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Abstract

Most coral reef studies focus on scleractinian (stony) corals to indicate reef condition, but 

there are other prominent assemblages that play a role in ecosystem structure and function. In 

Puerto Rico these include fish, gorgonians, and sponges. The U.S. Environmental Protection 

Agency conducted unique surveys of coral reef communities across the southern coast of 

Puerto Rico that included simultaneous measurement of all four assemblages. Evaluating the 

results from a community perspective demands endpoints for all four assemblages, so patterns 

of community structure were explored by probabilistic clustering of measured variables with 

Bayesian networks. Most variables were found to have stronger associations within than between 

taxa, but unsupervised structure learning identified three cross-taxa relationships with potential 

ecological significance. Clusters for each assemblage were constructed using an expectation-

maximization algorithm that created a factor node jointly characterizing the density, size, and 

diversity of individuals in each taxon. The clusters were characterized by the measured variables, 

and relationships to variables for other taxa were examined, such as stony coral clusters with 

fish variables. Each of the factor nodes were then used to create a set of meta-factor clusters 

that further summarized the aggregate monitoring variables for the four taxa. Once identified, 

taxon-specific and meta-clusters represent patterns of community structure that can be examined 

on a regional or site-specific basis to better understand risk assessment, risk management and 

delivery of ecosystem services.
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1. Introduction

Coral reefs occur globally in tropical waters and are formed by colonies of scleractinian 

(stony) corals that secrete calcium carbonate skeletons as they grow (Chave et al., 1972; 

Sorokin, 1995). This structure provides habitat for a variety of organisms, including fish 

and invertebrates, that combine to form the coral reef ecosystem (Maragos et al., 1996; 

Reaka-Kudla, 2005; Roberts et al., 2002). The presence of scleractinian (stony) coral 

colonies affects currents, waves and light penetration in the water column and creates 

niches and micro-niche habitats for diverse organisms and community interactions that 

effect primary and secondary production, calcium carbonate production and erosion, and 

metabolic exchange (Dennison and Barnes, 1988; Bruno and Bertness, 2001; Bellwood et 

al., 2019; Brandl et al., 2019; LaRue et al., 2023a, b). Most coral reef studies logically 

focus on the foundational assemblage, i.e., stony corals, but other reef components influence 

ecosystem structure and function. Reef ecosystems along the southern coast of Puerto 

Rico have four prominent biological assemblages–stony corals, soft corals (gorgonians), 

sponges, and fish. Combined, these assemblages and their interaction play roles in primary 

and secondary production, metabolic exchange, carbon sequestration, wave attenuation and 

sand production, among others (Mumby et al., 2008; Yee et al., 2014b). Two surveys 

were performed in southern Puerto Rico, one in 2010 and one in 2011, to characterize the 

reef community (Fisher et al., 2019). The surveys were novel in several respects: They 

measured density, size and morphology of individual benthic colonies rather than traditional 

two-dimensional cover estimates, sampled the entire southern coast of Puerto Rico rather 

than a specific reef location, and for the first time collected data for all four assemblages 

simultaneously. These factors generated a unique dataset of reef community structure in 

Puerto Rico and an opportunity to explore patterns and potential relationships among the 

assemblages.

Patterns in reef structure were generated using the quantitative relationships among 

measured variables, including diversity, number, size and shape of individuals from all 

four assemblages. Such information can lead to improved understanding of risk assessment 

(Alvarez-Filip et al., 2011; Carriger et al., 2021; Oliver et al., 2011) and risk management 

(Bradley et al., 2020; Santavy et al., 2022a, 2022b) during a prolonged period of stony 

coral decline (Carpenter et al., 2008; Dubinsky and Stambler, 1996; Hoegh-Guldberg et al., 

2017; Kleypas and Yates, 2009; Knowlton and Jackson, 2008; Mora, 2008). It may also lead 

to a better quantification of ecosystem services provided by the different reef components 

(Spurgeon, 1992, Moberg and Folke, 1999, Beaumont et al., 2008, Pendleton, 2008, Principe 

et al., 2012, Yee et al., 2014a, 2014b. Principe and Fisher, 2018, Woodhead et al., 2019, 

Kelutur et al., 2021).

Ecosystem services are provided by all four predominant biological assemblages in Puerto 

Rico: Corals and gorgonians provide habitat; fish provide food; corals, fish and gorgonians 

provide tourism opportunities; corals and gorgonians provide coastal storm protection; and 

gorgonians and sponges provide novel marine biochemicals. Number, size and diversity of 

individuals are three basic measurements that can be used to evaluate delivery of these 

services for each taxon. For example, size and density can indicate potential for habitat 
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and for coastal storm protection, biomass for food production, and density and diversity for 

tourism opportunities and marine product discovery. While these measures can estimate the 

contribution of each taxon to a service, it is unknown whether the presence and condition 

of other taxa at a reef will influence (amplify or attenuate) that contribution. Some potential 

relationships are foreseeable. For example, stony corals, gorgonians and sponges may 

compete to colonize benthic surfaces (Dahl, 1973, Cruz et al., 2016, Ladd et al., 2019). 

Yet all three can also provide surface area above the sea floor that can be used by fish and 

invertebrates as habitat, providing shade, predator avoidance and opportunity for predation 

(Lirman, 1999, Syms and Jones, 2000, Darling et al., 2017).

A colony-based (demographic) survey approach is being used by several stony coral 

assessment programs (Kramer, 2003, Fisher et al., 2007, Fisher et al., 2014, NOAA, 2014, 

FRRP, 2022). This approach records the species, height, maximum diameter, and proportion 

of live tissue on each colony in a transect. Using this demographic approach, scientists 

from the Environmental Protection Agency (EPA) performed two assessment surveys on 

stony corals at multiple sites in Puerto Rico (Fisher et al., 2019). The number, morphology 

and size of sponge and gorgonian colonies and the number, species, and size of fish were 

documented simultaneously at each transect. The multiple variables measured in these 

surveys provide an opportunity to examine potential relationships among the four co-located 

taxa and generate hypotheses for patterns in reef communities, reef integrity and the delivery 

of ecosystem services.

Translating biological status from multiple monitoring variables requires advanced statistical 

approaches. Classical approaches rely on linear relationships between variables, but these 

are less reliable for environmental datasets where non-linear relationships may exist. A 

Bayesian network approach that uses a nonparametric graphical representation of a joint 

probability distribution for the variables in a model (Pearl, 1988) was employed for this 

study. This approach allows for clustering of multiple variables and drawing inferences 

from resulting joint probabilities. The network consists of nodes or graphical random 

variables connected by arcs (directed arrows) that indicate a quantitative relationship 

between variables, which are characterized as a receiving node (child) or an originating 

node or group of nodes (parent (s)). The relationships between directly connected nodes are 

often developed in conditional probability tables that contain the frequencies of parent-child 

relationships. Inference is gained by incorporating hard or soft evidence on one or more 

nodes, thereby updating the joint probabilities throughout the model using calculus and the 

conditional independencies in the network. Inferences about the probability of one node 

being in a particular state given a set of evidence on other nodes generates opportunity 

for systematic exploration, which can be made in multiple directions. Sensitivity among 

nodes that are not directly connected can be examined through the inferential process, 

which is one reason that Bayesian networks are preferred for reasoning with complex 

problems (Conrady and Jouffe, 2015). Other key advantages are the transparency of the 

model structure and relationships which invites great capabilities for using data with expert 

input. As an example, Ban et al. (2014) chose a Bayesian modeling platform to incorporate 

expert knowledge where data were lacking for multiple stressors on corals in the Great 

Barrier Reef.
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Recent quantitative studies with coral reefs have emphasized varying machine learning 

approaches to assess sites and regions that lack sufficient monitoring data. Numerous studies 

have used machine learning for image analysis of coral reef components (Rubbens et al., 

2023). These have been primarily applied to coral species identification (Ganesan and 

Santhanam, 2022; Marre et al., 2020; Mills et al., 2023; Sun et al., 2022; Villon et al., 2021), 

but also include reef community status (Gonzalez-Rivero et al., 2020; Marre et al., 2020; 

Schürholz and Chennu, 2023) and habitat mapping in support of coastal management (e.g., 

Barve et al., 2023; Do and Tran, 2023; Da Silveira et al., 2021). Some studies have shown 

that multiple machine-learning networks may be more successful at reef image identification 

(Burns et al., 2022; Lumini et al., 2020; Sun et al., 2022). Rubbens et al. (2023) have 

reviewed applications of machine learning to marine ecology, including coral reefs.

Cluster analysis has been used extensively to classify coral reefs for a variety of purposes. 

These include, but are not limited to, assessing wave energy in relation to benthic functional 

groups (Ford et al., 2021), predicting and monitoring coral bleaching events (Boonnam et 

al., 2022; Ford et al., 2024), reef acoustics (Ozanich et al., 2021), larval connectivity (Burt 

et al., 2024), habitat types (Barve et al., 2023) and genetic species differentiation (Meziere 

et al., 2024). Donovan et al. (2018) clustered reef habitat and fish data for Hawaii using 

expectation-maximization clustering with Bayesian model selection features. Their work 

used visual survey data to identify distinct habitat regimes that integrated fish with benthic 

reef features.

Machine learning and clustering approaches are used to characterize community-level 

features that are not readily evident from single component analyses. Community 

characteristics and interactions play a role not only in reef integrity but also in the provision 

of ecosystem services. Consequently, any means to capture community-level patterns can 

generate a deeper understanding and a greater potential for successful management. To 

this end, Bayesian networks were used for clustering community assemblages based on 

multi-dimensional measurements of physical structures of coral reef and characteristics of 

fish assemblages. A new factor node was created from the clustering and employed for 

examining the relationship with measured coral reef characteristics for interpreting the 

cluster states. Individual factor nodes were created for each taxa (sponges, gorgonians, 

stony corals, fishes) and then a meta-factor was constructed from clustering the taxa-specific 

factor nodes to summarize overall characteristics of the reef. The relationships between 

the factor nodes and measured characteristics for taxa used in their construction, and 

other species taxa, identified and provided new information on cross-taxa relationships 

between different reef types. There are both challenges and opportunities for using Bayesian 

networks to cluster biological monitoring data and generate inferences on ecological 

integrity. In this study, we first applied machine learned Bayesian networks and probabilistic 

clustering analysis to explore monitoring data for coral reef ecosystems. By examining 

the structure of the networks and the quantification of the parameters in this process, we 

elucidated key associations among coral reef indicators that may be used to hypothesize 

causal relationships. This phase involved unsupervised examination of how the measured 

variables related to one another and highlighted features related to cross taxa relationships. 

In the second phase, clustering was used to group the measured coral reef attributes. 

Clustering reduced multiple reef measurements into fewer dimensions, thereby facilitating 
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the interpretation of distinct community patterns across sites. Relationships identified in the 

exploratory phase were advanced by comparing clusters across taxa. The final product of 

this phase was a hierarchical Bayesian network that included all clusters and measured 

variables. Including meta-clusters that grouped the taxa-specific clusters. to represent 

community composition across all four reef components.

2. Methods

2.1. Data set

Two coral reef assessment surveys were completed along the southern coast of Puerto Rico 

(Fisher et al., 2019). The first survey was completed on Nov 29-Dec 13, 2010 (PR10). This 

survey used a targeted design that included 74 stations at depths of 1–12 m. The second 

survey was completed on Nov 27-Dec 12, 2011 (PR11). This survey used a random survey 

design that included 64 stations at depths of 1–12 m. The combined dataset totaled 138 

sites at 1–12 m depth. However, some stations extended to greater depths (Fig. S11). For 

both surveys, four biological assemblages (fish, stony corals, gorgonian corals, and sponges) 

were documented simultaneously along a single transect line using procedures outlined in 

Fisher (2007) and Santavy et al. (2012). For fish, the number, species, and size class were 

recorded along a 4 m × 25 m (100 m2) transect area. Species and dimensions (height and 

maximum diameter) for each stony coral colony were recorded within a 1 m × 15 m (15 

m2) transect area for PR10 and a 1 m × 25 m (25 m2) transect area for PR11. Gorgonians 

and sponges were recorded in a 1m2 quadrat placed five times at regular intervals (0-, 

5-, 10-, 15- and 20-m marks) along the transect line. Both gorgonian and sponges were 

characterized by morphology (nine morphologies for gorgonians and eight for sponges; 

Santavy et al., 2012) and dimensions (height and maximum diameter). Data for each station 

were normalized to m2. Field data from the surveys were amended to exclude hydrocorals 

and stony coral colonies with no live tissue. Field and amended datasets are available at 

EPA’s Environmental Dataset Gateway (U.S. EPA, 2024).

2.2. Variable descriptions

Fish biomass estimates were calculated from 5-cm size classes according to the formula 

Biomass = αLβ where L is fish length (cm, midpoint of size class) and α and β are 

species-specific length-weight relationships found in FishBase (Froese and Pauly, 2007). 

Variables for fish populations included fish density (FDn, n m−2), taxa richness (F-TR, 

families m−2), fish biomass (F-Bm, g m−2) and average biomass per fish (F-Bmf).

Size characteristics for stony corals were estimated using a hemisphere as a geometric 

surrogate (Fisher et al., 2014). Colony footprint (C-Fp) was calculated as πr2 where radius 

r = ½ maximum diameter. Colony surface area (C-SA) was calculated as M’(r’)2 where M 

= 1, 2, 6 or 8 for flat, hemispheric, lobed/globular or branched species (Fisher et al., 2014). 

To better account for colony height’ r’ = (radius + height)/2 was substituted for colony 

radius (r) in C-SA calculations. Surface Index (Dahl, 1973) was calculated as C-SA/C-Fp 

and volume occupied (C-VO) as 2/3πr2h. Stony coral variables calculated for each station 

included density (C-Dn, n m−2) taxa richness (C-TR, species m−2), means and sums of 
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height (C-Hmn, cm; C-Hsum, cm m−2), and sums of footprint (C-Fp, cm2 m−2), surface area 

(C-SA, cm2 m−2), surface index (C-SI), and volume occupied (C-VO, cm3 m−2).

Surface area and volume occupied by gorgonians were estimated using either a cylinder or 

a cube as a geometric surrogate. Footprint, surface area and volume were calculated as a 

cylinder (Fp = πr2; SA = 2πrh + πr2; Vol = πr2h). However, for planar sea fans and planar 

sea rods, footprint, surface area and volume were calculated as a cube (Fp = d*w; SA = 

2(h*d) + 2(h*w) + 2(w*d); Vol = h*d*w) where d is maximum diameter and width (w) 

was assigned as 1 cm. Gorgonian variables included density (G-Dn, n/m2), morphological 

richness (G-MR, morphologies/m2), and means and sums of height (G-Hmn, cm; G-Hsum, 

cm m−2), footprint (G-Fp, cm2 m−2), surface area (G-SA, cm2 m−2), surface index (G-SI = 

G-SA/G-Fp) and volume occupied (G-VO, cm3 m−2).

Footprint, surface area and volume occupied by the eight sponge morphologies were 

estimated using a cylinder as a geometric surrogate (Fp = πr2; SA = 2πrh + πr2; VO 

= πr2h), where radius (r) = ½ maximum diameter. Surface index was calculated as 

SA/Fp. Sponge variables included density (S-Dn, n m−2), morphological richness (S-MR, 

morphologies m−2) and means and sums of height (S-Hmn, cm; S-Hsum, cm m−2), and 

sums of footprint (S-Fp, cm2 m−2), surface area (S-SA, cm2 m−2), surface index (S-SI), and 

volume occupied (S-VO, cm3 m−2).

2.3. Bayesian network analysis

All Bayesian network analysis was conducted with BayesiaLab 10.2 (Bayesia S.A.S., 

2022) using approaches described in the BayesiaLab help function and Conrady and 

Jouffe (2015). Coral reef monitoring variables were discretized prior to analysis. The R2-

GenOpt procedure in BayesiaLab for discretization was used to reconstruct the existing 

patterns in the data. The algorithm uses genetic optimization to maximize the R2 between 

the original raw data distribution and the density created by the discretization. Three 

intervals were selected following the recommended discretization number in BayesiaLab 

as calculated from the size of the data set. Discretization intervals are displayed in Table 

S1. Quantification of the parameters was developed through maximum likelihood estimation 

of the parent/child state occurrences in the dataset. This uses the counts of the data for 

establishing a probability for each child state given a combination of parent states.

2.3.1. Exploratory analysis—Distance mapping with Pearson correlation and mutual 

information were used for the unconnected nodes to examine how the manifest (observed) 

variables clustered based on the strength of their relationships. This also helped to compare 

relationships directly in the data with the model structure. The distance mapping procedure 

uses a measure of sensitivity to determine the proximity of a collection of variables across 

the layout of the BayesiaLab window. Distance mapping for Pearson correlation is based on 

the coefficient value with two positively correlated nodes being grouped closer together and 

two negatively correlated nodes being grouped at opposite ends of the workspace. Mutual 

information quantifies how much uncertainty in a node is reduced when the value of a 

second node is known. Distance mapping with mutual information shows nodes having 

higher mutual information clustering closer together.
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Maximum weight spanning tree (MWST) structure learning was used to gain additional 

insights. The MWST is considered a tree structure because it is constrained to only 

one parent node per child node. The MWST starts off by examining the strength of 

the relationships between the nodes and connects them by prioritizing the strongest 

relationships. The direction of the arcs is automatically chosen to minimize structural 

complexity (Bayesia S.A.S., 2010). The MWST networks were built using a score-based 

determination from the minimum description length (MDL) (Conrady and Jouffe, 2015). 

The MDL contains two components—one for the representation of the data and one for the 

complexity of the network. The complexity term is given a weight, known as a structural 

coefficient (SC). When the SC is 1, the terms are balanced equally between complexity and 

data representation. When the SC is >1, less complexity is favored and when the SC is <1, 

greater complexity is favored over the balanced network. A network with a balanced score 

(SC = 1) between complexity and data representation was first constructed. Then, the SC 

was reduced to increase complexity until all nodes were linked in a single network. The 

final structure was attained when reductions in the SC (in 0.05 intervals) first permitted a 

completely connected network.

Node importance was tested in the resulting structure from the connected MWST network. 

In this process, arc force was used to gain knowledge of the sensitivity of the relationships 

in the model. Arc force provides a Kullback-Leibler divergence measure based on the 

information brought to a joint probability distribution when the arc is included or removed 

(Conrady and Jouffe, 2015). The Kullback-Leibler divergence is a standard statistical tool 

in information theory that is measures the proximity of two distributions. In this case, the 

network with the arc in question was compared to a hypothetical network that is in every 

way the same but missing the arc. This isolates and measures the contribution of the arc 

in the joint probability represented by the Bayesian network. The nodes that were most 

strongly connected to other nodes (node centrality) were found through the node force 

values which relies on the total arc force (sums of the incoming and outgoing arc forces) to 

examine the overall strength of the direct connections (Conrady and Jouffe, 2015). Higher 

node force values equate to higher centrality of nodes in the network. Pearson correlation 

analysis between each of the measured variables was also used to examine the linear 

strength and direction of the positive and negative relationships.

2.3.2. Clustering analysis—Stations were grouped into clusters based on their 

similarities (Conrady and Jouffe, 2014). The observed characteristics (manifest variables) 

of sponges, gorgonians, stony corals, and fishes at sites were used to group the sampling 

sites. This generated a latent (unobserved) node for each taxon that is distinct from the 

manifest observations. The procedure is used to construct new variables to summarize the 

taxa variables comparable to the extraction of latent or composite variables in a traditional 

factor analysis or principal component analysis (PCA). In this case, a latent factor node is 

created from the variables measured at the reefs that summarizes the associations among 

the sites. The algorithm utilizes the MDL score in a naïve Bayesian network to identify the 

latent variable with multiple states to represent clustering among the data that is connected 

to the measured variables used in its construction. A naïve Bayesian network contains a 

center node (the parent) with predictor nodes as children. In this case, the center node is 
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the factor node and the nodes for the observed reef variables are the predictors. The latent 

factor node was constructed through an expectation-maximization process that targeted the 

similarities in the monitoring sites for each of the candidate cluster groupings. Sherif et al. 

(2015) describe the expectation-maximization process as an approach that iterates back and 

forth between expectation and maximization steps. It starts with a ‘guess’ (expectation),then 

checks if this guess can be improved (maximization) and then iteratively re-guesses with the 

improved values. In this case, the algorithm initially starts with random distributions over the 

cluster and reef states. In the first expectation step, the clusters are imputed based on these 

starting distributions and the data. The maximization step uses the imputations from this step 

to realign the conditional probabilities in the network from the data. This process is repeated 

until convergence (no change) or a stopping point is reached.

The MWST-learned network was used for the final clustering of each group of variables. 

The connections between nodes for different taxa variables were first removed so that 

only within-taxon connections remained (Fig. S2). The number of factors requested for 

variable clustering was chosen based on the number of taxa. Multiple clustering was used 

to construct a new latent factor variable for each taxon, generating multiple cluster states 

within each latent factor variable. These four latent variables were then themselves clustered 

to create a higher-level latent factor variable, a meta-cluster, that summarized the cluster 

states across taxa. This meta-clustering provides a hierarchical clustering network that 

summarizes information on the coral reef community from the measured variables across 

taxa. This network also includes all factor nodes and observable nodes from monitoring data 

so it provides an overall network for the community structure based on the observed reef 

characteristics. The factor nodes can then be used to perform inferences in this network like 

factor scores from PCA may be used in a data case file (Conrady and Jouffe, 2014).

For the data clustering procedures, several constraints were applied. A minimum purity 

of 70% was set for accepting a taxon-specific cluster but this was increased to 85% for 

accepting a meta-cluster. Purity measures capture the highest posterior probability of a 

latent variable cluster state for the data on each of the coral reef monitoring nodes from 

a site. Thus a 100% pure site would be contained completely in one cluster but a lower 

purity would be partially contained in other clusters from the posterior probabilities. Purity 

measures are computed as an average for each cluster and associated site data and as an 

overall average across all site data and associated cluster states of a latent factor variable. 

The supporting material contains these purity measures and other statistics related to the 

clusters and resulting network (Table S4).

The cluster analysis was constrained to a maximum of five states with a minimum of 

two, but low purity measures can exclude some candidate clusters. The optimal number of 

cluster states and the data contained in each was identified using an automated expectation- 

maximization process, described above, based on a random walk with 300 steps for 

minimizing the MDL score. The final ten steps were used to check for stability with the 

number of clusters chosen for each taxon. A stable outcome would have the same number 

of clusters for all ten final steps. The contingency table fit (CTF), a network performance 

indicator representing the quality of the fit to the data, provides a normalized measure from 

0 to 100% with 0% (poorest fit) having the data representation skill of an unconnected 
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network and 100% having the joint probability representation of the data of a completely 

connected network (best possible fit) (Conrady and Jouffe, 2014; Gerassis et al., 2019). 

The CTF was extracted for the individual taxa factor networks as well as the meta-factor 

network.

The patterns in the data were identified through the resulting naïve Bayesian network that 

was constructed for each community component (taxon) and the hierarchical factor node. 

The hierarchical network integrated all nodes together in one network with the latent factor 

node containing the meta-cluster states as the target variable, the factor nodes for each taxa 

as intermediaries, and the reef variables as manifest predictors. Once the data clustering 

was completed for each of the taxa and the hierarchical network, the contribution of each 

manifest predictor variable to the target factor node was identified, similar to comparing 

factor loadings for each variable in PCA (Conrady and Jouffe, 2014). Next, the relationships 

between the cluster states and the manifest variables’ distributions were examined through 

a posterior means analysis (Bayesia S.A.S., 2022). The posterior means analysis examined 

the mean value of the manifest nodes for each of the cluster states of the latent factor. The 

procedure used for calculating a posterior mean for a measurement node given a particular 

cluster is further described in the supporting materials (CarrigerFisherSI_PMA).

The coral and fish factor nodes were also examined outside of the observable nodes used 

in their creation. The coral factor node was connected separately to the fish manifest nodes 

and to the gorgonian manifest nodes in naïve Bayesian networks. The fish factor was also 

connected to all observable variables not used in its creation (i.e., for sponge, gorgonians, 

corals) in a naïve Bayesian network. The clustering process had assigned all the identified 

clusters to each site in the data set, thus allowing a new Bayesian network to be created that 

contains variables in the data not used for creating a cluster. A posterior means analysis was 

used for examining the relationship between the fish or coral clusters and the observable 

variables.

3. Results

3.1. Exploratory analysis

Distance mapping provided a clear picture of the variables that are most closely related 

(Fig. 1). Both mutual information and Pearson correlation showed that within-taxon 

nodes grouped with one another. Pearson correlation found the strongest positive linear 

relationships between sponge and gorgonian variables, shown by the proximity of their 

nodes (Fig. 1a). Coral nodes were most negatively related to sponge nodes and the fish 

nodes were most negatively related to the gorgonian nodes. Mutual information found 

similar groupings to the Pearson correlation despite being a nonlinear measure (Fig. 1b). A 

subset of the coral variables (C-VO, C-Hmn, C-SA and C-Fp) was more centrally located in 

the mutual information map indicating stronger ties for those variables to other community 

components.

The MWST algorithm with SC set at 1 identified two connected structures (Fig. 2a). 

One structure contains the sponge and gorgonian nodes and the second contains the fish 

and coral nodes. For the former, S-MR is connected to G-SA and for the latter, F-DN is 

Carriger and Fisher Page 9

Ecol Inform. Author manuscript; available in PMC 2024 October 07.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



connected to C-SI. These connections are reflected in the distance mapping with mutual 

information relationships where both node relationships are among the more closely spaced 

inter-variable relationships in the graph. The S-MR and G-SA relationship is also visible 

for the Pearson correlation distance map as being among the strongest inter-variable 

relationships indicating a more positive linear relationship between the two nodes. The 

SC value that provided a fully connected network was 0.80 (Fig. 2b). The new connection 

that formed with SC = 0.80 was between G-SI and C-Hmn and was the only negative 

Pearson correlation value in the MWST graphs (Table S2, Fig. S1). The Pearson correlation 

distance map indicated that these are two of the more negatively positioned nodes between 

the gorgonian and coral node groups. The flow among variables for corals and gorgonians 

seemed to exhibit similar patterns with the connections between Hsum, Dn, SI, MR and TR 

variables. Some of these patterns are also seen in the connections for the sponges.

The fully connected network was examined for node centrality (nodes with the most and 

strongest connections, Conrady and Jouffe, 2015). The node force measure, based on 

Kullback-Leibler divergence, provided a visual interpretation of node forces in the network 

(Fig. 3). Higher node force values are used to identify which nodes are central in the 

network. Numeric values for node force are provided in Table S3. The sum of heights for 

sponges, corals and gorgonians were key variables for those components, and surface area 

for sponges and gorgonians also had relatively high node force values. The fish variables, 

based on the relative magnitude of their node force values, appeared to play a smaller role 

overall in the joint probability of the network.

3.2. Clustering of reef variables

Latent factor nodes were developed from the measured variables. The contribution of each 

measured variable to its latent factor was identified for each taxon (Fig. 4). For sponges 

and gorgonians, colony footprint nodes (S-Fp and G-Fp) were the largest contributors to the 

latent factor and surface area was the second largest (S-SA and G-SA). For corals, mean 

height and colony footprint made the greatest contributions to the latent factor. For fish, the 

greatest contributions were from the two biomass variables—overall biomass and biomass 

per fish—and these provided >90% of the contribution to the latent factor. Five clusters were 

identified for each taxa and the CTF values were all equal to or above 70% for the individual 

taxa networks (Table S4).

Grouping of multiple states within the latent factors created five clusters with unique 

characteristics for each of the taxa (Tables 1–4, Figs. S3-S6). A tutorial on the calculations 

for posterior means and their interpretation is provided in the supporting materials 

(CarrigerFisherSI_PMA). For sponges, the third cluster (SC3) had the highest posterior 

mean values (Table 1) for all measured variables, but only 4.3% of the stations were in 

this cluster. The fourth cluster (SC4) had the lowest posterior mean values and constituted 

24.6% of the stations. Among the five fish clusters, FC2 and FC3 split the higher posterior 

mean values with FC2 having the higher fish biomass variables and FC3 having higher 

values for fish density and taxa richness (Table 2). Combined, these two clusters constituted 

only 5.1% of the stations. The lowest posterior mean values for fish were predominantly 

found in FC4 and constituted 50% of the stations. Most of the highest posterior mean 
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values for gorgonians were in clusters GC4 and GC5 (Table 3), comprising 19.6% and 7.9% 

of stations, respectively. The lowest posterior means for gorgonians were in Cluster GC2, 

comprising 14.5% of stations. Coral had the highest posterior mean values in CC1 and 

CC5, comprising 12.3% of stations and the lowest values in CC4 representing over 50% 

of stations (Table 4). Cluster 1 for the corals (CC1) had the lowest value for C-TR and 

CC3 had the lowest posterior mean value for C-Hmn. The latter also had relatively high 

posterior mean values for taxa richness and density. The highest percentage of stations were 

associated with lower posterior mean values for sponges, fish and corals. For gorgonians, 

~28% of stations were associated with the highest posterior mean values (GC4 and GC5).

3.3. Cluster comparisons

Detaching the fish factor node from the fish variables and attaching it to the manifest 

variables of other taxa (Fig. 5) allowed comparison of each fish cluster (shown in Table 2) 

with other measured reef variables (Table 5, Fig. S7). Fish cluster 1 (FC1), which had lower 

posterior mean values for fish biomass, was associated with the highest values for C-SA 

and C-Fp. Fish cluster 2 (FC2) had the highest posterior mean values for fish biomass and 

was associated with the highest posterior mean values for C-Dn, S-FP, and G-Hmn (Table 

5). Fish cluster 3 (FC3) had the highest posterior mean values for fish density and fish taxa 

richness, and was associated with highest C-Hmn, C-VO, C-Hsum and C-SI posterior means 

and the second highest C-Dn, C-Fp, S-Fp, and C-SA posterior mean values. It was also 

associated with lower posterior mean values for many of the gorgonian and sponge variables 

and C-TR. Fish cluster 4 (FC4), which had relatively low posterior mean values for all four 

measured fish characteristics, was associated with the lowest posterior mean values for C-SI, 

C-Dn and C-Hsum but with higher posterior mean values for C-TR and most other non-coral 

variables. Fish cluster 5 (FC5) exhibited moderate posterior mean values and was associated 

with the highest sponge values for S-Dn and S-Hsum; and the lowest for S-VO, S-Fp, and 

C-TR.

The coral factor node (CF) was also attached separately to the fish and gorgonian manifest 

nodes for analysis (Tables 6–7, Figs. S8-S9). Coral cluster 1 (CC1), which had higher 

posterior mean values for colony size (shown in Table 4), was associated with the highest 

F-Dn and F-TR while CC3, higher for coral taxa richness and density, was associated with 

the highest fish biomass means (Table 6). Coral cluster 4 (CC4) had lower mean values 

for all coral variables, and was associated with the lowest F-Dn and F-TR mean values. 

Coral cluster 5 (CC5) had the highest C-Hsum, C-Dn, and C-TR posterior mean values 

and was associated with the lowest fish biomass values. In relation to gorgonians, CC1 was 

associated with the lowest gorgonian posterior mean values and CC3, CC4, and CC5 with 

most of the higher gorgonian values (Table 7).

3.4. Hierarchical clustering

The hierarchical clustering initially identified four clusters after 300 steps. However, the 

algorithm did not settle on a consistent number of clusters and 30,000 steps were used to 

stabilize the algorithm. In both cases, four clusters were identified, but the 30,000 steps 

clustering network was applied for analysis. The CTF for the meta-factor network was lower 
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than for the individual taxa at approximately 58% (Table S4) reflecting that the meta-factor 

network has high complexity and includes all four taxa factor and manifest nodes.

After 30,000 steps, hierarchical clustering identified a meta-factor variable that summarized 

factors for each community component (Fig. 6). The posterior mean analysis identified the 

most likely values for measured reef nodes for each of the meta-clusters (Table 8, Fig. S10). 

Meta-cluster 1 (MC1) exhibited the highest gorgonian and sponge posterior mean values 

and lower coral and fish values. The lowest coral posterior mean values and a majority of 

the lowest sponge values were seen in MC2. Gorgonians and fishes had moderate to low 

posterior mean values in MC2. Both MC1 and MC2 also contained most of the deeper 

sites sampled (>8 m) (Fig. S11). The highest fish biomass measurements and coral density 

and taxa richness and the majority of the lowest gorgonian values were in MC3. The 

F-Dn and F-TR posterior mean values were lowest in MC3 and the rest of the posterior 

mean values for coral nodes were relatively moderate. Sponges and gorgonian posterior 

mean values were mixed between relatively low, moderate, and high values in MC3. The 

highest posterior mean values for coral variables, except density and taxa richness, along 

with the highest fish density and taxa richness mean values, were in MC4. The latter also 

had relatively low to moderate posterior mean values for gorgonian and sponge nodes. The 

attributes of these four meta-clusters are illustrated by photographs taken at representative 

sites (Fig. 7): MC1 stations (44.9% of stations sampled) showed higher density and diversity 

of gorgonians and sponges and low variable values for fish and coral. Meta-cluster 2 (MC2) 

stations (35.5%) were largely devoid of all benthic organisms but exhibited moderate fish 

values. Meta-cluster 3 (MC3) stations, which comprised only 8.0% of the stations, had 

higher coral density and taxa richness coincident with higher fish biomass. Meta-cluster 4 

(MC4, 11.6% of stations) had higher coral values for physical variables, moderate coral taxa 

richness, and higher fish density and taxa richness.

4. Discussion

Linear and non-linear associations of four predominant taxa forming coral reef communities 

along the southern coast of Puerto Rico were examined using a novel Bayesian network 

application to distinguish community patterns from density, diversity, and size relationships. 

An exploratory analysis with MWST structures found the strongest correlations were within 

taxa, likely reflecting the interrelatedness of dimension variables (height, footprint, surface 

area, and volume) for each taxon. However, an MWST structure learning process also 

identified positive cross-taxa correlations between sponge and gorgonian variables and 

between fish and coral variables. Additionally, a negative Pearson correlation was found 

between coral and gorgonian nodes, but only after allowing greater complexity in the model 

to generate a completely connected network (Fig. 2b).

Examination of the connecting nodes can provide insight into the resulting 

interrelationships. For example, the node for F-Dn connected to the node for C-SI (Fig. 

3), which is an estimate of the surface area of a colony relative to its footprint. This 

positive connection may reflect the provision of coral structural habitat for fish. The 

highest posterior mean values for both nodes were found in the same meta-cluster (MC3, 

Table 8), demonstrating how the meta-clusters encompass locations with the underlying 
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cross-taxa relationships. Positive connecting nodes between sponge and gorgonian variables 

were S-MR and G-SA, the basis for which is uncertain but hierarchical clustering also 

identified a single meta-cluster (MC1) with the highest posterior mean values for both 

nodes. C-Hmn and G-SI were the connecting nodes for a negative relationship between 

coral and gorgonians, indicating smaller coral colony heights at locations with greater 

gorgonian surface index. This may reflect physical shading by gorgonians to block coral 

photosynthesis and growth. However, there were also indications of a negative relationship 

between C-Fp and G-Fp that could indicate competition for substrate. Assuming either or 

both of these are correct, the apparent ability of gorgonians to withstand climate change 

factors throughout the Caribbean (Edmunds et al., 2016; Lenz et al., 2015; Ruzicka et al., 

2013) could magnify the relatively deleterious climate effects on stony corals and lead to a 

community shift toward gorgonians in Puerto Rico reefs. The highest posterior mean value 

for C-Hmn and the lowest posterior mean value for G-SI were both found in MC3; likewise, 

the second lowest posterior mean value for G-Fp and the highest for C-Fp were found in 

MC3. These and other inter-assemblage relationships may be critical to understand emerging 

risk management approaches based on multiple assemblages (Bradley et al., 2020; Fore et 

al., 2008; Fore et al., 2009; Santavy et al., 2022a, 2022b).

Clustering analysis, which generates groupings based on similarity of variables across 

the 138 sampling stations, was first applied to individual taxa to illustrate single-taxon 

population patterns. It is worth noting that the purity setting for this analysis was 70%, 

meaning that observed values in the predictor states had at least a 70% probability of 

being in a particular cluster on average. All clusters met this requirement with average 

purities ranging from 98.18 to 99.95% across the four taxa (Table S4). The overall 

average purity for the meta-factor’s clusters was 94.55%, underscoring relatively strong 

distinctions among the clusters. Clusters with the highest posterior mean values for fish, 

corals and sponges represented the fewest stations. That is, stations with higher posterior 

means for density, size and diversity for these three taxa were relatively rare. Gorgonians, 

however, had a more balanced station distribution for clusters of high, medium, and low 

values. This underscores the broad distribution of gorgonians across Puerto Rico reefs and 

re-emphasizes the differential effect that climate change factors might exert on gorgonians 

and scleractinians (Edmunds et al., 2016; Johnson and Hallock, 2020). Examination of the 

clusters can reveal several transect characteristics. For example, Table 4 shows that transects 

with higher density (CC5) have smaller colonies; and that transects with large colonies 

(CC1) have the lowest taxa richness. This within-taxa information can be valuable for 

highlighting rare areas or habitats (low-occurrences), or areas providing greater ecosystem 

benefits (high posterior mean values).

Community patterns were characterized by generating a latent factor for each taxon to 

compare with variables of other taxa (Fig. 4). A focus on coral relationships is warranted 

because of the centrality of coral variables in mutual information distance mapping (Fig. 

1). Among coral clusters, CC1 was higher for most coral variables (Table 4) and when 

the latent coral factor (CF) was applied, posterior mean values for fish density and taxa 

richness were also relatively high (Table 6) but relatively low for gorgonians in association 

with CC1 (Table 7). In contrast, posterior means for corals were relatively low in CC4, 

and when CF was applied fish variables were relatively low and gorgonian variables were 
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relatively high. These comparisons emphasize the positive and negative relationships seen at 

some sites of coral with fish and gorgonians, respectively, and identify the most influential 

variables in each. As another example, a comparison of CC1 (lower density, larger coral 

colonies) with CC5 (higher density, smaller coral colonies) could illustrate a fish habitat 

advantage for locations with a few larger coral colonies over those with several smaller 

colonies. Correspondingly, Fisher (2023) found that small colonies provide little fish habitat. 

Reinforcing findings from the MWST analysis noted above, the relation of lower coral 

variables (CC4) with taller gorgonians might reflect shading by gorgonians or competition 

with corals for substrate at those sites. In contrast, the negative relationship between fish 

and gorgonians is confounding given the potential for gorgonian structure to serve as fish 

habitat, much like seagrass structure (Jones et al., 2021). A possible explanation is that thick 

densities of gorgonians found at many sites obscured smaller fish from surveyor counts. 

Or reef fish may not use gorgonians for habitat or may even avoid gorgonians because of 

anti-predator mucus secretions or structural spicules (Brown and Bythell, 2005; Harvell and 

Fenical, 1989; Pawlik et al., 1987).

The clustering process was applied a second time to generate meta-clusters that identify 

community patterns across the sampling stations. The meta-clustering integrated both 

benthic and fish taxa clusters to define clusters in a manner that is “inclusive of their 

dynamics” (Donovan et al., 2018). This process simultaneously incorporated all variables 

from all the taxon-specific clusters into a single indicator of the aggregate community. Using 

a posterior means analysis, it was possible to demonstrate which manifest variables were 

most influential for defining community characteristics. For example, MC1 contained higher 

gorgonian and sponge values and lower fish density, taxa richness and biomass. Similarly, 

MC4 had higher coral posterior mean values and fish density and taxa richness but lower 

gorgonian and sponge values. Interestingly, the posterior mean values for fish variables were 

higher in MC2 (second highest for each variable), which contained relatively low posterior 

means for benthic organisms, than for MC1 with higher gorgonian and sponge values. The 

meta-clusters grouped key relationships across taxa and captured several key relationships 

in the inter-cluster posterior mean comparison. For example, CC3 had higher density and 

taxa richness of corals but also had higher fish biomass posterior means when applied to 

the fish predictors and these higher posterior means were grouped under MC3. Likewise, 

the higher posterior mean values for the majority of the coral variables were found in 

CC1 which also was associated with higher fish density and taxa richness when connected 

to the fish predictors. These inter-relationships were also observed for the posterior mean 

values of MC4. The meta-cluster groupings contain all the measured characteristics of the 

reef systems and can differentiate sites based on measurements from multiple endpoints 

representing multiple taxa.

Hierarchical clustering of higher and lower assemblage characteristics can be useful as 

endpoints in future environmental assessments, not only as a community indicator but to 

reinforce the use of other assessment endpoints, such as presence of endangered species, 

reefscape attributes and single population biological variables that indicate provision of 

ecosystem services or vulnerability to stressors. Meta-clustering can be applied, with 

additional information, in ecological risk assessments for defining and characterizing 

communities at risk. Associations between reef characteristics and variables that target reef 
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structure and function could also be evaluated using both component (single assemblage) 

and meta-clusters. If the data are representative, the meta-clusters can be interpreted as 

different ecosystem states, relating reef structure to function across time and space. Greater 

understanding of these states and their ecosystem services can aid in risk assessment 

and management. Management effectiveness, as well, could be gauged by the loss or 

gain of a site from one meta-cluster to another after intervention. Additional temporal 

understanding of community transitional and stable states along with knowledge of the 

influence of anthropogenic and abiotic factors on coral reef communities would aid in the 

development and evaluation of management actions (Donovan et al., 2018). The meta-factor 

node can be directly adapted for Bayesian network risk models to determine external 

factors that influence the biotic community and nodes that represent useful interventions 

by management.

Some drawbacks exist in this approach, including the use of discretization on continuous 

variables potentially causing a loss of information. However, the method for discretization 

used here provides a balance between capturing the range and amount of data. The higher 

data requirements permit use of nonparametric analysis with more flexible assumptions 

than those found in other approaches. Nonetheless, analyses can be difficult with noisy 

environmental data, especially when the data sets are small. In addition, interpretation 

of the clusters contained in the latent factor variables for the community components 

is of utmost importance for their usefulness to environmental assessments. Although the 

current study found that the clusters provided clear delineation between higher and lower 

posterior means, the moderate values were difficult to interpret. This may be improved 

with better understanding of additional variables and characteristics of the site. Increasing 

the dimensions used in the assessment through additional variables can therefore be useful 

(Peterson and Evans, 2019). Due to the restrictions in MWST, the representation of data 

might not be as high as other learning methods (Kekolahti et al., 2015). However, the 

constraints (only one incoming connection per node) allow only the nodes with the strongest 

associations to be connected.

Clustering with Bayesian networks to understand ecological communities is a unique 

approach for coral reefs and other ecological communities, yet clusters can describe 

community patterns that are not intuitive nor otherwise discernible. The insights provided 

can be useful for ecological risk assessment and management or to interpret other data sets 

from a community perspective. Identification of habitat clusters for assemblages or species 

of concern provides a useful application of clustering with Bayesian networks where clusters 

can be built for one aspect of the data set and easily compared to another (e.g., fishes and 

coral). Future research can explore how the clusters identified with these monitoring data 

can be further compared to external stressors and in situ features that may be related to the 

status of reef communities.

Appendix A. Supplementary data

Additional information available on the discretization thresholds, clustering results, 

statistical summary tables, and graphical output from the clustering analysis and the 
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resulting networks discussed in the article. Supplementary data to this article can be found 

online at https://doi.org/10.1016/j.ecoinf.2024.102665.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Glossary

Fish

F-Dn Density

F-TR Taxa Richnes

F-Bm Biomass

F-Bmf Biomass/fish

Coral

C-Dn Density

C-TR Taxa Richness

C-Hsum Height Sum

C-Hmn Height Mean

C-Fp Footprint

C-SA Surface Area

C-SI Surface Index

C-VO Volume Occupied

Sponge

S-Dn Density

S-MR Morphological Richness

S-Hsum Height Sum
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S-Hmn Height Mean

S-Fp Footprint

S-SA Surface Area

S-SI Surface Index

S-VO Volume Occupied

Gorgonian

G-Dn Density

G-MR Morphological Richness

G-Hsum Height Sum

G-Hmn Height Mean

G-Fp: Footprint

G-SA Surface Area

G-SI Surface Index

G-VO Volume Occupied
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Fig. 1. 
Distance mapping of the coral reef monitoring variables using (a) Pearson correlation and 

(b) mutual information. Node C-SA is behind C-Fp in 1a and 1b. Coral reef nodes are 

blue, fish nodes are green, sponge nodes are red and gorgonian nodes are yellow. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.)
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Fig. 2. 
Maximum weight spanning tree structure with (a) structural coefficient of 1.0 and (b) 

structural coefficient of 0.80 to fully connect all nodes of the network. Coral reef nodes 

are blue, fish nodes are green, sponge nodes are red and gorgonian nodes are yellow. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.)
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Fig. 3. 
Final Bayesian network structure with node force (node size) and Kullback-Leibler 

divergence (arc size and numerical values) showing the strength of relationships among 

measured variables. Coral reef nodes are blue, fish nodes are green, sponge nodes are red 

and gorgonian nodes are yellow. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.)
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Fig. 4. 
Cluster networks for each community component. Target nodes are latent factors containing 

cluster states. Percentage numbers are percentage strengths of contributions between the 

target node and manifest variables. SF = sponge factor; FF = fish factor; GF = gorgonian 

factor; CF = coral factor.
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Fig. 5. 
Network structure for supervised learning of the fish factor (FF) with all measured variables 

as predictors. The latent FF comprised the manifest variables from corals, sponges and 

gorgonians.
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Fig. 6. 
Hierarchical cluster model structure. The meta-factor (MF) root node clusters the factor 

nodes for each community component. The leaf (terminal) nodes are the manifest nodes 

representing probability distributions from measured reef components. Intermediate nodes 

(between the root and leaf nodes) are the factor nodes for each of the community 

components. The names of these factor nodes reflect the manifest node with the highest 

contribution and the number of nodes in the cluster states in parentheses.
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Fig. 7. 
Photographs of representative stations for meta-clusters: MC1 (top left), MC2 (top right), 

MC3 (bottom left) and MC4 (bottom right).
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Table 1

Posterior mean estimates for sponge variables given each of the identified clusters. Colors are a spectrum from 

red to green with red, green, and yellow representing lower, higher, and intermediate values, respectively. 

Distribution of stations (%, n = 138) among sponge clusters are shown in parentheses.

Posterior Mean Values (rows)

Node SC1 (9.4%) SC2 (19.6%) SC3 (4.3%) SC4 (24.6%) SC5 (42.0%)

S-Hmn 11.0297 17.319 18.620 2.377 11.271

S-SA 5938.369 5067.278 12419.130 1234.474 1234.474

S-Hsum 37.592 108.213 176.214 19.953 19.953

S-Fp 2280.440 1038.634 2993.994 237.672 517.318

S-Dn 3.984 5.837 8.300 1.398 1.977

S-SI 53.880 288.020 502.835 53.880 57.870

S-VO 36541.671 19472.920 57656.957 4882.792 4882.792

S-MR 0.752 0.744 0.840 0.201 0.646
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Table 2

Posterior mean estimates for fish variables given each of the identified clusters. Colors are a spectrum from red 

to green with red, green, and yellow representing lower, higher, and intermediate values, respectively. 

Distribution of stations (%, n = 138) among fish clusters are shown in parentheses.

Posterior Mean Values (rows)

Node FC1 (34.8%) FC2 (2.2%) FC3 (2.9%) FC4 (50.0%) FC5 (10.1%)

F-Dn 1.735 1.857 3.388 0.639 1.742

F-Bm 43.716 757.828 169.891 41.031 169.891

F-Bmf 37.089 433.585 34.610 53.575 94.091

F-TR 0.165 0.178 0.217 0.130 0.196
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Table 3

Posterior mean estimates for gorgonian variables given each of the identified clusters. Colors are a spectrum 

from red to green with red, green, and yellow representing lower, higher, and intermediate values, respectively. 

Distribution of stations (%, n = 138) among gorgonian clusters are shown in parentheses.

Posterior Mean Values (rows)

Node GC1 (27.5%) GC2 (14.5%) GC3 (30.4%) GC4 (19.6%) GC5 (7.9%)

G-Hsum 86.742 86.742 312.735 565.793 292.190

G-SA 10330.769 10330.769 39753.851 61838.615 49433.119

G-Dn 3.747 2.630 9.017 14.388 4.836

G-Fp 1665.556 1665.556 5558.179 8566.256 10110.642

G-Hmn 33.633 7.836 34.245 37.620 44.992

G-SI 492.010 226.845 1024.387 1420.144 348.981

G-MR 1.062 0.330 1.413 1.405 1.179

G-VO 142476.082 142476.082 253532.128 611171.884 826475.839
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Table 4

Posterior mean estimates for coral variables given each of the identified clusters. Colors are a spectrum from 

red to green with red, green, and yellow representing lower, higher, and intermediate values, respectively. 

Distribution of stations (%, n = 138) among coral clusters are shown in parentheses.

Posterior Mean Values (rows)

Node CC1 (3.6%) CC2 (8.7%) CC3 (27.5%) CC4 (51.4%) CC5 (8.7%)

C-Hsum 52.963 31.802 36.112 13.131 75.303

C-Dn 2.431 1.690 4.093 1.369 4.425

C-SI 343.133 132.854 162.379 66.733 247.082

C-Fp 10641.328 2871.595 1401.650 1058.027 5410.590

C-SA 83957.155 15835.134 3427.783 3427.783 23279.544

C-TR 0.287 0.367 0.514 0.296 0.532

C-Hmn 33.125 16.955 9.577 10.824 15.111

C-VO 667583.164 187747.084 30155.783 30155.783 256352.700
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Table 5

Posterior mean estimates for non-fish variables given each of the clusters for the fish factor. Colors are a 

spectrum from red to green with red, green, and yellow representing lower, higher, and intermediate values, 

respectively.

Posterior Mean Values (rows)

Node FC1 FC2 FC3 FC4 FC5

G-Fp 4153.778 3611.867 1665.556 5927.523 3333.823

G-MR 1.044 0.943 0.969 1.256 0.981

G-Hmn 27.854 37.114 32.553 34.331 31.166

G-VO 229932.718 142476.082 142476.082 421402.360 242426.523

G-SA 26810.019 21131.896 18431.615 39344.322 24535.143

G-Hsum 231.371 162.073 143.240 310.362 219.747

G-Dn 6.604 4.652 5.663 8.433 5.711

G-SI 770.751 674.679 562.720 847.287 621.887

S-Hsum 39.344 45.431 19.953 48.853 59.139

S-MR 0.503 0.502 0.405 0.657 0.473

S-Hmn 8.930 7.631 8.288 11.889 10.873

S-Dn 3.015 2.643 2.332 3.114 3.184

S-Fp 825.149 1156.446 1152.023 843.008 563.278

S-SI 103.633 53.880 53.880 143.222 103.464

S-SA 2700.510 2802.439 2410.448 3164.202 2578.444

S-VO 9572.476 14262.160 11917.318 16252.164 8902.521

C-SI 143.620 156.376 211.798 95.984 167.883

C-Hmn 12.533 9.577 17.878 11.020 15.758

C-TR 0.368 0.336 0.305 0.414 0.305

C-VO 103856.416 30155.783 148349.259 71266.557 97694.912

C-SA 14297.730 3427.783 10872.194 6017.143 7681.732

C-Fp 2600.358 1058.027 2146.168 1688.833 1990.719

C-Dn 2.578 3.719 3.079 2.281 2.408

C-Hsum 29.412 27.938 40.680 26.320 27.161
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Table 6

Posterior mean estimates for fish variables given each of the clusters for the coral factor (CF). Colors are a 

spectrum from red to green with red, green, and yellow representing lower, higher, and intermediate values, 

respectively.

Posterior Mean Values (rows)

Node CC1 CC2 CC3 CC4 CC5

F-Dn 2.281 1.627 1.237 1.098 1.245

F-TR 0.181 0.167 0.156 0.144 0.167

F-Bm 92.575 62.508 111.185 59.181 51.770

F-Bmf 146.507 49.481 74.392 56.985 44.524
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Table 7

Posterior mean estimates for gorgonian variables given each of the clusters for the coral factor (CF). Colors are 

a spectrum from red to green with red, green, and yellow representing lower, higher, and intermediate values, 

respectively.

Posterior Mean Values (rows)

Node CC1 CC2 CC3 CC4 CC5

G-SI 226.845 407.832 927.441 797.015 881.764

G-MR 0.443 1.195 1.180 1.140 1.241

G-Hmn 17.723 33.693 33.482 30.570 37.334

G-Dn 2.630 4.652 7.809 8.188 5.691

G-Hsum 86.742 143.240 282.750 287.385 279.580

G-Fp 1665.556 2638.712 5185.779 5194.390 5558.179

G-SA 10330.769 18431.615 32968.972 35207.242 38073.744

G-VO 142476.082 220215.314 352750.627 320712.514 414563.395
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Table 8

Posterior mean estimates for all manifest variables given each of the meta-clusters (MCs) for the meta-factor 

node. Colors are a spectrum from red to green with red, green, and yellow representing lower, higher, and 

intermediate values, respectively. Distribution of stations (%, n = 138) among meta-clusters are shown in 

parentheses.

Posterior Mean Values (rows)

Node MC1 (44.9%) MC2 (35.5%) MC3 (8.0%) MC4 (11.6%)

G-Hsum 419.955 155.924 86.742 126.548

G-SA 50776.465 19337.835 10330.769 17057.505

G-Fp 7528.990 2857.175 1665.556 2964.481

G-Dn 10.749 4.996 3.747 3.934

G-MR 1.376 0.930 1.062 0.915

G-VO 492447.722 176472.831 142476.082 234917.054

G-SI 1098.690 568.398 492.010 441.113

G-Hmn 37.275 25.397 33.633 28.642

S-Hmn 13.438 8.696 9.169 6.075

S-Hsum 63.059 22.473 60.071 39.486

S-SI 167.664 56.160 160.308 110.748

S-Dn 3.921 2.098 3.416 2.369

S-SA 3771.308 1906.459 2976.658 2632.556

S-MR 0.682 0.534 0.448 0.364

S-Fp 1019.180 689.294 601.745 634.646

S-VO 16528.482 9405.489 11514.669 11479.563

C-Fp 1648.591 1149.192 2269.386 6093.073

C-SA 5749.159 3427.783 9744.253 39449.644

C-Hsum 27.164 19.228 36.019 52.009

C-VO 57129.397 30155.783 108025.067 359135.114

C-Hmn 11.034 10.493 12.876 21.432

C-SI 117.173 92.109 150.648 234.262

C-Dn 2.554 2.092 3.001 2.776

C-TR 0.391 0.354 0.442 0.393

F-Dn 0.904 1.517 0.850 1.943

F-TR 0.141 0.162 0.140 0.177

F-Bm 51.856 90.176 117.909 83.146

F-Bmf 54.184 63.362 91.805 47.467
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