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Abstract: Vasculogenesis and angiogenesis play a crucial role in embryonic development. Pathological
neovascularization in ocular tissues can lead to vision-threatening vascular diseases, including
proliferative diabetic retinopathy, retinal vein occlusion, retinopathy of prematurity, choroidal
neovascularization, and corneal neovascularization. Neovascularization involves various cellular
processes and signaling pathways and is regulated by angiogenic factors such as vascular endothelial
growth factor (VEGF) and hypoxia-inducible factor (HIF). Modulating these circuits may represent
a promising strategy to treat ocular neovascular diseases. Lipid mediators derived from membrane
lipids are abundantly present in most tissues and exert a wide range of biological functions
by regulating various signaling pathways. In particular, glycerophospholipids, sphingolipids,
and polyunsaturated fatty acids exert potent pro-angiogenic or anti-angiogenic effects, according
to the findings of numerous preclinical and clinical studies. In this review, we summarize the
current knowledge regarding the regulation of ocular neovascularization by lipid mediators and
their metabolites. A better understanding of the effects of lipid signaling in neovascularization may
provide novel therapeutic strategies to treat ocular neovascular diseases and other human disorders.

Keywords: growth factors and cytokines; polyunsaturated fatty acid; prostaglandin;
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1. Introduction

Living organisms are composed of various organic compounds, including proteins, carbohydrates,
nucleic acids, and lipids. Lipids play crucial roles in numerous cellular processes, acting as cellular
structural components and biological barriers and regulating numerous signaling pathways [1,2].
The biological membranes of eukaryotes are amphiphilic sheaths consisting of a lipid bilayer, which acts
as a cell barrier [3]. The lipid backbones, head groups, chain length, and position and number of carbon
double bonds in fatty acyl chains vary immensely, contributing to the diversity of membranes [4].
Glycerophospholipids, sphingolipids, and sterols are major components of membrane lipids [5].
Additionally, bioactive lipid mediators produced from membrane lipids play pivotal roles in various
biological processes and have been implicated in numerous disorders [6–10]. Mounting evidence
implies that lipid signaling plays a crucial role in angiogenesis [11,12].

Signaling in Ocular Neovascularization

Both vasculogenesis and angiogenesis are essential for the formation of vascular networks.
Vasculogenesis is the process of blood vessel development by endothelial cells originating from
mesoderm-derived progenitor cells [13]. Angiogenesis is the formation of new vessels in response
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to angiogenic factors; the new vessels are formed by sprouting of endothelial cells in pre-existing
vessels [14]. Angiogenesis is profound during embryogenesis but also occurs in adult tissues under
certain circumstances, such as wound healing and tumor development [15]. Both vasculogenesis and
angiogenesis are involved in neovascularization [16].

Mature blood vessels usually remain quiescent, and angiogenesis does not occur under
physiological conditions. However, several stimuli can trigger neovascularization, often leading
to pathogenesis. For instance, chronic hypoxia induces the production of angiogenic factors in human
tissues, promoting vascular growth from pre-existing vessels [17]. Angiogenesis occurs in several
steps. Angiogenic factors trigger endothelial cell sprouting [18], followed by their proliferation and
migration and subsequent vessel elongation [19]. A subset of activated endothelial cells become tip
cells extending numerous filopodia; tip cells guide the vessel sprout toward angiogenic factors, such as
vascular endothelial growth factor (VEGF) and delta-like ligand 4 (DLL4) [20]. Upon Notch signaling,
endothelial cells adjacent to tip cells turn to stalk cells [21], which promote lumen formation. The new
vessels maturate after the formation of the basement membrane by pericytes and vascular smooth
muscle cells [22].

Although angiogenesis is regulated by numerous factors, including fibroblast growth factors (FGF),
neuropilins, platelet-derived growth factors (PDGF), and angiopoietins, VEGF is widely considered
a master regulator of the process. VEGF gradients in avascular areas guide tip cell migration and
induce stalk cell formation, promoting the elongation of new vessels [23]. Vegf knockout (-/-) in mice is
embryonically lethal around midgestation due to vascular defects [24]. VEGF binding to VEGF receptors
(VEGFR1-3) regulates angiogenesis, vasculogenesis, and lymphangiogenesis [25]. Among these
receptors, VEGFR1 and VEGFR2 are predominantly expressed in endothelial cells. VEGFR2, rather
than VEGFR1, is involved in angiogenesis by regulating endothelial cell proliferation, migration,
and viability [26]. Cellular responses to VEGF/VEGFR singling facilitate both physiological and
pathological angiogenesis by modulating other bioactive molecules, including endothelial nitric oxide
synthase (eNOS), mammalian target of rapamycin (mTOR), and Rho family guanosine triphosphatases
(GTPases) [27,28]. In addition to VEGF, hypoxia-inducible factor (HIF) is another critical angiogenic
factor. Under hypoxic conditions, HIF-1α translocates into the nucleus and dimerizes with HIF-1β
binding to hypoxia response elements (HRE); HIF-1α/ HIF-1β dimers promote angiogenesis by
inducing the expression of VEGF, glucose transporter 1 (GLUT1), erythropoietin, and inducible
nitric oxide synthase (iNOS) [29]. Interleukin (IL)-8 is a pro-angiogenic cytokine; it activates various
molecules, including HIF-1, NF-κB, and signal transducers and activator of transcription 3 (STAT3)
via CXC chemokine receptor 1 and 2 [30]. Furthermore, IL-8 transactivates VEGFR2 in endothelial
cells, enhancing endothelial permeability and promoting angiogenesis [31]. Vascular endothelial
(VE)-cadherin is a component of endothelial junctions, which has been shown to drive angiogenesis.
VE-cadherin phosphorylation by VEGF induces endothelial junction disruption and internalization,
promoting endothelial cell migration [32].

The importance of angiogenesis is reflected in the fact that defects in the process have been
implicated in numerous disorders, including cardiovascular diseases and cancer, potentially leading
to death [33]. Ocular neovascularization is one of the conditions caused by aberrant angiogenesis.
Ocular neovascularization is characterized by pathological neovascularization in the retina, choroid,
iris, and cornea (Figure 1) [34]. It is observed in individuals with retinal vein occlusion (RVO),
retinopathy of prematurity (ROP), diabetic retinopathy, age-related macular degeneration (AMD),
neovascular glaucoma, and corneal neovascularization induced by trauma or inflammation [35].

Retinal neovascularization and choroidal neovascularization (CNV) are the most common
vascular diseases of the eye. Retinal neovascularization diseases, such as RVO, ROP, and diabetic
retinopathy, are primarily caused by chronic or severe retinal ischemia [36]. Retinal ischemia induces
the production of intravitreal angiogenic factors [37], leading to the proliferation of retinal blood
vessels. Pre-retinal neovascularization in the vitreous cavity can cause tractional retinal detachment
and vitreous hemorrhage due to increased vascular vulnerability (Figure 2). In severe retinopathy cases,
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pre-retinal neovascularization can lead to vision loss. Considering its importance in angiogenesis,
VEGF is a promising therapeutic target for pathologic retinal neovascularization. Hence, intravitreal
injection of VEGF-targeting agents is currently a standard treatment option for patients with visual
impairments due to pathologic retinal neovascularization [38,39].Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 3 of 23 
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Figure 2. Fundus image of proliferative diabetic retinopathy (PDR) presenting with vitreous (arrow)
and preretinal hemorrhage (arrowhead).

AMD is another common condition that can cause visual impairments. It is more prevalent in
older people and in developed countries. In AMD, lesions often develop within the macula, the central
area of the retina responsible for high-acuity vision. Early-stage AMD manifests as abnormalities in
retinal pigment epithelial (RPE) and drusen deposits without impaired visual acuity [40]. Lipoproteins
and cholesterol represent major components of soft drusen deposits. Late-stage AMD manifests as
exudative AMD or geographic atrophy. CNV is a hallmark of exudative AMD, causing subretinal
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hemorrhage and vascular leakage (Figure 1). Currently, intravitreal administration of VEGF-targeting
agents is the most common treatment for exudative AMD [41–43].

The cornea is characterized by complete avascularity under physiological conditions to maintain
the clarity required for visual acuity [44]. Under pathological conditions, including corneal
infection, traumatic injury, ocular surface inflammation, and limbal stem cell deficiency, corneal
neovascularization and sprouting from the pericorneal plexus can occur [45–47], potentially leading to
vision loss. The new vessels can induce corneal opacification and impair vision. Patients with severe
corneal neovascularization may require corneal transplantation. Various corneal neovascularization
animal models have been established to investigate disease pathology and test novel therapeutics for
artificial general neovascularization as well as corneal neovascularization [48]; in most of these models,
corneal neovascularization is induced by suture, chemical treatments, and surgical implantation of
hydron pellets with reagents containing angiogenic factors [49].

Although numerous efforts have been made to elucidate the mechanisms underlying ocular
neovascularization diseases, the role of bioactive lipids remains elusive. In this review, we summarize
current knowledge regarding the role of lipid signaling in ocular neovascularization.

2. Glycerophospholipids in Ocular Neovascularization

Glycerophospholipids are the most prevalent membrane lipid in mammalian cells. They are
composed of a glycerol backbone, two long-chain fatty acids at sn-1 and sn-2 positions of glycerol,
and phosphoric acid esterified at sn-3 as a headgroup [50]. The different combinations of
headgroups and fatty acids allows for over a thousand glycerophospholipid variants in mammalian
cells. Based on their polar headgroups, glycerophospholipids can be classified into phosphatidic
acids (PA), phosphatidylcholine (PC), phosphatidylethanolamines (PE), phosphatidylserines (PS),
phosphatidylglycerol, and phosphatidylinositol (Figure 3) [51].
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Lysophospholipids are synthesized from glycerophospholipids by phospholipase A (PLA).
PLA1 or PLA2 enzymatically remove an acyl chain at sn-1 or sn-2 [52]. Among lysophospholipids,
lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE) are the most abundant
in mammalian cells [53]. Other lysophospholipids include lysophosphatidic acid (LPA),
lysophosphatidylserine (LysoPS), platelet-activating factor, and 2-arachidonoylglycerol, all of which
are involved in various cellular responses by acting as signaling molecules [54]. Despite the low
intracellular levels of LPA and LysoPS, they regulate important processes, including angiogenesis.
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2.1. Lysophosphatidic Acid (LPA)

Mounting evidence implies that LPA plays a crucial role in the pathogenesis of ocular
neovascularization. Intracellular LPA is synthesized by glycerophosphate acyltransferase, PA-specific
PLA (PA-PLA), and acylglycerol kinase (AGK) [55–57], whereas extracellular lysophospholipids are
converted to LPA by lysophospholipase D (also known as autotaxin; ATX) [58,59]. LPA is predominantly
found in the serum and plasma [60,61].

LPA is involved in various processes, including angiogenesis, cell proliferation, neurite retraction,
and stress fiber formation via LPA receptors [58,62–64]. LPA interacts with specific G-protein-coupled
receptors found on the cell surface. Six LPA receptors (LPA1-6) have been identified thus far
(Figure 4) [65]. LPA1–3 belong to the endothelial differentiation gene family, whereas LPA4–6 belong
to the P2Y receptor family [66]. LPA receptors interact with and activate heterotrimeric Gα proteins,
namely Gαq/11, Gα12/13, Gαi/o, and Gαs, thereby regulating various cellular functions (Figure 4).
Activated G proteins subsequently regulate the activation status of numerous intracellular signaling
molecules, including Rho GTPase, mitogen-activated protein kinases (MAPK), protein kinase B (Akt),
and phosphoinositide 3-kinase (PI3K) [67].
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Numerous human gene analysis and preclinical studies have investigated the roles of LPA
and LPA receptors [68,69]. These studies have shown that LPA is essential for vascularization [70].
Notably, Atx−/− mice were not viable after E10.5 due to severe vascular defects resembling those
in Vegf−/− mice [71]. Atx deletion disrupts the development of vascular networks in the embryo
and yolk sac. Allantois explants from Atx−/− mice formed vessels, although the lack of ATX and
LPA caused endothelial disassembly. These findings imply that the ATX-LPA axis plays a critical
role in vascular formation by stabilizing the immature vascular network. Among the LPA receptors,
LPA-Gα12/Gα13 is reportedly responsible for this process, as a deficiency thereof results in a similar
phenotype to that of Atx−/− mice [72]. A previous study using zebrafish revealed the requirement of
ATX for vascular development, and that suppression of LPA-LPA1 and/or LPA-LPA4, both of which
interact with Gα12/Gα13, was responsible for these vascular defects [73]. Similarly, in the absence of
Rho-associated protein kinases (ROCK-1/2), which act downstream of LPA, mice exhibited impaired
vascular remodeling in the yolk sac [74]. These findings highlight the vital role of LPA/LPA1 and
LPA/LPA4 in vascular development.

In normal human cells, LPA facilitates angiogenesis by enhancing the production of VEGF, IL-8,
MCP-1, and MMP-9 [75,76] in a Gαi/NF-κB-dependent manner, while VEGF upregulation requires
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the binding of LPA on LPA1 and LPA3 [77]. Moreover, LPA induces HIF-1α expression and nuclear
translocation in various cancer cells by activating PI3K/Akt/mTOR and p42/p44 MAPK signaling
pathways [78]. Of note, hypoxia or HIF-1α activation enhances LPA-driven cellular responses [79].
Additionally, LPA induces the expression of various cytokines. Notably, LPA promoted IL-6 expression
by binding to LPA1 [80], whereas binding to LPA1, LPA2, or LPA3 induced IL-8 expression [81].
The LPA-mediated upregulation of these cytokines was dependent on NF-κB activation by PI3K/Akt
and protein kinase C (PKC) signaling pathways. LPA/LPA1 and LPA/LPA3 signaling also upregulated
the expression of numerous cell adhesion molecules [82]. LPA binding to LPA1 activated Rho and
iNOS in vivo [83,84]. Therefore, it has become evident that LPA regulates angiogenesis in ocular tissues
by activating the expression of various angiogenic factors. Nevertheless, the relevance of each LPA
receptor in angiogenesis in different tissues remains unclear.

2.2. Lysophosphatidic Acid and Ocular Neovascularization

The biological roles of ATX and LPA in ocular tissues have been partly characterized. ATX is highly
expressed in retina [85], and the ATX-encoding gene (ENPP2) has been identified as an RPE signature
gene [86]. LPA is required for retinogenesis, promoting retinal growth cone collapse [87,88]. In human
RPE cells, LPA was shown to regulate barrier integrity [89]. These findings imply involvement of
the ATX/LPA axis in retinal function. A recent study assessing the role of LPA and its receptors in
angiogenesis during retinal vascular development demonstrated that endothelial cells of mice deficient
in LPA4 and LPA6 exhibited reduced filopodia and vessel sprouting, with a reduced number of blood
vessels. LPA4/LPA6 coupling with Gα12/Gα13 was also shown to promote retinal angiogenesis, as well
as the global vascularization described above, in mice by activating the Gα12/Gα13-Rho-ROCK axis in
endothelial cells [90]. Gα12/Gα13-Rho-ROCK pathway activation inhibited DLL4/Notch signaling by
activating Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ)
in endothelial cells at the vascular front. These findings imply that LPA4 and/or LPA6 facilitate tip cell
formation and stalk cell proliferation in the retina, promoting angiogenesis (Figure 4).

Several clinical studies have also investigated the role of LPA in pathological ocular
neovascularization. Intravitreal LPA concentrations were significantly elevated in patients with PDR
(proliferative diabetic retinopathy) [91]. Intravitreal concentrations of LPA and PA were significantly
associated with levels of the inflammatory biomarker vascular cell adhesion molecule-1 (VCAM-1).
AGK levels were also higher in PDR patients, implying involvement of the LPA signaling pathway
in the pathology of diabetic retinopathy (Figure 3). A subsequent study confirmed the elevated
levels of LPA and AGK in the vitreous fluid of PDR patients. On the other hand, ATX levels were
significantly lower in PDR patients than in patients without diabetes, implying that AGK-LPA rather
than ATX-LPA may be involved in the development and progression of PDR [92]. According to
a study investigating LPA expression in RVO, levels of LPA and ATX were significantly higher in
vitreous samples from patients with RVO than in samples from patients without RVO. LPA levels
were significantly associated with visual acuity impairments and expression levels of MCP-1, VEGF-A,
IL-6, and IL-8. Changes in central macular thickness secondary to RVO were also correlated with ATX
expression. These findings imply that both LPA and ATX are involved in the pathogenesis of RVO [93].
Nonetheless, the implication of LPA in the pathology of CNV and AMD remains understudied. As LPC
metabolism-related markers were higher in the serum of exudative AMD patients [94], it is likely that
LPA is also involved in AMD pathology. Future in vivo and in vitro investigations are required to
elucidate the biological roles of LPA in pathological ocular neovascularization conditions, in addition
to the physiological vascular formation.

3. Sphingolipids in Ocular Neovascularization

Sphingolipids are one of the main components of the membrane lipid bilayers in eukaryotic cells.
They are derived from palmitoyl-CoA and serine and contain a backbone of sphingoid bases, a fatty acid
attached to the long-chain sphingoid base via an amide bond, and a headgroup [95]. In mammalian cells,
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the headgroup of sphingolipids is a phosphocholine or oligosaccharide. Sphingomyelin, a sphingolipid
with phosphocholine as a polar headgroup, is a primary component of membrane microdomains
called lipid rafts. Sphingomyelin is hydrolyzed by sphingomyelinases (SMase) into ceramides
and phosphocholine [96]. Ceramide regulates various cellular processes, including apoptosis and
senescence [97], and is a central player in sphingolipid metabolism because sphingosine is synthesized
only from ceramide. Ceramidases, including acid ceramidase, neutral ceramidase, alkaline ceramidase
1 (ACER1), ACER2, and ACER3, catalyze the hydrolysis of ceramide to sphingosine [98], which is
then phosphorylated by sphingosine kinases to produce sphingosine 1-phosphate (S1P) (Figure 5).
Sphingolipids act as signaling molecules regulating inflammation, cell viability, and migration [99,100].
S1P has been implicated in both physiological and pathological neovascularization, as detailed in the
next section.
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3.1. Sphingosine 1-Phosphate

S1P is a bioactive lipid consisting of a long-chain sphingoid base and a phosphate polar headgroup.
It is synthesized via the ATP-dependent phosphorylation of the hydroxyl group of sphingosine
by sphingosine kinase-1 (SphK1) and SphK2 [101]. SphK1 is predominantly found in the cytosol
adjacent to the plasma membrane, whereas SphK2 is located in the endoplasmic reticulum, nucleus,
and mitochondria [102,103]. S1P interacts with specific G-protein-coupled receptors localized on the
cell surface (S1P1-5), initiating autocrine, paracrine, or endocrine signaling. S1P receptors are coupled
to Gαi/o, Gαq/11, and Gα12/13 (Figure 6) [104]. S1P1, S1P2, and S1P3 are ubiquitously expressed,
whereas S1P4 is primarily expressed in lymphoid tissues, and S1P5 is expressed in the brain and
spleen [105,106]. S1P levels are relatively higher in the blood than intracellularly; the concentration
of serum S1P in healthy humans is approximately 1 µM [107]. S1P is stored in endothelial cells,
erythrocytes, and thrombocytes [108,109].
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Similar to LPA, S1P acts as an angiogenic factor, promoting embryonic vascular development.
Sphk1/2−/− mice were devoid of S1P and embryonically lethal due to profound blood vessel defects
between E9.5 and E13.5, leading to cranial hemorrhage and implying that S1P is essential for vascular
development [110]. Among S1P receptors, S1P1 is considered the most important for the S1P-mediated
effects in vascular development. S1pr1-deficient mice exhibited severe vascular smooth muscle defects
and hemorrhage, which led to embryonic death [111]. Moreover, the deletion of S1pr2 and/or S1pr3
in S1pr1−/− mice elicited even more severe vascular maturation defects, leading to lethality. S1pr1-3
triple knockout mice had a reduced number of branches and capillary networks, implying that
the interplay of the signaling pathways induced by S1P1, S1P2, and S1P3 is also crucial for vessel
development [112]. These reports collectively imply that the S1P/S1P1-3 axis is essential for embryonic
vascular development.

S1P is believed to promote neovascularization through the activation of angiogenic factors
(Figure 6). S1P binding to S1P2 promotes VEGF and MMP-2 activation [113]. S1P has been shown to
prevent HIF degradation, promoting HIF-1α signaling independently of hypoxia [114]. Additionally,
S1P has been shown to induce HIF-1α expression by activating MAPK and PKCβI in a Gαi/o-dependent
manner [115]. Conversely, HIF-2α, a HIF-α subunit predominantly expressed in endothelial cells,
cardiomyocytes, and glial cells [116], upregulated the expression of SphK1 by binding to SphK1



Int. J. Mol. Sci. 2020, 21, 4758 9 of 22

promoter [117]. These reports imply that S1P regulates both physiological and pathological angiogenesis
by promoting the expression and activation of various angiogenic factors and that hypoxic cellular
responses promote S1P expression. Additionally, S1P binding to S1P2 enhanced IL-8 secretion by
activating p38 MAPK and extracellular signal-regulated kinase (ERK) 1/2 pathways [118,119]. S1P/S1P1
also modulates endothelial cellular junctions by inducing the translocation of VE-cadherin to adherens
junctions and enhancing barrier integrity through Rho and/or Rac activation [120]. On the other
hand, the S1P2/Rho/ROCK/PTEN axis as well as VEGF signaling promotes the phosphorylation of
VE-cadherin [121]. As different S1P receptors may have opposing biological functions [122], the effects
of S1P vary depending on the S1P receptor.

3.2. Sphingosine 1-Phosphate and Ocular Neovascularization

S1P is generated in the retina among other tissues [123], and the essential roles of S1P and S1P
receptors in the retinal vascular formation have become apparent. S1pr1 deficiency in endothelial cells
increased the number of tip cells and enhanced filopodia formation. Additionally, S1pr1 depletion in
endothelial cells led to ectopic endothelial hyper-sprouting and subsequent endothelial hyperplasia
without pericyte coverage in the retina, resulting in vessel defects and lack of mural cells. The loss of
S1pr1 also impaired VE-cadherin stabilization at endothelial cell–cell junctions, resulting in vascular
leakage and lethality [124]. These reports imply an important role for S1P1 in stabilizing sprouting
angiogenesis in the retina. Consistently, S1pr1-3 triple knockout mice exhibited a disorganized retinal
vascular endothelium with hyper-sprouting and a lack of vascular endothelial barrier and capillary
lumens [125]. Moreover, S1pr1-3 deficient mice had insufficient blood perfusion in the retina and
severe vascular structure defects due to impaired endothelial cell specialization. S1P has been shown
to regulate vascular maturation partly by suppressing the expression of the transcriptional factor
JunB in endothelial cells located behind the vascular front. These findings imply that S1P and S1P
receptors (mainly S1P1) are required for endothelial cell specialization and vessel maturation in the
retina independently of VEGF.

In addition to their role in the physiological vascular development, S1P and S1P receptors have been
implicated in pathological retinal neovascularization. A study using an oxygen-induced retinopathy
(OIR) mouse model demonstrated that SphK2 overexpression promoted retinal angiogenesis under
normoxic conditions [126], reducing the avascular retinal area and exacerbating pathological retinal
neovascularization in hypoxia. Conversely, SphK2−/− ameliorated retinal neovascularization and
decreased the expression of VEGF and angiopoietin, highlighting the crucial role of SphK2/S1P
in normal and pathological retinal angiogenesis. Similar to SphK2−/− mice, S1P2−/− mice lacked
intravitreal pathological neovascular tufts, confirming the role of S1P2 in pathological retinal
neovascularization [127]. However, in contrast to SphK2 deletion, S1pr2 deficiency significantly
decreased the avascular retinal area and restored the formation of retinal vasculatures and capillary
plexus, partly due to the negative regulation of eNOS. Considering that S1P1 is the most important
S1P receptor regulating retinal vessel formation, these results imply that S1P is required for both
physiological and pathological retinal angiogenesis and that S1P/S1P2 may be an essential regulator of
pathological retinal neovascularization without affecting the retinal vascular morphology.

Laser-induced CNV and sub-retinal fibrosis induction were alleviated by the intravitreal
administration of anti-S1P antibodies [128]. Several humanized anti-S1P monoclonal antibodies
repressed CNV in mouse models by inhibiting the IL-8-mediated lymphocyte trafficking [129]. Notably,
S1P2 promoted CNV formation by regulating the production of angiogenic factors and inflammatory
mediators as well as promoting barrier disruption [130,131]. Although the mechanisms underlying the
S1P regulation in pathological neovascularization remain elusive, these findings pinpoint S1P signaling
as a promising therapeutic target to suppress pathological retinal and choroidal neovascularization.
Unfortunately, a phase II clinical trial found that the intravitreal administration of an anti-S1P antibody
could not improve visual impairment in exudative AMD patients [132]. However, there is a possibility
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that other anti-S1P antibodies or drugs targeting a specific S1P receptor may have the therapeutic effect
for exudative AMD.

Yonetsu et al. [133] evaluated the role of S1P and S1P receptors using a corneal neovascularization
rabbit model; they found that an S1P1-3 antagonist suppressed corneal neovascularization. Similarly,
the S1P receptor modulator FTY720 attenuated corneal neovascularization and vascular leakage
induced by VEGF or S1P [134]. Although it remains unclear which S1P receptor was responsible for
these effects, these observations imply that S1P and S1P receptors are also involved in the pathogenesis
of corneal neovascularization.

4. The Role of Fatty Acids and Their Metabolites in Ocular Neovascularization

Eicosanoids are fatty acids synthesized from C20 fatty acids, such as arachidonic acid (AA) and
eicosapentaenoic acid (EPA), by fatty acid oxygenases (Figure 7) [135]. Docosanoids are derived from
C22 fatty acids, including docosahexaenoic acid (DHA).ω-6 fatty acids, such as prostaglandin (PG),
thromboxane (TX), leukotriene, and lipoxin, are produced from AA [136]. These AA metabolites are
further metabolized by cyclooxygenase (COX)1 and 2 to produce various bioactive lipids, including
PGD2, PGE2, PGF2α, prostacyclin (PGI2), and TXA2 (also known as 2-series prostanoids), which are
generally considered to have proinflammatory effects. In contrast, ω-3 fatty acids generated from
EPA, including PGD3, PGE3, PGF3α, PGI3, and TXA3 (3-series prostanoids), exert anti-inflammatory
effects [137]. Compared with lysophospholipids, the effects of eicosanoids and docosanoids in ocular
tissues have been more extensively investigated [138].
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4.1. ω-6 Polyunsaturated Fatty Acids

ω-6 polyunsaturated fatty acids (PUFAs) are considered a pathological angiogenic factor in ocular
tissues. Of note, AA or its derivatives promote retinal vascular degeneration, and the inhibition of
multiple 2-series prostanoid receptors repressed retinal and choroidal neovascularization in animal
models [11,139,140].
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The biological effects of PGE2 have been extensively investigated over many years. It is synthesized
by COX from PGH2, which also produces PGD2, PGF2α, PGI2, and TXA2. PGE2 is a potent angiogenic
lipid mediator exerting its effects through G protein-coupled receptors (EP1-4) via autocrine and
paracrine signaling. EP1 is coupled to Gαq/11, modulating intracellular Ca2+ levels [141]. EP2 and EP4
are coupled with Gαs activating adenylate cyclase, which subsequently produces cyclic adenosine
monophosphate (cAMP) [142]. In contrast, EP3 is coupled with Gαi/o suppressing adenylate cyclase
and promoting Ca2+ influx [143].

PGE2 promotes angiogenesis by enhancing the production of various cytokines, including tumor
necrosis factor (TNF)-α, IL-6, basic fibroblast growth factor (bFGF), and VEGF [144,145]. In several
tissues, PGE2 promotes VEGF and CX3CR1 expression [146,147] partially via PI3K/Akt/mTORC1
pathway activation [148,149]. In HEK-293 cells, PGE2 enhanced VEGF and VEGFR1 expression in
a Gαi/o-dependent manner [150]. EP4 also promoted VEGF expression [151,152] and has recently
emerged as a promising anti-cancer target by suppressing tumor angiogenesis [146,153]. Additionally,
PGE2 induced TNF-α expression in macrophages [154], as well as enhanced CXCL12 expression,
promoting inflammation and angiogenesis [155].

Hypoxia induced the expression of COX-2 and PGE2 in retinal Müller cells; PGE2 subsequently
enhanced VEGF expression, likely via EP2 and/or EP4 [156]. These results imply that PGE2 is
an important prostanoid associated with retinal neovascularization. Numerous studies have shown
that PGE2 mediated retinal vascularization in a Gαi/o-dependent manner. Mice lacking EP3 exhibited
impaired retinal embryonic angiogenesis due to DLL4/Notch signaling inhibition in endothelial
cells [157]. The same study also showed that the endothelial-specific silencing of EP3 attenuated
the recruitment of tip cells, implying that EP3 modulates developmental angiogenic processes in
endothelial cells.

EP4 has also been implicated in pathological angiogenesis. PGE2/EP4 axis inhibition suppressed
pathological neovascularization in OIR and laser-CNV mouse models [158]. The importance of PGE2 in
corneal neovascularization has also been reported. PGE2 levels were elevated in a corneal suture-injury
mouse model; PGE2 exacerbated corneal neovascularization by promoting chronic inflammatory
neovascularization [159]. It is worthy to note that COX2 inhibitors suppressed ocular pathological
neovascularization in retina, choroid, and cornea [160–162], implicating COX2 is also involved in the
pathogenesis of ocular neovascularization as well as PGE2.

4.2. ω-3 Polyunsaturated Fatty Acids

In contrast to 2-series prostanoids, 3-series prostanoids have anti-angiogenic and anti-inflammatory
effects that protect against several disorders [163]. EPA and DHA found in retinal microvessels are
thought to have protective effects against retinal vascular diseases [164]. For instance, ω-3 PUFAs
(EPA and DHA) inhibited the expression of TNF-α, IL-1β, VEGF, and cell adhesion molecules in
the retina in response to hypoxia or angiogenic factors [165,166]. Similarly, bioactive compounds
derived from EPA and DHA, including resolvin E1 (RvE1) and D1 (RvD1), suppressed retinal vascular
diseases [167,168].

Oral supplementation with ω-3 PUFAs, including EPA and DHA, suppressed retinal obliteration
and pathological neovascularization in an OIR mouse model, by inhibiting proinflammatory cytokine
secretion in retinal microglia [169]. RvD1 and RvE1 also inhibited neovascularization, implying
that ω-3 PUFA supplementation is a promising prevention strategy for retinal vascular diseases.
Additionally, peroxisome proliferator-activated receptor (PPAR), whose ligand isω-3 PUFAs, reportedly
has protective effects against pathological retinal and choroidal neovascularization [166,170,171],
implicating that PPAR agonists can be considered as a therapeutic option. Furthermore, dietary intake
ofω-3 PUFAs may protect against AMD. The prevalence of exudative AMD presenting with CNV was
higher in people who did not consume fish, which are enriched in EPA and DHA [172]. Furthermore,
ω-3 PUFA intake lowered the twelve-year incidence of AMD [173]. These findings strongly imply
that ω-3 PUFAs have a protective effect against AMD. Consistently, ω-3 PUFA supplementation
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suppressed laser-induced CNV in mice; it also decreased intravitreal concentrations of VEGF-A and
alleviated exudative CNV in humans [174,175]. RvD1 and RvE1 attenuated corneal neovascularization
induced by herpes simplex virus (HSV)-1 infection, manual suture, or implantation of pellet secreting
angiogenic factors. Their anti-angiogenic effects were attributed to their ability to inhibit the infiltration
of inflammatory cells and secretion of cytokines, such as VEGF-A, MMP-9, IL-1β, TNF-α [176,177].
The findings of these studies indicate ω-3 PUFAs to be a promising therapeutic option for patients
with ocular pathological neovascularization.

5. Future Perspectives

Numerous studies on membrane lipids and their metabolites demonstrate the crucial role of lipid
signaling in ocular neovascularization, among other conditions. Glycerophospholipids, sphingolipids,
and fatty acids have strong pro-angiogenic or anti-angiogenic effects by activating complex signaling
circuits. Future studies are required to elucidate the mechanisms underlying the effects of lipid
signaling in ocular neovascularization and other human disorders.

Author Contributions: Conceptualization, R.T. and H.K.; writing—original draft preparation, R.T.; writing—review
and editing, H.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: Authors appreciate Makoto Aihara, (Professor and Chair of Department of Ophthalmology,
Graduate School of Medicine, The University of Tokyo), and Megumi Honjo for their assistance.

Conflicts of Interest: Authors declare no conflict of interest.

Abbreviations

AA arachidonic acid
ACER alkaline ceramidase
AGK acylglycerol kinase
Akt protein kinase B
AMD age-related macular degeneration
ATX autotaxin
cAMP cyclic adenosine monophosphate
CNV choroidal neovascularization
COX cyclooxygenase
DHA docosahexaenoic acid
DLL4 delta-like ligand
eNOS endothelial nitric oxide synthase
EP prostaglandin E2 receptor
EPA eicosapentaenoic acid
ERK extracellular signal-regulated kinase
FGF fibroblast growth factor
GLUT glucose transporter
GTPases guanosine triphosphatases
HIF hypoxia inducible factor
HSV herpes simplex virus
HRE hypoxia response elements
IL interleukin
iNOS inducible nitric oxide synthase
LPA lysophosphatidic acid
LPC lysophosphatidylcholine
LPE lysophosphatidylethanolamine
LysoPS lysophosphatidylserine
MAPK mitogen-activated protein kinase
mTOR mammalian target of rapamycin
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NV neovascularization
OIR oxygen-induced retinopathy
PA phosphatidic acid
PA-PLA phosphatidic acid specific phospholipase A
PC phosphatidyl choline
PDGF platelet-derived growth factor
PDR proliferative diabetic retinopathy
PE phosphatidylethanolamines
PG prostaglandin
PGI2 prostacyclin
PI3K phosphoinositide 3-kinase
PKC protein kinase C
PLA phospholipase A
PLD phospholipase D
PPAR peroxisome proliferator-activated receptor
PS phosphatidylserine
PUFA polyunsaturated fatty acid
ROCK Rho-associated protein kinase
ROP retinopathy of prematurity
RPE retinal pigment epithelium
Rv resolvin
RVO retinal vein occlusion
SMase sphingomyelinase
STAT signal transducers and activator of transcription
SphK sphingosine kinase
S1P sphingosine 1-phosphate
TAZ transcriptional co-activator with PDZ-binding motif
TNF tumor Necrosis Factor
TX thromboxane
VCAM vascular cell adhesion molecule
VE vascular endothelial
VEGF vascular endothelial growth factor
VEGFR vascular endothelial growth factor receptor
YAP yes-associated protein
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