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Abstract

Signal transduction governs cellular behavior, and its dysregula-
tion often leads to human disease. To understand this process, we
can use network models based on prior knowledge, where nodes
represent biomolecules, usually proteins, and edges indicate inter-
actions between them. Several computational methods combine
untargeted omics data with prior knowledge to estimate the state
of signaling networks in specific biological scenarios. Here, we
review, compare, and classify recent network approaches accord-
ing to their characteristics in terms of input omics data, prior
knowledge and underlying methodologies. We highlight existing
challenges in the field, such as the general lack of ground truth
and the limitations of prior knowledge. We also point out new
omics developments that may have a profound impact, such as
single-cell proteomics or large-scale profiling of protein conforma-
tional changes. We provide both an introduction for interested
users seeking strategies to study cell signaling on a large scale and
an update for seasoned modelers.
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Introduction

The cell senses, integrates, and transmits information from/to its

environment via signaling cascades, largely mediated by proteins

and their post-translational modifications (Deribe et al, 2010). The

activation or inhibition of these cascades usually results in new

transcriptional and metabolic programs that depend on the received

stimuli and can lead to different cellular responses (Weidem€uller

et al, 2021). In biology, networks are used to conceptually represent

not only signaling, but also gene regulation and metabolism (see

Fig 1). In these networks, nodes constitute biological entities (e.g.,

proteins or metabolites) and edges indicate known or predicted rela-

tionships between them. When networks are constructed based on

previous discoveries, they are often referred to as prior knowledge

networks (PKNs).

Biological databases store and update PKNs that summarize

decades of research and knowledge with variable levels of detail.

While resources such as STRING (Szklarczyk et al, 2021) store

undirected interactions, others like BioGRID (Oughtred et al, 2021)

or SIGNOR (Licata et al, 2020) contain directed ones. The direction

of the interaction usually reflects causal statements, while undi-

rected edges describe other types of relationships or unspecific/un-

known interactions (e.g., proteins bind, but it is unclear if this has a

functional impact) (Tour�e et al, 2020). This level of detail can be

further increased to answer different questions. The SBGN standard

(Le Nov�ere et al, 2009) defines (i) Activity Flow networks, repre-

senting biological processes as directed interactions among bioenti-

ties and (ii) Process Description networks, containing granular and

detailed information, such as the subcellular location of proteins or

reactions’ kinetics and cofactors (Vogt et al, 2013). In general, the

greater the amount of information contained in a PKN, the greater

the amount of mechanistic knowledge that can be extracted from it,

although this is also associated with a greater complexity (Fig 2).

PKNs can represent one or multiple types of biological processes.

For instance, networks derived from the kinase-substrate dataset in

PhosphoSitePlus (Hornbeck et al, 2015) encode only a particular

type, phosphorylation, while the PKN developed in COSMOS

(Dugourd et al, 2021) is composed of reactions among metabolites,

activations/inhibitions among signaling proteins and metabolite-

protein interactions. When a subnetwork is associated with an indi-

vidual biological process, or is built around a particular biological

entity, it is commonly referred to as a biological pathway. For exam-

ple, focusing on a particular protein, a pathway may represent

upstream and downstream regulatory processes associated with it

(e.g., the TP53 pathway). Similarly, if we focus on metabolites, the

term pathway is employed to refer to the set of reactions involved in

their synthesis and/or consumption (e.g., the glycolysis pathway).

Well-known repositories of biological pathways are KEGG (Kanehisa
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et al, 2021), Reactome (Gillespie et al, 2022) and WikiPathways

(Martens et al, 2021). Of note, nodes and interactions can be part of

multiple pathways. For example, the TP53 transcription factor may

appear both in the TP53 pathway and in the cell cycle pathway. The

concept of pathways is commonly used to study signaling and is

explicitly considered in some modeling methods.

PKNs can be combined with various types of molecular measure-

ments to study the process that they represent in specific biological

scenarios, such as disease. In this context, untargeted omics tech-

nologies have become increasingly popular, as they can be applied

without defining a subset of interesting molecular features before-

hand (Sobsey et al, 2020). Next-generation sequencing (NGS) tran-

scriptomics and mass-spectrometry (MS) phosphoproteomics are

common techniques to generate hypotheses about cellular signaling,

and have been extensively applied in large consortia like The Cancer

Genome Atlas Consortium (TCGA) (Cancer Genome Atlas Research

Network et al, 2013) or the Clinical Proteomics Tumor Analysis

Consortium (CPTAC) (Ellis et al, 2013). Phosphoproteomics pro-

vides measurements of phosphorylation events, a key mediator of

signal transduction (Aebersold & Mann, 2016), while transcriptomic

techniques measure the abundance of different types of RNA mole-

cules (Stark et al, 2019), which are often used as a proxy for protein

signaling activities (Szalai & Saez-Rodriguez, 2020). Although these

technologies offer comprehensive molecular measurements of the

biological system under study, they are still far from covering all the

axes of complexity that characterize cellular signaling (see Box 1).

It is also important to note that signaling PKNs, including path-

ways, are subject to certain levels of research bias. Previous work

suggests that a small number of proteins have been more exten-

sively studied and are better understood and easier to link to func-

tions compared to others (Edwards et al, 2011; Weidem€uller

et al, 2021; Kustatscher et al, 2022). Related to this, signaling has

been studied much more in certain contexts, such as cancer, than in

other biological contexts (de Magalh~aes, 2021) (see Box 2).
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Figure 1. Three major types of intracellular biological networks: metabolic reaction networks, gene regulatory networks, and, the focus of this Review,
protein signaling networks.
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Bearing these limitations in mind, several computational meth-

ods have been developed in recent years to model cellular signaling

through the integration of omics data and PKNs. Here, we review

methods that:

1 Have an associated manuscript published in the last 10 years

(2012–2022).

2 Have an open-source software implementation.

3 Use measurements from transcriptomics, phosphoproteomics, or

both as input.

4 Use directed networks (signed or unsigned) to represent prior

knowledge.

5 Can handle input PKNs that contain more than 1,000 nodes (either

as a whole or as a combination of multiple pathways).

6 Use the directionality of the PKN to some extent.

7 Output cellular signaling networks, or ranking of networks, that

are expected to provide a mechanistic explanation for the

observed patterns in the input omics data.

In total, we reviewed 35 methods and selected 14 fulfilling these

criteria (Table 1.).

A heterogeneous portfolio of methods, software,
and applications

The 14 methods that fulfill these criteria are as follows: DEGraph (Jacob

et al, 2012), CLIPPER (Martini et al, 2013), TEAK (Judeh et al, 2013),

DEAP (Haynes et al, 2013), TieDIE (Paull et al, 2013), sub-SPIA (Li

et al, 2015), PHONEMES (Terfve et al, 2015), CausalR (Bradley & Bar-

rett, 2017), HiPathia (Hidalgo et al, 2017), TPS (Köksal et al, 2018),

CARNIVAL (Liu et al, 2019), NicheNet (Browaeys et al, 2020), KPNN

(Fortelny & Bock, 2020), and CausalPath (Babur et al, 2021). We

provide a brief description for each reviewed method in Box 3.

As this field is relatively recent, the technical vocabulary and levels

of mathematical detail diverge between publications. Similarly, the

software packages accompanying the methods are different in form,

ranging from software with graphical user interface to collections of R

and Python scripts. There are multiple publications describing differ-

ent versions of certain methods, as is the case for CLIPPER (Massa

et al, 2010; Martini et al, 2013), HiPathia (Hidalgo et al, 2017; Rian

et al, 2021) and PHONEMES (Terfve et al, 2015; Gjerga et al, 2021).

Relatedly, there are also articles where the reviewed methods were

expanded, refined, or applied to different data modalities, such as

TieDIE (Paull et al, 2013) to phosphoproteomics (Drake et al, 2016),

HiPathia (Hidalgo et al, 2017) to single-cell transcriptomics (Falco

et al, 2020), or CARNIVAL’s core formulation (Liu et al, 2019) to

multi-omics in COSMOS (Dugourd et al, 2021). The underlying meth-

ods are very heterogeneous, and we decided to review them in terms

of three major properties: (i) characteristics of input measurements,

(ii) content of PKNs, and (iii) methodological properties, which we

discuss in the following sections (see also Table 2.).

Molecular readouts: Transcriptomics
and phosphoproteomics

Omics technologies provide a molecular snapshot of the biological

system under study. In the context of this Review, both transcrip-

tomics and phosphoproteomics measurements are used to estimate

the activity levels of proteins. Four methods, PHONEMES, TieDIE,

CausalPath, and TPS, were designed for or applied to phosphopro-

teomics, while the remaining ten methods were designed for the

analysis of transcriptomics data. In addition, TieDIE, CausalPath,

and CARNIVAL (COSMOS) were also applied to simultaneously ana-

lyze transcriptomics and phosphoproteomics data.

The number of available methods for the analysis of phosphopro-

teomics data, which captures signaling more directly, is smaller than

for transcriptomics. This may be explained by data availability:

Transcriptomics has offered genome-wide coverage for more than

20 years, first with microarrays and later with RNA sequencing

(RNA-Seq) (Lowe et al, 2017), while reliable phosphoproteome-
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Figure 2. Prior knowledge networks may contain different levels of detail. Edge color and shape represents the sign of interactions: Activations (red)
and inhibitions (blue).
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based measurements at scale are a more recent development. Most

untargeted and large-scale measurements of the phosphoproteome

are currently obtained through MS-based approaches (Aebersold &

Mann, 2016), quantifying the abundance of peptides that carry one

or multiple phosphorylations. On human samples, modern protocols

offer coverage above 5,000 phosphoproteins (proteins where at

least one phosphorylation is detected) with rapidly decreasing costs

and sample requirements (Bekker-Jensen et al, 2020; Satpathy

et al, 2020), but are overall still behind transcriptomic techniques in

terms of coverage (10,000–20,000 messenger RNAs, depending on

sequencing depth).

Some methods can exploit different levels of resolution in the

input omics data. Most approaches were applied to omics data gen-

erated from bulk samples, which represent a compound signal that

summarizes the status of multiple cells or cell types. In contrast,

HiPathia, NicheNet, and KPNN were applied to data obtained at

single-cell resolution. Both TPS and PHONEMES contain algorithms

designed to deal with time series observations. These exploit the

temporal order of measurements to create hypotheses based on the

dynamic nature of cell signaling, a fundamental property of cellular

regulation (see Box 1). Of note, although TPS and PHONEMES

employ an ad hoc strategy to deal with time-resolved data, any

method that performs contrast tests can potentially be applied to

time series data if these are used as sets of pairwise comparisons, as

shown in CausalPath.

The methods use data which, after initial preprocessing, define

one value for each possible combination of sample (observation)

and gene or phosphosite (feature) (e.g., normalized gene expres-

sion matrices derived from RNA sequencing). While TEAK,

HiPathia, and KPNN can be directly applied to such data (referred

to as “measurements”), all other methods require additional pre-

processing, typically in the form of statistical tests using contrasts

or correlations. The results of these statistical tests are then used

as inputs (referred to as “scores” from here on). TPS employs

both omics measurements and statistical scores. The additional

preprocessing may introduce biases through the selection of the

tests to be carried out or through the choice of thresholds

(Wicherts et al, 2016). However, methods that do not require this

step may also add biases in the post-modeling analysis, as these

methods also require users to select certain thresholds, such as

the number of top-ranked relevant networks. Most of the

approaches that take measurements as input cannot work with

statistical scores, creating a methodological barrier that makes it

difficult to compare the methods.

Regardless of the level of preprocessing, the input data can be

employed in a continuous scale or discretized. This is usually

related to the numeric form that each method uses to model signal-

ing, although it does not always coincide (e.g., CARNIVAL models

node signaling states as discrete values, but transcriptomics scores

are employed in a continuous form in its objective function). Some

discrete measurements take the form of the sign of the contrast/cor-

relation scores, namely {�1, 0, 1} for down-regulation (or negative

correlation), no change (no correlation), and up-regulation (positive

correlation), respectively. Another common form is to simply assign

either a True or a False state (i.e., Boolean variables), which indi-

cates whether a gene or phosphosite is considered perturbed or not.

Data discretization connects with the abstraction process described

above and in Box 1, and is a common strategy to scale the models

to the large amount of molecular data generated by omics tech-

niques, at the price of losing information.

Box 1. The complexity of cellular signaling networks

Cell signaling is a biological process that the scientific community has been trying to model and understand for decades, and there are several axes of
complexity that complicate this effort. The methods examined in this Review abstract part of this complexity to scale the models to hundreds/thou-
sands of molecules and large networks, relying on certain assumptions that we attempt to briefly decompose in this box.
First, signaling is a highly dynamic and interconnected biological process. At the structural protein level, events occur on a microsecond scale. Most phos-
phorylation cascades occur on a scale of seconds or minutes (Blazek et al, 2015). In contrast, the abundance of proteins is functionally regulated in a time
scale of hours to days (Buccitelli & Selbach, 2020). Also, most signaling processes do not occur in a linear fashion and are instead affected and controlled
by feedback mechanisms that create complex dynamic behaviors (Brandman & Meyer, 2008). Multiple computational models aim to capture the dynam-
ics of signaling using methods like ordinary differential equations (Hass et al, 2019). However, these models need to estimate a large number of parame-
ters from the data, as prior knowledge does not typically provide the kinetic details of most signaling reactions. Quantitative dynamic models of signaling
become intractable for large networks as the search space of the parameters increases exponentially with the model size.
To simplify the modeling task, almost all methods described in this Review make the strong assumption of steady states of signal transduction and
then compare these hypothetical steady states between measured biological conditions. In general, this assumption does not hold true, especially in
response to perturbation, a scenario that is particularly informative of signaling processes (Saez-Rodriguez & Bl€uthgen, 2020). It can, nevertheless, be
a suitable assumption to model changes in basal signaling processes (e.g., tumor cells versus normal cells).
Cell signaling is intrinsically a spatial process. At the protein level, post-translational modifications induce conformational changes that are essential
for regulating protein activity (McClendon et al, 2014). When multiple proteins are considered, certain signal transmission events, such as phosphory-
lations, require physical contact between the entities involved. At a larger scale, some signaling phenomena consist of translocation between subcellu-
lar compartments, such as transcription factors that are activated and subsequently migrate to the nucleus (Weidem€uller et al, 2021). Finally,
signaling can also propagate between adjacent cells through juxta- and paracrine signaling (Gerosa et al, 2020). Similarly to temporal complexity, the
lack of data limits the application and validation of the few computational methods that aim to capture signaling with spatial resolution.
In addition to time and space, there are many other elements that are simplified or disregarded when scaling up models of signaling. Examples
include protein complex formation or priming phosphorylation events, both of which are required for certain signaling events to take place (Aoki &
Yoshida, 2017). Moreover, when multiple interactions influence a single downstream protein, determining its signaling activity is not always possible
from a simple graphical description (activity flow). While formalisms such as logic gates can deal with these situations (Abou-Jaoud�e et al, 2016), the
information to define these gates is not always available, though they can be built by further manual curation or fitting to data.
Overall, cell signaling is a very complex process that we need to simplify to generate models that are able to digest a large number of measurements
and vast networks.
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Finally, certain methods can use additional inputs apart from omics

data. We do not refer here to external information regarding observa-

tions (e.g., samples’ experimental group), but rather to information

that can be used to reduce the complexity of the modeling problem.

For instance, NicheNet asks users for a set of ligands and transcrip-

tional targets that are then connected through its PKN using shortest

Box 2. Publication bias in prior knowledge

To illustrate some of the biases in signaling prior knowledge, we retrieved data from OmniPath (T€urei et al, 2016) and PubTator (Wei et al, 2019) as of 25-
04-2022. We first created a phosphorylation-driven signaling network from OmniPath. To do so, we restricted the “enzsub” collection, which comprises
interactions between enzymes and substrates, to “phosphorylation” and “dephosphorylation” events. Then, we filtered out self-interactions and interac-
tions without at least one supporting reference (identified in OmniPath as those with a curation effort = 0). We used PubTator to match articles in
PubMed to biological entities such as genes, cell lines, and diseases. In the signaling network, most nodes have a low degree (defined as the total number
of incoming and outgoing interactions), while a small proportion of nodes account for the majority of interactions (Box Fig 1A). The degree distribution is
partially correlated with the total number of times that nodes are mentioned in the PubMed database (Box Fig 1B). Some well-known examples, such as
TP53 or AKT1, are among the best studied and most connected nodes. We also investigated the most frequent entities found within the 12,170 articles pro-
viding bibliographic support for the signaling network (Box Fig 1C and Box Fig 1D). “HeLa” is the entity with the most mentions within cell lines, and the
disease entity “Neoplasms” appears in 60% of the literature. These results illustrate how signaling interactions are investigated more in certain biological
contexts than in others. Data and code to reproduce the results shown in the Box Figure have been deposited in https://zenodo.org/ with the DOI identifier
10.5281/zenodo.6541931.

Biases in prior knowledge. (A) Histogram showing the node degree distribution in the signaling network (binwidth = 1). (B) Hexbin plot of node degree (X-
axis) versus number of mentions in PubTator (Y-axis) for all the genes in the signaling network. The hexagon color represents the number of genes on each
binned region (bins = 50). Bottom-right text indicates the Pearson correlation coefficient between the two variables and its significance. The position of
“TP53” and “AKT1” genes in the hexbin plot is labeled. (C, D) Barplots reflecting the top 25 biological entities with the highest proportion of mentions
within the literature supporting the signaling network.
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paths. The set of interesting ligands can be either selected using Niche-

Net’s framework to predict ligand activities, or directly provided by

the user. CARNIVAL and PHONEMES can use information about pro-

teins that are known to be perturbed and that initiate the signal trans-

mission, for example, drug targets or genetic perturbations. Finally,

TieDIE and TPS require additional input data that represent the source

of perturbation to be connected with measured nodes through the

PKN. In TieDIE, these additional inputs can be obtained from other

omics layers from the same or related samples (e.g., somatic muta-

tions from genomics). All other methods only use measurements and

scores derived from transcriptomics or phosphoproteomics data.

The sources of prior knowledge

PKNs summarize many, typically thousands, known biochemical

interactions extracted from previous experiments, which can have

different levels of supporting evidence and curation. For example,

the physical interactions retrieved from BioGRID can be supported

by up to 17 different types of experimental evidence, including cate-

gories like “co-localization” or “biochemical activity.” In contrast,

there are databases that contain interactions generated from predic-

tive approaches, which are rarely backed by confirmatory experi-

mental evidence. For instance, NetworKIN predicts kinase–substrate

interactions based on sequence similarity searches and protein–pro-

tein interactions (Linding et al, 2008). Most of the interactions that

compose the PKNs employed by the reviewed methods fall in the

first category (databases with curated interactions), although some

methods such as TPS and CausalR do not mention specific sources

of prior knowledge.

The PKNs used by the methods vary in both size and content.

This is partly because they are derived from different databases, but

also because they are preprocessed differently by each method.

First, DEGraph, DEAP, TieDIE, CausalR, HiPathia, CARNIVAL, and

CausalPath employ signed PKNs, where interactions are labeled

either as “activations” or “inhibitions” (Fig 2). In contrast,

CLIPPER, TEAK, sub-SPIA, NicheNet, KPNN, and PHONEMES use

unsigned but directed PKNs. TPS is a special case, as it can be run

without prior knowledge about the direction or sign of interactions

as well as with a partially or completely directed and/or signed net-

work. The sign of interactions provides additional mechanistic

insights about signaling events, but also increases the complexity of

the modeling process (see Box 1). This prevents its direct incorpora-

tion in some of the methods. TieDIE and TPS tackle this using a

hybrid approach: the sign of interactions is considered in a second

step after a process of subnetwork extraction that ignores it.

Regarding the sources of prior knowledge networks, there are

two categories: (i) methods that use pathway-derived networks and

(ii) methods that use large input networks. DEGraph, CLIPPER,

TEAK, DEAP, sub-SPIA, and HiPathia use networks from pathway

databases such as KEGG or WikiPathways. The remaining methods

use large networks retrieved from databases such as BioGRID, or

SIGNOR, or meta-resources such as OmniPath (T€urei et al, 2016).

The networks encoded by pathways are usually smaller than those

that can be retrieved from interactome-like resources. However,

when the pathways are put together, they can form networks of sim-

ilar size. This classification impacts the choice and limitations of

computational approaches and also creates two categories of meth-

ods, which are rarely benchmarked together.

Finally, the biological content that PKNs provide can be classified

into two major groups: (i) PKNs containing only protein signaling

interactions and (ii) PKNs containing protein signaling interactions

and gene regulatory interactions. Networks derived from pathway

databases usually combine the two types of interactions, and hence

methods using them that do not exclude gene regulatory interac-

tions consider both types. Moreover, NicheNet, CausalPath, and

KPNN also distinguish between more detailed categories, such as

ligand–receptor interactions and enzyme–substrate interactions.

NicheNet and KPNN use this information to establish a hierarchy

within their PKNs: The signal is theoretically initiated by ligands

and propagated through receptors and intermediate proteins to tran-

scription factors (TFs). Then, the TF layer transmits the information

to downstream targets through gene regulatory interactions. This

matches the hierarchical way signaling is commonly conceived, but

also simplifies a process that is known to be non-linear and strongly

affected by feedback mechanisms (see Box 1).

Method properties: Input processing and approaches to
model signaling

A common first step across methods is the mapping of omics mea-

surements to nodes in the PKN. DEGraph, CLIPPER, TEAK, DEAP,

sub-SPIA, CausalR, HiPathia, TPS, NicheNet, KPNN, CausalPath,

and PHONEMES use a direct mapping strategy and match each

Table 1. List of the 14 methods that fulfilled our selection criteria.
The table details the year of publication of the associated manuscript,
the article URL, the implementation URL, and the type of
implementation.

Method Year
Article
URL

Source
code
URL Implementation License

DEGraph 2012 URL URL R package GPL-3

CLIPPER 2013 URL URL R package GPL-3

TEAK 2013 URL URL MATLAB based
software with GUI

GPL-3

DEAP 2013 URL URL Python and R
scripts

GPL-3

TieDIE 2013 URL URL Python scripts GPL-3

sub-SPIA 2015 URL URL R code MIT

PHONEMES 2015 URL URL R package +
external solver

GPL-3

CausalR 2017 URL URL R package GPL-2

HiPathia 2017 URL URL R package GPL-2

TPS 2018 URL URL Scala, Python and
Bash scripts

MIT

CARNIVAL 2019 URL URL R package +
external solver

GPL-3

NicheNet 2019 URL URL R package GPL-3

KPNN 2020 URL URL R and Python
scripts

GPL-3

CausalPath 2021 URL URL Java application LGPL-3
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Table 2. Method properties. The table represents a binary matrix. Each method (columns) can have (X) or not (-) a determined property (rows).

Omics data
properties DEGraph CLIPPER TEAK DEAP TieDIE

sub-
SPIA PHONEMES CausalR HiPathia TPS CARNIVAL NicheNet KPNN CausalPath

Omics layers Transcriptomics X X X X X X - X X - X X X X

Phosphoproteomics - - - - X - X - - X - - - X

Biological
resolution

Bulk X X X X X X X X X X X X - X

Single-cell - - - - - - - - X - - X X -

Time
resolution

Time series data - - - - - - X - - X - - - -

Omics data
used as

Measurements
(observations)

- - X - - - - - X X - - X -

Statistical scores
(contrast/
correlation)

X X - X X X X X - X X X - X

Numerical
input

Continuous X X X X X X - - X X X - X -

Discrete - - - - - - - X - - - - - -

Boolean - - - - - - X - - X - X - X

Additional
input

Does not use
additional inputs

X X X X - X - X X - - - X -

Accepts additional
inputs

- - - - - - X - - - X X - X

Requires additional
inputs

- - - - X - - - - X - - - -

PKN properties

Sign Directed - X X - - X X - - X - X X -

Activations/
Inhibitions

X - - X X - - X X X X - - X

Size Pathways X X X X - X - - X - - - - -

Large networks - - - - X - X X - X X X X X

Biological
content

Protein signaling
interactions

X X X X X X X - X X X X X X

Gene regulatory
interactions

X X X X - X - - X - - X X X

Method
properties

Omics to
PKN

Direct mapping to
nodes

X X X X - X X X X X - X X X

Indirect mapping to
nodes

- - - - X - - - - - X - - -

Not-measured
nodes

Estimates
unmeasured nodes
state

X - - - X - X X X X X - X -

Includes unmeasured
nodes in output

X X X - X X X X X X X X X -

Loops Models feedforward
loops

- - X - - - - - X X - - - -

Models feedback
loops

- - - - - - X - X - - - - -

Detects and removes
feedforward loops

- X - - - - - - - - - - - -

Detects and removes
feedback loops

- X X X - - - - - - X - X -

Includes feedforward
loops in output

X X X - X X X - X X X X X X

Includes feedback
loops in output

- - - - X X X - X X - X - X

Algorithm
type

Edge filtering and
shortest path

- - - X - - - X - - - X - X

Recursive signal
propagation and
heat diffusion

- - - - X - - - X - - - - -
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molecular feature to a node. Of those, KPNN, NicheNet, and Causal-

Path map transcriptomics data to nodes that represent transcriptional

targets (downstream of TFs); and DEGraph, CLIPPER, TEAK, DEAP,

sub-SPIA, CausalR, and HiPathia directly map measurements and

scores to protein nodes. By doing so, they assume that gene expres-

sion measurements are good proxies of the signaling activity of pro-

teins. This is often not the case, given the number of intermediate,

highly dynamic steps that occur between gene regulation and protein

activation (Liu et al, 2016; Buccitelli & Selbach, 2020; Szalai & Saez-

Rodriguez, 2020). For this reason, TieDIE and CARNIVAL use a strat-

egy based on indirect mapping and employ molecular measurements

to predict the activity levels of upstream proteins, such as transcrip-

tion factors or kinases (Dugourd & Saez-Rodriguez, 2019). These

activities are then mapped to PKN nodes. This way, these methods

assume that the signaling activity of upstream proteins can be esti-

mated from the observed molecular profiles.

Omics techniques may not provide genome-wide coverage. At

the network level, this often results in nodes for which no measure-

ments are available. All reviewed methods except DEAP and Causal-

Path tolerate unmeasured nodes. However, not all the methods

actively estimate signaling activities of such nodes and simply

include them as a result of network aggregation/selection processes.

This is the case for CLIPPER, TEAK, sub-SPIA, and NicheNet.

A key feature of signaling networks is the presence of feedback and

feedforward loops that can play major regulatory roles. While not all

methods are able to deal with them, some may include them in their

output. Specifically, we define three categories of methods regarding

loops: (i) able to model loops, (ii) able to detect and remove loops,

and (iii) able to include loops in their output networks. All methods

except DEAP and CausalR can include feedforward loops in their out-

put, although only TEAK, HiPathia, and TPS provide a framework to

actively model them. Similarly, all methods except TEAK, DEAP,

CausalR, CARNIVAL, and KPNN can output networks with feedback

loops, while only PHONEMES and HiPathia actively model them.

Finally, the strategies employed to model signal transmission are

heterogeneous, ranging from shortest paths to complex neural net-

works. We divided the approaches into six categories (see Fig 3):

1 Edge filtering and shortest path (Fig 3A). This category includes

CausalR, DEAP, NicheNet, and CausalPath. CausalPath and DEAP

iterate through PKN interactions and select those that are consis-

tent with omics scores. On the contrary, CausalR and NicheNet

connect upstream regulators to downstream targets using algo-

rithms that calculate shortest paths.

2 Recursive signal propagation and heat diffusion (Fig 3B), includ-

ing TieDIE and HiPathia. Both approaches initialize the signal in a

given set of nodes and then simulate its propagation through the

network. On each iteration, a method-specific function determines

how the signal is propagated to adjacent nodes.

3 Graph theory and statistical testing (Fig 3C), including DEGraph,

CLIPPER, and sub-SPIA. All the methods in this category are

based on graph theory approaches, optionally in combination

with statistical procedures.

4 Bayesian networks (Fig 3D), including only TEAK. Bayesian net-

works can be applied to model signaling through conditional

dependencies. In TEAK, each node is conceived as a linear combi-

nation of its parent nodes in a directed acyclic graph.

5 Integer linear programming (Fig 3E), including TPS, CARNIVAL,

and PHONEMES. Methods in this category translate PKNs and

molecular measurements into integer linear programming con-

straints that allow subnetwork extraction tasks to be carried out.

6 Neural networks (Fig 3F), including only KPNN. This method

tunes the topology of a neural network to represent prior knowl-

edge. It then trains the neural network under supervised learning

settings, computes node importance, and uses these values to

interpret the model and extract relevant subnetworks.

Certain methods, such as TieDIE or TPS, consist of multiple

steps. For the classification described above, we focused on the

specific part of the method that models signal propagation. TPS

employs either a satisfiability modulo theories solver or a custom

solver. However, we included it in the “integer linear programming”

category because of its similarity to these approaches. More infor-

mation about each of the methods can be found in Table 2. and

Box 3.

Challenges and outlook

In this Review, we explore methods able to generate hypotheses

about signaling mechanisms in the form of networks. Traditionally,

this was done with experiments of limited molecular coverage that

were interpreted via manual bibliographic curation. Omics technolo-

gies have changed this paradigm by measuring thousands of mole-

cules in a single assay. While this presents an opportunity to

systematically leverage prior knowledge to analyze omics data,

many questions remain open.

Benchmarking
Benchmarking studies are essential to understand the advantages

and limitations of novel computational approaches for the analysis

of omics data (Weber et al, 2019). Most benchmarking strategies

define metrics based on ground truth data that are used to score

novel methods. In machine learning, it is a common practice to test

Table 2 (continued)

Omics data
properties DEGraph CLIPPER TEAK DEAP TieDIE

sub-
SPIA PHONEMES CausalR HiPathia TPS CARNIVAL NicheNet KPNN CausalPath

Graph theory and
statistical testing

X X - - - X - - - - - - - -

Bayesian networks - - X - - - - - - - - - - -

Integer linear
programming

- - - - - - X - - X X - - -

Neural networks - - - - - - - - - - - - X -
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new approaches on a large and diverse set of publicly available

datasets from open repositories such as OpenML (Vanschoren

et al, 2014). However, this practice is less common in network

modeling, and the ground truth is usually generated from prior

knowledge, simulated data, or perturbation experiments. When

ground truth is established using prior knowledge, benchmark stud-

ies make the assumption that our understanding of a biological sys-

tem is sufficient to determine which nodes and edges are true

positives. This assumption may not hold in many scenarios, and, as

an alternative, simulated data or perturbation experiments are used.

Large efforts have been made to generate perturbation data in con-

sortia such as the Library of Integrated Network-Based Cellular

Signatures (Koleti et al, 2018). However, generating perturbation

data is costly and not possible for all contexts and tasks (e.g., when

working with patient samples (Saez-Rodriguez & Bl€uthgen, 2020)).

In contrast, while simulated data can provide ground truth in most

scenarios, it is only an approximation of the biological reality and is

inherently biased and limited by our understanding of the underly-

ing molecular processes.

Most independent benchmarks (not carried out by method devel-

opers) were restricted to certain types of methods. For instance,

(Ihnatova et al, 2018) evaluated several methods that consider the

topological properties of pathways, including CLIPPER, DEGraph,

and SPIA (Tarca et al, 2009). Another study benchmarked methods
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Figure 3. Six categories of computational approaches to model cellular signaling.

(A) Edge filtering and shortest path, (B) recursive signal propagation and heat diffusion, (C) graph theory and statistical testing, (D) Bayesian networks, (E) integer linear
programming, and (F) neural networks. The upper part of each panel shows the solution of a toy network obtained by each formalism, whereas the bottom panel
illustrates its generalized method. Nodes depict proteins, arrows activating and bars inhibiting interactions. Upper panels: Yellow indicates a protein with an unchanged
activity state in comparison with a control condition, red an activated, and blue a repressed state. All proteins and interactions that are not part of the solution network
are depicted in gray. (A) Only consistent interactions are kept according to the filtering rules. The activities of interactions are inferred from the PKN and the measured
activity states of the connected proteins. The shortest signaling path (upper panel, yellow cloud) between an initial protein and a target protein can be calculated based
on distance (brown) or a combination of weights (wi) and distance (purple) (bottom panel). (B) A protein’s activity estimate an in the solution network (upper panel) is
calculated as a function f() of its own measured value vi (e.g., based on transcriptomics data) and the sum of all incoming activity signals si (bottom panel) that it
receives from upstream proteins according to the PKN. (C) After topological decomposition, all identified subnetworks of the PKN are tested for an enrichment of
measured protein activity states taking the subnetwork topology into account. In the upper panel, the blue and red clouds indicate subnetworks that have
underrepresented and overrepresented protein activities, respectively. (D) Linear subnetworks are extracted from a PKN and subjected to a Bayesian network fitting
measured protein activity states. Arrow thickness in the solution network corresponds to the assigned probability of the interaction activity. (E) Integer linear
programming outputs the optimal signaling subnetwork consistent with the PKN between an initial protein and a target protein by minimizing the discrepancy
between protein activity states and interaction constraints given by the PKN. (F) Knowledge-primed neural networks model the importance of proteins between recep-
tors and transcriptional targets (hidden nodes, bottom panel). Edge direction in the bottom panel is inverted to represent that the training occurs from transcriptional
targets (input nodes, right bottom panel) to receptors (output nodes, left bottom panel).
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Box 3. Methods’ description

In this box, we provide a brief description of all the methods considered in this Review. For more details, we refer interested readers to the original
publication of each method. For the sake of homogeneity, we try to minimize all method-specific terminology and use the term “statistical scores” to
refer to scores obtained from statistical tests after contrasts or correlation analysis.

DEGraph (Jacob et al, 2012)
DEGraph is a tool for the analysis of transcriptomics data and uses prior knowledge from KEGG or NCI in the form of pathways. It relies on a frame-
work of multivariate test statistics for detecting differential expression patterns that are coherent with a given set of interactions. The pathway struc-
ture is leveraged to detect co-regulated genes in high-dimensional transcriptomics data and to subsequently reduce these to a lower-dimensional
space preserving most of the consistent distribution changes between two conditions and increasing statistical power. Hotelling’s T2-test is then
applied to the low-dimensional space to detect mean shifts between the multivariate normal distributions of two conditions. In a second step,
DEGraph applies a branch-and-bound-like algorithm for iterative testing and identification of significant subnetworks within the pathways.

CLIPPER (Martini et al, 2013)
Based on its original framework TopologyGSA (Massa et al, 2010), CLIPPER finds biologically altered signaling pathways between two conditions using
transcriptomics data. It obtains its prior knowledge via the graphite package, which retrieves pathways from KEGG, Panther, PathBank, PharmGKB, Reac-
tome, SMPDB, and WikiPathways. CLIPPER uses Gaussian graphical models to compare the overall gene expression within a pathway as well as the
interaction strengths between genes of a pathway. Both criteria are used to estimate the significance of the changes in pathways’ functionality and are
also applied to all subnetworks of the respective pathway to identify the relevant subgroups of genes in the network that drive these differences.

TEAK (Judeh et al, 2013)
TEAK analyzes transcriptomics data and employs KEGG pathways as its main source of prior knowledge. It first applies a topological decomposition
step to extract linear and non-linear subnetworks from each pathway. Next, it applies Gaussian Bayesian networks to estimate conditional probability
distributions at the subnetwork level. In these networks, each node is conceived as a linear combination of its parent nodes. TEAK differentiates two
scenarios: Analysis of a single condition and contrasts. To rank subnetworks in the first scenario, it relies on the Bayesian Information Criterion (BIC),
which is calculated from the maximum likelihood estimate of parameters. This score is calculated for each node and then summed to retrieve the
final subnetwork score. In the contrast scenario, TEAK employs the Kullback–Leibler divergence of the two Bayesian networks, measuring the similarity
of their joint probability distributions.

DEAP (Haynes et al, 2013)
DEAP can be used to analyze transcriptomics data using pathways from KEGG and Reactome. It first maps statistical scores derived from differential
expression analysis to PKN nodes. Next, DEAP iterates through the subnetworks of a pathway using an algorithm that prevents visiting the same node
twice and which calculates a score for each subnetwork. This subnetwork score is based on the agreement between the sign of interactions and the
sign of transcriptomic statistical scores. After evaluating all the subnetworks in a pathway, the maximum absolute subnetwork score for a given path-
way is retained for statistical evaluation. To assess the significance of each pathway, a random rotation test is applied, a permutation-like approach
designed to increase statistical power in scenarios with complex experimental designs and low-to-moderate sample sizes.

TieDIE (Paull et al, 2013)
TieDIE was released as a method to simultaneously analyze genomics and transcriptomics data, and it was employed later for the analysis of phosphopro-
teomics data as well (Drake et al, 2016). The PKN described in the original manuscript is derived from multiple resources, including the NCI-PID and Reac-
tome. TieDIE needs at least two sets of statistical scores derived from omics data that are mapped to nodes and which reflect the groups of molecules to be
connected using the PKN. The core of TieDIE is composed by a heat diffusion approach that propagates the signal from a first set of nodes through the net-
work, up to a certain path length. In particular, it uses the heat diffusion algorithm implemented in HotNet (Vandin et al, 2012). After obtaining the heat diffu-
sion values for one of the sets, it runs the same process from the second set of nodes using a reversed PKN. Then, it retrieves a subnetwork that connects the
two sets of input nodes using the diffusion scores from both processes. In a final step, it filters the subnetwork to retain sign-consistent paths.

sub-SPIA (Li et al, 2015)
sub-SPIA is an extension of the SPIA method (Tarca et al, 2009), which analyzes transcriptomics data using KEGG pathways. After a contrast analysis, differen-
tially expressed genes are mapped to the network and subnetworks are extracted by the reconstruction of a minimal-spanning tree, which retains the maxi-
mum number of closely connected differentially expressed nodes while minimizing the number of included non-differentially expressed nodes. To
subsequently identify the significantly altered subnetworks in the condition under study, the SPIA method combines the significance level of (i) an over-
representation analysis of the number of differentially expressed genes observed in the subnetwork with (ii) the significance level of a score that captures the
topology of the pathways and the signature nodes by propagating measured (signed) expression changes across the pathway topology. This way, upstream
nodes have more influence than downstream nodes and signals from consecutive nodes score higher than signals from individual unconnected nodes.

PHONEMES (Terfve et al, 2015)
Originally released in 2015 (Terfve et al, 2015), and updated in 2021 (Gjerga et al, 2021), PHONEMES is a method to create models of signaling networks
using phosphoproteomics data. It employs a directed PKN constructed from kinase-substrate interactions from OmniPath (T€urei et al, 2016). Additional
nodes are also added in order to connect substrates (which are phosphosites) back to kinases. The processed input consists of a Boolean vector where the
phosphoproteomic measurements are assigned a perturbed or control state and are then mapped to network nodes. In addition, users can also provide
upstream perturbed nodes (e.g., drug targets). In the absence of such information, a kinase enrichment analysis is performed to determine kinase activities
from phosphoproteomics data and use them as putative perturbed nodes. The current version of the method solves an optimization problem, which is
conceived as a subnetwork extraction task. For this, PHONEMES translates the PKN to integer linear programming (ILP) constraints. To evaluate each pos-
sible subnetwork, PHONEMES employs an objective function that rewards the inclusion of perturbed nodes and penalizes the inclusion of control ones.
This function also controls the final network size to prevent the obtention of gigantic solutions including all perturbed nodes.

CausalR (Bradley & Barrett, 2017)
CausalR is a method to analyze transcriptomics data. This method was not released together with a PKN, but accepts any signed and directed PKN. It
uses the sign of omics statistical scores as input. The core of CausalR is composed of two main steps: First, it calculates the number of correct,
ambiguous, and incorrect shortest paths to omics statistical scores from all the nodes in the PKN, up to a predefined path length, by checking the sign
consistency of the paths. Then, it repeats the same process for a varying number of path lengths and computes the significance of each master regu-
lator subnetwork using the approach described in Chindelevitch et al. (Chindelevitch et al, 2012), which was designed to generate null distributions
for causal graphs.
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that extract causal signaling subnetworks from transcriptomics data

in response to drug perturbation (Hosseini-Gerami et al, 2022).

CausalR and CARNIVAL were among the methods evaluated in this

benchmark. We could not find an independent study that bench-

marked the methods described in this Review. Overall, the field

would benefit from more benchmarks and, given the challenges to

Box 3 (continued)

HiPathia (Hidalgo et al, 2017)
HiPathia uses KEGG as its main source of prior knowledge to analyze transcriptomics data. Within the preprocessing steps, this tool divides each path-
way into subnetworks that connect nodes with an in-degree of zero to nodes with an out-degree of zero, using an algorithm that relies on shortest
paths. After this, HiPathia maps gene expression measurements to the nodes that form each subnetwork. Assuming an initial signal of 1 for each node
with an in-degree of zero, it applies an iterative signal propagation algorithm to calculate the signal that arrives at nodes with an out-degree of zero.
This algorithm calculates, for each node recursively, an activity value using the transcriptomic measurement of the node, if available, and the activity
values of its parent nodes. In the case of loops, the iterative algorithm operates until the update in node activities is below a user-defined threshold.
The predicted signal matrix is then compared between samples of interest to rank the subnetworks and to generate mechanistic hypotheses.

TPS (Köksal et al, 2018)
TPS allows the modeling of temporal relationships in signaling networks from phosphoproteomics time series data. The method uses three types of input:
an undirected protein–protein interaction (PPI) network, phosphoproteomics time series data of a stimulus response and an optional PKN for interaction
directions and signs. These inputs are used to construct a set of logical constraints that are expressed using linear integer arithmetics. The constraints are
used to obtain all feasible signaling pathways that could explain the downstream signaling network from the stimulated source nodes using a symbolic
solver. TPS starts from an undirected PPI network, which is first modified to a condition-specific network by filtering out interactions that do not form crit-
ical connections between measured proteins, and including unobserved connective proteins from the background PPI network. It uses the source of stimu-
lation and the highest magnitude fold change of a protein’s phosphorylation peak as source of information. In a second step, data are discretized to a set
of temporal constraints ensuring the correct order of signaling events. Third, the PKN is used for adding directionality and sign constraints to the edge
topology of the PPI network. Subsequently, all valid individual networks are summarized into a single aggregate network, which is the graph union of all
signed and directed networks satisfying the given set of constraints and representing the entire possible solution space.

CARNIVAL (Liu et al, 2019)
CARNIVAL is a tool to analyze transcriptomics (Liu et al, 2019), but it can also be used for the analysis of multi-omics data through COSMOS (Dugourd
et al, 2021). CARNIVAL uses a PKN containing protein-level signaling events derived from OmniPath. Its main inputs are statistical scores derived from
transcriptomics data. First, transcription factor (TF) activities are inferred using DoRothEA (Garcia-Alonso et al, 2019). Optionally, PROGENy (Schubert
et al, 2018) can be used to calculate signaling pathway activities, which are mapped to PKN nodes. Additional information about nodes that are
known to be perturbed can also be provided (e.g., drug targets). Similarly to PHONEMES, CARNIVAL first translates the PKN to integer linear program-
ming constraints. Next, it solves an optimization problem whose objective function considers the mismatch between predicted and measured signal-
ing activities (for TFs, PROGENy nodes and perturbations) and penalizes the total number of nodes in solutions This provides a subnetwork whose
signal flow is as coherent as possible with the inferred signaling activities.

NicheNet (Browaeys et al, 2020)
NicheNet is a method to predict the activity of ligands given a set of transcriptional targets. It also includes a functionality to retrieve the signaling subnetwork
that connects a particular set of ligands with a set of downstream transcriptional regulators. Here, we focus on the latter. The PKN employed by NicheNet con-
tains directed edges and was constructed through the integration of multiple resources. The resulting PKN is divided into two parts: A signaling network that
connects ligands with transcriptional regulators (TFs) and a gene regulatory network (GRN) connecting such regulators with their targets. The core of NicheNet
is a model that defines a regulatory potential of ligands over transcriptional targets. This model was optimized to tune parameters that: (i) control the contribu-
tion of each prior knowledge resource to edge weights, (ii) apply a hub correction factor in both parts of the PKN, and (iii) control the behavior of the algorithm
that determines the closeness of ligands to transcriptional regulators (which is based on the PageRank algorithm (Page et al, 1999)). NicheNet requires users to
provide a set of ligands and targets of interest. Given those, it first calculates a fixed number of ligand–regulator–target combinations that maximize the regula-
tory potential. Next, it retrieves all the genes involved in the shortest paths between selected ligands and inferred regulators. These shortest paths are computed
maximizing again the regulatory potential and are obtained through the application of a modified version of Dijkstra’s algorithm (Dijkstra, 1959). In a final step,
NicheNet retrieves all the possible interactions between selected ligands, signaling mediators, regulators, and target genes from its PKN.

KPNN (Fortelny & Bock, 2020)
KPNN can be employed to analyze (single-cell) transcriptomics data. Similar to NicheNet, its PKN is divided into two parts: (i) Gene regulatory interac-
tions connecting TFs with their targets and (ii) signaling interactions that connect receptors to TFs. This method uses prior knowledge to determine
the topology of artificial neural networks, which are then trained on the prediction task of classifying a sample label of interest (e.g., experimental
condition or cell type). While the networks reflect signal transmission from cellular receptors to transcriptional targets, they are used in the opposite
direction during the training process: The status of an output node, which is connected to all receptors, is predicted using transcriptional targets as
input. These input values are obtained from single-cell transcriptomics measurements. KPNN adds certain tweaks to standard neural networks: (i) It
performs dropouts of a proportion of input and hidden nodes during the training process and (ii) it trains the network using a control input that car-
ries no signal. Node weights calculated from the training process with the real input (transcriptomics) are compared with the node weights obtained
from control input, which account for certain PKN properties, such as the presence of hubs. The differential node weights are then used to interpret
the importance of intermediate signaling nodes and to extract relevant subnetworks.

CausalPath (Babur et al, 2021)
CausalPath retrieves causal interactions from phosphoproteomics data. It also accepts transcriptomics and proteomics statistical scores and can use them to
evaluate interactions that capture gene regulatory events. It employs a PKN that was created using a graphical pattern search framework applied to diagrams
from the Pathway Commons database (Rodchenkov et al, 2020). As processed data input, it employs a Boolean vector derived from the sign of the statistical
scores. In its core, CausalPath employs logical equations to check the consistency between omics variables and the logic variables that describe each interac-
tion in the PKN. Next, it keeps and retrieves those interactions consistent with the data and creates a subnetwork with all of them. The significance of
extracted subnetworks is then examined through network permutation approaches that evaluate network size and the out-degree of nodes.
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obtain ground truth data, we believe that an extensive catalog of

simulated data would enable further developments.

The limitations of prior knowledge networks
Despite major progress, our knowledge of cell signaling is still lim-

ited. This is exemplified in the field of post-translational protein

modifications: phosphorylation events are known to play a funda-

mental role in cellular signaling, but we only know the function

(e.g., activatory or inhibitory) of less than 5% of the known phos-

phorylations that occur in human cells (Needham et al, 2019;

Ochoa et al, 2020). Furthermore, more than 90% of those known

phosphorylation events occur in a subset of particularly well-

studied kinases (20%). At the network level, a small proportion of

well-studied proteins accounts for the majority of interactions (see

Box 2). It is still unclear whether this is an inherent property of bio-

logical networks, or whether it is a product of annotation prefer-

ences introduced by humans (Haynes et al, 2018). Heavily studied

genes have been associated with a higher amount of biological func-

tions, and this multifunctionality may introduce a bias when inter-

preting the outcome of computational models based on omics

measurements and PKNs (Gillis & Pavlidis, 2011; Weidem€uller

et al, 2021; Kustatscher et al, 2022). Of the methods included in

this Review, TieDIE, NicheNet, and KPNN explicitly account for the

presence of hubs in PKNs. TieDIE’s heat diffusion algorithm com-

pensates input and output heat on hubs, while NicheNet and KPNN

employ a hub correction factor and a control run on data carrying

no signal, respectively.

Another major limitation of prior knowledge is that it is not

directly transferable between different biological contexts, despite it

being common practice. Experimental evidence supporting PKN

interactions is usually obtained under very specific conditions (e.g.,

in a tissue or cell line), and there is no guarantee that these interac-

tions also occur outside these conditions. Furthermore, most of our

knowledge about signaling has been generated in a narrow set of

biological contexts (see Box 2).

On a final note, we do not yet have an accurate estimate of how

much information we are missing in our current prior knowledge.

We may be trying to model signaling by taking into account only a

small fraction of the interactions that actually occur between proteins

and other molecules. In general, when trying to understand signaling,

we must consider all the limitations of prior knowledge, as they may

provide a partial explanation for the caveats of our models.

Higher resolution to better understand cellular signaling
New developments in omics technologies allow us to look at certain

biological processes at new levels of resolution and coverage. Since

their inception (Tang et al, 2009), single-cell sequencing technolo-

gies have evolved rapidly to provide reasonable (if not deep) tran-

scriptome coverage for large numbers of individual cells (Picelli

et al, 2014). This technology has been used to uncover some of the

biological heterogeneity that cannot be studied using omics data

from bulk samples. Furthermore, it has drastically increased the

availability of observations, enabling the application of methods

such as neural networks (Fortelny & Bock, 2020; preprint: Nilsson

et al, 2021). Relatedly, novel single-cell untargeted proteomics pro-

tocols are rapidly evolving (Perkel, 2021). Although coverage is

lower than in single-cell transcriptomics, if single-cell proteomics

reaches a sufficient degree of maturity to comprehensively measure

phosphopeptides, it will provide invaluable data to model cell sig-

naling capturing cellular heterogeneity.

In addition to single-cell technologies, novel untargeted proteomic

approaches like limited proteolysis proteomics (Feng et al, 2014) and

thermal proteome profiling proteomics (Savitski et al, 2014) allow us

to estimate different types of regulatory events by measuring protein

conformational changes. Both approaches were recently applied to

study signaling cascades, demonstrating their ability to capture

protein-driven signaling (Potel et al, 2021; Cappelletti et al, 2021).

Although exploiting proteomic conformational readouts to predict sig-

naling functions is not a simple task, we believe that these technolo-

gies will complement existing technologies. In conclusion, advances

in measurement techniques offer new perspectives to study signaling

at scale, and computational methods must keep pace to enable the

extraction of mechanistic insights from new data.

Deciphering signaling networks to improve
personalized treatments
All reviewed methods aim to generate testable hypotheses to ulti-

mately improve our understanding of complex biological systems.

In the context of disease, this could translate to better treatment

selection and prioritization for pharmacological interventions that

target signaling components (Saez-Rodriguez & Bl€uthgen, 2020).

However, for the integration into clinical practice, such methods

must demonstrate that they can outperform the techniques currently

used to select treatments. At the same time, this also requires an

infrastructure in which, for each patient, omics data and subsequent

models can be generated in a cost- and time-effective manner. If the

costs of generating omics data continue to fall, and the computa-

tional efficiency of the methods continues to increase, we expect

that methods that model cellular signaling will occupy a central role

in the translation of omics data into personalized treatment choices.

Conclusions

The methods we reviewed aim to extract mechanistic insights about

signaling through the integration of high-coverage molecular mea-

surements and prior knowledge. Their output is a network (or a rank-

ing of networks) that may be relevant in the specific biological

context captured through omics measurements. This work comple-

ments recent reviews of approaches that model other types of biologi-

cal networks, such as metabolic reaction networks (Cruz et al, 2020;

Hrovatin et al, 2022) and gene regulatory networks (Barbuti

et al, 2020). We reviewed 14 recent methods that we found to be

very diverse and classified them according to different characteristics,

including omics data, prior knowledge, and methodological proper-

ties. As one of the main challenges yet to overcome, we believe that

the field lacks benchmark studies to determine the validity of the

many assumptions made by each method. In addition, we encourage

users to maintain a conservative attitude toward model results, since

the biases of prior knowledge, together with the limitations of omics

technologies and model assumptions, can make predictions that differ

greatly from biological reality. In terms of outlook, we expect these

methods to gain relevance thanks to new omics technologies, such as

single-cell proteomics and techniques able to measure protein confor-

mational changes, and we believe that they will become key tools in

the precision medicine of the future.
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