression of hepatic steatosis 
in HSL-deficient patients may be similar to that 
of HSL-deficient mice. In addition to common 
findings, some notable differences were also 
reported between mice and humans with defects 
in HSL-mediated lipolysis.

First, unlike male HSL-deficient mice, male 
homozygous carriers of HSL-deficient mutations 
have offspring. The mechanism regarding these 
differences in fertility is not yet clear, but this 
finding may imply that there are species differ-
ences in the role of HSL in spermatogenesis.45

Second, homozygous carriers have decreased 
plasma high-density lipoprotein (HDL), increased 
plasma triglyceride (TG), and increased liver fat, 
despite decreased lipolytic rates. These findings 
were completely different from the phenotypes of 
HSL-deficient mice, where lipolytic defects 
resulted in decreased plasma TG, increased 
plasma HDL, and decreased liver fat.45 
Intriguingly, fatty liver in HSL-deficient mice was 
also reported to be age dependent. Young HSL-
deficient mice showed decreased liver fat,48–50 
while old HSL mice showed increased liver 
fat.51,52

Third, the differences in glucose metabolism 
between humans and mice with HSL deficiency 
were the most significant. HSL-deficient mice are 
nondiabetic; however, intriguingly, all four homozy-
gous carriers investigated by Albert and colleagues 
developed diabetes. The authors suggested that 
partial lipodystrophy in these patients may cause 
insulin resistance (IR) and T2DM. However, a 
larger study group is needed to further confirm the 
role of HSL in the pathogenesis of diabetes.

Synergistic effect of HSL and insulin: 
schematic depiction of links between FFAs, 
lipotoxicity, T2DM, IR, inflammation, fatty 
liver, NAFLD, obesity, etc
Plasma free fatty acids (FFAs) can be reabsorbed 
into the blood in various organs. If these molecules 
are not oxidized, they will accumulate in triglycer-
ides and promote cellular lipotoxicity and mito-
chondrial dysfunction.53 FFAs are also implicated 
in the etiology of obesity-induced IR.54 Conversely, 
IR plays a key role in the lipid hydrolysis of adipose 
tissue, which can induce the transport of excess 
FFAs and accelerate the development of adipose 
toxicity. In humans, a short-term increase in FFAs 
could result in hepatic IR.55 In addition, FFAs can 
interact with the insulin signaling pathway, thus 
promoting the occurrence of IR.56 Circulating 
FFAs, the main source of hepatic fat accumulation 
in nonalcoholic fatty liver disease (NAFLD), are 
derived mainly from lipid hydrolysis of adipose tis-
sue and partly from excess lipoproteins. During 
fasting, plasma FFA concentrations are increased, 
but, after feeding, plasma FFA concentrations are 
decreased due to the antilipolytic effect of insulin.

The excessive consumption of storage capacity is 
usually accompanied by gradual changes in endo-
crine function, and the accumulation of the gener-
ated ectopic fat might lead to lipotoxicity.57 
Intriguingly, lipotoxicity could also promote IR 
and inflammation in the liver.58 At present, lipo-
toxicity is thought to be a contributing factor in the 
progression from simple steatosis to nonalcoholic 
steatohepatitis (NASH).59 In addition, lipotoxicity 
damages insulin signals, causes oxidative damage 
and promotes inflammation and fibrosis.60

In the case of IR, because of the decrease in insu-
lin sensitivity in peripheral tissues, increased levels 
of insulin are needed to metabolize glucose and 
inhibit the production of glucose in the liver. In 
the case of IR, the pancreas is stimulated to 

https://journals.sagepub.com/home/tae


Y-L Lan, J-C Lou et al.

journals.sagepub.com/home/tae	 5

increase insulin secretion in the portal vein, result-
ing in higher levels of insulin in the liver than in 
the periphery. A high concentration of plasma 
insulin is recognized as a biomarker of hepatic 
IR.61 Furthermore, obesity may lead to IR via pro-
moting inflammation. In addition to the influence 
of abnormalities in lipid metabolism, inflamma-
tion could also enhance IR, as previously men-
tioned. Obesity leads to lipid accumulation, 
activating the signaling pathways of nuclear factor-
kappa B (NF-κB) and c-Jun N-terminal kinase 
(JNK), thus increasing the production of proin-
flammatory cytokines, such as interleukin-6 (IL-6), 
and tumor necrosis factor-alpha (TNF-α).62

As mentioned above, HSL and insulin could play 
a joint role in regulating various metabolic disor-
ders in the human body, including lipotoxicity, 
T2DM, IR, inflammation, fatty liver, NAFLD, 
obesity, etc. A schematic depiction of the links 
between these factors is shown in Figure 1.

Implications in treatment of metabolic 
disorders: HSL might be a treatment target

Diabetes
The absence of HSL was strongly associated with 
an increased risk of T2DM. As mentioned above, 

the results of Albert and colleagues suggested that 
HSL activation could be an important approach 
for treating glucose intolerance and dyslipidemia 
in patients with metabolic syndrome or T2DM.43 
Thus, in future research, therapeutic strategies 
activating HSL function via activating the HSL 
enzyme or promoting HSL phosphorylation or 
HSL translocation might be promising, and the 
ensuing modification of relevant molecules, 
including PKA, AMPK, ET-1, perilipin and 
PKG, could be used to identify effective activa-
tors or agonists of HSL. Regrettably, however, no 
specific HSL activator has been found, indicating 
further research is urgently needed.

Obesity
Since HSL is responsible for the release of FFAs 
from stored triacylglycerols in adipose tissues, 
influencing the regulation of HSL can be effective 
for preventing or treating obesity if caloric restric-
tion is ensured at the same time.63 The roles of 
HSL in human obesity have been gradually 
revealed. The importance of HSL expression is 
well established, although discrepancies certainly 
exist. Thus, HSL mRNA expression in subcuta-
neous abdominal adipose tissue in obesity has 
been reported to be increased,64 reduced,65,66 or 
not affected.67,68 However, irrespective of gender, 

Figure 1.  Schematic depiction of the synergistic effect of HSL and insulin in regulating various metabolic 
disorders in the human body, including lipotoxicity, T2DM, IR, inflammation, fatty liver, NAFLD, obesity, etc.
HSL, hormone-sensitive lipase; IR, insulin resistance; NAFLD, nonalcoholic fatty liver disease; T2DM, type 2 diabetes mellitus.
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the majority of studies have found the corre-
sponding HSL protein levels to be reduced in 
obesity.64,65,69,70 Similarly, in the obese state, IR is 
associated with a reduction in HSL mRNA and 
protein in subcutaneous abdominal adipose tissue.71 
In visceral adipose tissue, HSL mRNA levels 
have consistently been found to be upregulated 
in obesity,64,66,67,68 but protein levels seem to be 
unaffected,68 or possibly reduced.64 Overall, 
therapeutic strategies targeting HSL might have 
potential for obesity treatment.

Fatty liver
People with hereditary deficiency of HSL have 
been reported to develop fatty liver.47 Xia and 
colleagues suggested that adipose tissue defi-
ciency of HSL can cause age-dependent hepatic 
steatosis, 47 and adipose tissue is a potential target 
for treating hepatic steatosis in HSL deficiency. 
The authors suggested that strategies for fatty 
liver treatment related to HSL deficiency should 
focus on adipose tissue. However, this result 
should be interpreted with caution given the small 
number of patients included. Because HSL could 
be important for liver function, identification of 
more HSL activators will promote the develop-
ment of stratification strategies in which patients 
are treated based on their HSL expression status. 
However, unlike various other targets, HSL has 
not been validated in epidemiological studies or 
meta-analyses. Thus, more efforts should be 
directed toward exploring HSL-related drugs.

Pancreatic diseases
Lipids were also shown to be required for the nor-
mal function of pancreatic β-cells.72,73 Thus, a 
lipid-derived factor may play important roles in 
insulin secretion. Production of such a factor may 
require the action of a lipase, such as HSL, which 
mobilizes a potential lipid coupling factor from 
complex lipids.74 Thus, HSL deficiency might 
lead to pancreatic disorders. In addition, pancre-
atic HSL could exert an important role in mediat-
ing pancreatic inflammation and tumorigenesis.75 
Uhlen and colleagues detected strong HSL 
expression in pancreatic islets and pancreatic 
intraepithelial (PanIN) lesions and confirmed 
that reduced expression of LIPE (the gene encod-
ing HSL) in pancreatic tissue of patients with 
pancreatic ductal adenocarcinoma (PDAC) is 
associated with decreased overall survival.76 

These findings emphasize the need for caution in 
targeting HSL for pancreatic tumors or various 
other pancreatic disorders. However, an increase 
in the level and activity of HSL has been impli-
cated in the pathogenesis of cachexia,77,78 and 
pharmacological inhibitors of HSL have been 
proposed for the treatment of cancer-associated 
cachexia.78 Thus, whether activating HSL would 
promote the deterioration of the condition of can-
cer patients and disrupt the normal environment 
of the normal human body is unclear. These 
issues could be obstacles for promoting the devel-
opment of effective HSL activators, which may be 
a major challenge.

Skeletal muscle dysfunction
Skeletal muscle IR is linked to the accumulation 
of lipotoxic lipid species. Several studies have 
shown the detrimental role of DAGs in cultured 
myotubes,79,80 as well as in vivo in mouse and 
human skeletal muscle.81–84 Reduced HSL activ-
ity in skeletal muscle is causally linked to IR 
in  vitro. Badin and colleageus also showed that 
HSL knockout mice could exhibit defective skel-
etal muscle insulin signaling and DAG accumula-
tion compared with wild-type mice.85 Thus, HSL 
could be important for normal insulin function in 
skeletal muscle, as well as normal functions of 
skeletal muscle during exercise.

Conclusion
Overall, the regulation of HSL expression and 
activities, especially the crosstalk between insulin 
and HSL, could be have major implications in 
future drug development. Various unanswered 
questions regarding the mechanistic signaling 
pathways of the mutual regulation between HSL 
and insulin, which involve many key regulators of 
metabolism of the human body, need to be 
answered, and various molecules in these path-
ways could also be treatment targets. Currently, 
extensive data from various studies support the 
protective effect of HSL activators. However, 
research results indicating that HSL is the main 
factor of metabolic disorders are rarely reported. 
More research is needed before these data can be 
used and explored by the pharmaceutical indus-
try. More efforts should be directed toward clari-
fying the role of mutual regulation between HSL 
and insulin to address unanswered questions and 
disparities in different studies.
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