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Abstract Sterol traffic between the endoplasmic reticulum (ER) and plasma membrane (PM) is

a fundamental cellular process that occurs by a poorly understood non-vesicular mechanism.

We identified a novel, evolutionarily diverse family of ER membrane proteins with StART-like lipid

transfer domains and studied them in yeast. StART-like domains from Ysp2p and its paralog Lam4p

specifically bind sterols, and Ysp2p, Lam4p and their homologs Ysp1p and Sip3p target punctate

ER-PM contact sites distinct from those occupied by known ER-PM tethers. The activity of Ysp2p,

reflected in amphotericin-sensitivity assays, requires its second StART-like domain to be positioned

so that it can reach across ER-PM contacts. Absence of Ysp2p, Ysp1p or Sip3p reduces the rate at

which exogenously supplied sterols traffic from the PM to the ER. Our data suggest that these

StART-like proteins act in trans to mediate a step in sterol exchange between the PM and ER.

DOI: 10.7554/eLife.07253.001

Introduction
Although lipids are synthesized only in specific locations in the cell and must be exported to populate

membrane-bound organelles, the mechanisms of intracellular lipid traffic are still uncertain. Each organelle

has a unique set of lipids, which in some cases (for example, mitochondria) cannot be delivered by

vesicles. Even for organelles linked by the secretory pathway, non-vesicular mechanisms dominate

for both phospholipids and sterol (Holthuis and Levine, 2005; Voelker, 2009; Holthuis and

Menon, 2014). Sterols are critically important lipids that are synthesized in the endoplasmic

reticulum (ER) and trafficked mainly to the plasma membrane (PM). Traffic is very fast (t½ < 5 min),

bidirectional, and independent of the secretory pathway (Pagano, 1990; Simons and Ikonen, 2000;

Baumann et al., 2005; Mesmin et al., 2011), so non-vesicular mechanisms must exist to transfer

sterol across the cytoplasm between the ER and PM.

Non-vesicular sterol transport is likely to be mediated by sterol-specific lipid transfer proteins

(LTPs) with the ability to extract sterols from membranes, effectively solubilizing them for transport

through the cytoplasm. Models vary in the envisaged distance across which LTP-sterol complexes

must diffuse. When the entire ER is considered to exchange lipid with the entire PM, the presumed

diffusion distance is up to 50% of the cell diameter. Other models specify that LTPs only diffuse

between ER and PM where they form membrane contact sites (MCSs) with interorganelle gaps ∼30 nm

(Helle et al., 2013; Prinz, 2014). The ER forms MCSs with many organelles, and MCSs have become

a significant subject of research as MCS-specific proteins have been identified. The dominant classes of

MCS proteins are tethers (Pan et al., 2000; de Brito and Scorrano, 2008; Lahiri et al., 2014),

regulators of calcium traffic (Takeshima et al., 2000; Wu et al., 2006), lipid biosynthetic enzymes

*For correspondence: tim.

levine@ucl.ac.uk

†These authors contributed

equally to this work

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 17

Received: 27 February 2015

Accepted: 20 May 2015

Published: 22 May 2015

Reviewing editor: Chris G Burd,

Yale University, United States

Copyright Gatta et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Gatta et al. eLife 2015;4:e07253. DOI: 10.7554/eLife.07253 1 of 21

http://elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
http://dx.doi.org/10.7554/eLife.07253.001
mailto:tim.levine@ucl.ac.uk
mailto:tim.levine@ucl.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7554/eLife.07253


(Vance, 1990; Pichler et al., 2001; Tavassoli et al., 2013), and LTPs including ceramide transfer protein

(CERT) and oxysterol binding protein (OSBP) homologs (Vihtelic et al., 1993; Levine andMunro, 2001;

Hanada et al., 2003; Peretti et al., 2008; Rocha et al., 2009; Toulmay and Prinz, 2012; Maeda et al.,

2013; Mesmin et al., 2013). Many of these LTPs contain a linear motif (two phenylalanines in an acidic

tract = ‘FFAT’) that binds to VAP, a conserved integral ER membrane protein (Loewen et al., 2003), and

these LTPs target an MCS by containing both a FFAT motif for ER targeting and a second targeting

domain for the other organelle.

Finding so many LTPs at MCSs has led to the widespread expectation that lipid transfer occurs

there (Holthuis and Levine, 2005; Prinz, 2010; Vance, 2015), but there is little direct evidence for this.

Some of the best evidence relates to CERT and OSBP, which bind ceramide and sterol respectively.

Both CERT and OSBP have FFAT motifs, and their recruitment causes VAP to redistribute from the

whole ER into MCSs, indicating that CERT or OSBP is physically bridging the MCS (Mesmin et al., 2013;

Kumagai et al., 2014). While CERT mediates non-vesicular ceramide traffic, there is some doubt that

OSBP homologs mediate all sterol traffic because deleting Osh4, the major OSBP in yeast has no

effect on ER → PM or PM → ER sterol transport (Raychaudhuri et al., 2006) (Sullivan and Menon,

unpublished). Also, deleting all seven OSBP homologs in yeast only reduces PM → ER sterol traffic

by ∼twofold (Georgiev et al., 2011), suggesting that other mechanisms exist. Apart from OSBPs, the

other sterol specific LTPs are members of the Steroidogenic Acute Regulatory Transfer (StART) proteins.

Among 15 human StARTs, the founding member of the family (StARD1) transports cholesterol into

eLife digest Membranes are crucial structures for cells that are made primarily of fat molecules.

The most important membrane is the external one that surrounds cells and keeps the outside world

out and cellular contents in. The single most common fat component in the external membrane is

cholesterol, which makes the membrane rigid and better able to withstand the outside world. So

even though excess cholesterol contributes to diseases such as heart disease, stroke and

Alzheimer’s, the external membrane of every cell needs about a billion cholesterol molecules for its

normal function. But how do cells manage the traffic of these molecules to their destination?

It is known that when external membranes are short of cholesterol they make it at a different

cellular location. There is an internal network—called the endoplasmic reticulum—that spreads just

about everywhere throughout the cell. This network is where fats like cholesterol are made when the

cell has not got enough, and where they are converted into an inert form when the cell has too much.

What is not known is how cholesterol moves to and fro between this network and the external

membrane.

One theory is that cholesterol and other fats move only where the internal network comes into

close contact with the external membrane, without quite touching. This theory comes in part from

the finding that many of the proteins found in the narrow gaps between the internal network and the

external membrane are capable of transferring fats across the gap. However, one of the missing

supports for this theory is that no protein that transfers cholesterol across this gap has been found.

Gatta, Wong, Sere et al. used computational tools to scan the database of known proteins for

those that might be able to transfer cholesterol, and found a new family of fat transfer proteins.

Further experiments showed that these proteins only bind to cholesterol out of all the fats. Next,

Gatta, Wong, Sere et al. studied what the proteins do in cells, but instead of looking at the proteins

in human cells they studied the related proteins in yeast. This is because the details of both the traffic

of cholesterol and contacts between the internal network and the external membrane are in many

respects understood better in yeast than in human cells.

Gatta, Wong, Sere et al. found the cholesterol transfer proteins were embedded in regions where

the internal network was in close contact with the external membrane. Also, in cells that lacked these

proteins, cholesterol added to the external membrane had difficulty transferring to the internal

network.

These results together suggest that the newly identified lipid transfer proteins exchange lipids

between the plasma membrane and endoplasmic reticulum at membrane contact sites. Further

research is required to understand in detail how these proteins work.

DOI: 10.7554/eLife.07253.002
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mitochondria in steroidogenic cells, and StARD4 transports cholesterol from the late secretory pathway

to the ER (Mesmin et al., 2011). Budding yeast has no canonical StART proteins, but has Coq10p and

Ups1-3p, which are distantly related StART-like proteins that bind non-sterol lipids (Barros et al., 2005;

Connerth et al., 2012).

Here, we identified a large new protein family distantly related to StART proteins. We found that

Ysp2p, one of six StART-like proteins in yeast, has two StART-like domains both of which bind sterol.

Along with three other yeast StART-like proteins Ysp1p Sip3p and Lam4p, it is anchored in the ER at

contact sites with the PM. In addition, its function requires anchoring to these sites in such a way that

its StART-like domain can reach out across the contacts. Finally, loss of Ysp2p, Ysp1p or Sip3p reduces

the rate of transfer of sterol from PM to ER, consistent with these proteins mediating a component of

sterol transport.

Results

A family of membrane anchored StART-like proteins includes Ysp1p,
Ysp2p and Sip3p
To identify novel sterol transfer proteins, we used StART domains to seed the homology tool HHpred

(Soding et al., 2005). This has been successfully used in structural alignments to identify remote

homologs for other LTPs, including TULIPs in tricalbins, and PRELI domains in Ups1-3p (Kopec et al.,

2010; Connerth et al., 2012; Schauder et al., 2014).

We found a large family of eukaryotic proteins containing StART-like domains (Figure 1 and

Figure 1—figure supplement 1), which are distantly related to other domains in the StART superfamily,

such as MLN64, CERT, Coq10p and Bet-v1 (Figure 1—figure supplement 2A). In terms of sequence

alone there are few conserved residues (Figure 1B), so alignment requires inclusion of predicted

secondary structure (Figure 1—figure supplement 2B). The StART-like domain is present in three

human proteins (GramD1a-c), and six proteins in budding yeast (Ysp1p, Ysp2p, Sip3p, Lam4p,

Lam5p and Lam6p). Because Saccharomyces cerevisiae duplicated its genome ∼10 million years

ago, related fungi have just three family members, one each for the pairs of paralogs Ysp1p/Sip3p,

Ysp2p/Lam4p and Lam5p/Lam6p (Figure 1A). The StART-like domains in Ysp1p and Sip3p are

divergent compared to those of Ysp2p, Lam4–6p and GramD1a-c (Figure 1—figure supplement 1).

Importantly, most proteins in the wider family combine the StART-like domain with different

accessory domains that mediate interactions with membranes, particularly GRAM domains in the

pleckstrin-homology (PH) superfamily and predicted transmembrane domains (TMDs) (Figure 1A

and Figure 1—figure supplement 2C). The presence of a TMD is a key observation for a proposed

LTP, because the TMD will anchor the protein to one membrane, so if the LTP is to traffic a lipid to

another compartment, it must act at an MCS where the gap can be bridged by a single protein or

protein complex (Olkkonen and Levine, 2004).

StART-like domains in Ysp2p and Lam4p all solubilize sterol
The overriding property of any StART-like domain is specific binding to a lipid or other hydrophobic

ligand. To determine if the regions we identified as StART-like domains bind lipid, we expressed the

predicted yeast and human domains in bacteria. The only StART-like domains that we could express

as soluble proteins in bacteria were the four StART-like domains of Ysp2p and Lam4p (Figure 1A), the

most soluble being the second domain of Lam4p (called Lam4S2), so we tested if Lam4S2 binds

eukaryotic lipids. We incubated purified protein with permeabilized human cells in which all lipids

had been radiolabelled with [14C]-acetate. Re-purified protein contained a single labelled lipid that

co-migrated with cholesterol by TLC, but no phospholipids were co-purified (Figure 2A and

Figure 2—figure supplement 1A). Sterol binding by Lam4S2 during re-purification indicates a high

affinity interaction that solubilizes the hydrophobic lipid, similar to known StART domains.

We next quantitatively studied the sterol binding properties of StART-like domains using the

fluorescent sterol dehydroergosterol (DHE). DHE closely mimics ergosterol, the major yeast sterol

(Georgiev et al., 2011; Maxfield and Wustner, 2012) and acts as FRET acceptor for tryptophan with

a Förster radius of 1.6 nm (Loura et al., 2010). One of the tryptophans in Lam4S2 and related

sequences is in the predicted binding pocket (Figure 2—figure supplement 1B). All four StART-like

domains that expressed as soluble proteins (Ysp2S1 and YspS2 from Ysp2p, Lam4S1 and Lam4S2

from Lam4p) were purified to >95% purity (Figure 2—figure supplement 1C), and these proteins all
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produced strong FRET signals with DHE (Figure 2B and Figure 2—figure supplement 1D). This was

not observed with denatured Lam4S2 or with a control protein (soybean trypsin inhibitor)

(Figure 2—figure supplement 1E, and data not shown). The dissociation constant for binding was

estimated at 0.5 μM (±0.1) from a binding curve with DHE added in liposomes, as measured from

the FRET signal (Figure 2C). All four purified StART-like domains bound both cholesterol

(the predominant sterol in mammals) and ergosterol (the predominant sterol in yeast) with similar

affinity to DHE, as seen by a reduction in FRET of approximately 50% when DHE was mixed with an

Figure 1. A new family of conserved lipid transfer proteins (LTPs) in the StART superfamily. (A) StART-like domains

are found in the predicted cytoplasmic domains of three human proteins and six yeast proteins, which are three

pairs of paralogs. Proportions of identical residues in recently duplicated domains are indicated. Previous

identifications were limited to GRAM domains in the pleckstrin homology superfamily (PHg) and transmembrane

domains (T, in Lam4p the TMD is weakly predicted*). We identify Bin/amphiphysin/RVS (BAR), and other

pleckstrin-homology (PH) superfamily domains. Predicted topology places most regions in the cytoplasm except

short luminal regions (pink). Scale bar is 200 aa. (B) Alignment of yeast and human StART-like domains with Bet-v1

and seven human StARTs, with CLUSTALX coloring of conserved residues, together with secondary structure

(above, sheets—blue arrows, helices—red) and quality of alignment (below). The C-terminal helix contains a glycine

residue (*) predicted to interact with the omega-1 loop, hence affecting opening/closing of the lipid binding pocket.

Arrows point to tryptophans present in Ysp2S1/2 and Lam4S1/2, black: in all 4 domains, blue: in Ysp2S1 only. A two

residue insertion is omitted from the final loop of GramD1b.

DOI: 10.7554/eLife.07253.003

The following figure supplements are available for figure 1:

Figure supplement 1. A family of StART-like domains in all eukaryotes.

DOI: 10.7554/eLife.07253.004

Figure supplement 2. Relationships of StART-like domains.

DOI: 10.7554/eLife.07253.005
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equal concentration of non-fluorescent sterol (Figure 2D). The sub-micromolar affinity for sterol is

similar to other sterol transfer proteins such as Osh4p and Pry1p (Im et al., 2005; Choudhary and

Schneiter, 2012).

From analysis of the chromatography plate in Figure 2A, we found that Lam4S2 extracted

cholesterol but no other lipids from labelled HL60 cells (relative recovery compared to cholesterol of

all identifiable phospholipids ≤0.3%). In contrast, PITPα present in the same experiment extracted

phosphatidylcholine (PC) and phosphatidylinositol (PI) but not cholesterol (data not shown).

Therefore, the lack of recovery of the major phospholipids, including PC, PI, phosphatidylserine (PS) and

phosphatidylethanolamine (PE), by Lam4S2 indicates that if it does bind phospholipids non-specifically

(Schrick et al., 2014), such binding can only be weak (Kd >100 μM).

Figure 2. StART-like domains in Ysp2p and Lam4p specifically bind sterol. (A) The second StART-like domain

of Lam4p (Lam4S2) binds cholesterol. Human leukemic cells (HL60) in which all lipids were labelled with

14C-acetate were semi-permeabilized and incubated with bacterially expressed Lam4S2 and two control proteins:

Pdr16(EE) which binds cholesterol (Holic et al., 2014) and GFP-PH-OSBP (negative control). Lipid extracts of

re-isolated proteins were separated by TLC. Positions of major identifiable lipids were ascertained from total

lipids (arrows, SM = sphingomyelin, PC = phosphatidylcholine, PI = phosphatidylinositol, PS = phosphatidylserine,

PE = phosphatidylethanolamine, CL = cardiolipin). Arrowheads indicate origin. (B) FRET between Ysp2S1 or Ysp2S2

and dehydroergosterol (DHE). Tryptophan fluorescence (excitation at 295 nm) with purified protein either on its own

or incubated with DHE. (C) Tryptophan-DHE FRET of Lam4S2 (1.05 μM) incubated with increasing concentrations of

liposomes containing 30% DHE at the final concentrations indicated. The best fitting one saturable site binding

curve (dashed line) indicates that Kd for binding = 0.5 μM DHE. (D) Effect on DHE FRET signal of adding non-

fluorescent sterols (chol—cholesterol, erg—ergosterol) added at the same concentration as DHE and one of four

StART-like domains from Ysp2p and Lam4p. ‘n.c.’ = no competitor, signal defined as 1; lipids added in methanol.

DOI: 10.7554/eLife.07253.006

The following figure supplement is available for figure 2:

Figure supplement 1. Lipid binding properties of StART-like domains.

DOI: 10.7554/eLife.07253.007
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Ysp1p, Ysp2p, Sip3p and Lam4p target punctate ER-PM membrane
contacts
To understand the physiological role of the StART-like proteins we investigated their locations. While

Ysp2p was detectable when expressed from its own promoter (Figure 3A), Sip3p expression from its

own promoter was so weak as to be almost undetectable (Figure 3—figure supplement 1A), so we

used a stronger promoter instead (Figure 3B). Both proteins targeted puncta in the cell periphery in

wild-type strains; identical patterns were seen in strains lacking the endogenous proteins (data not

shown). Their paralogs Lam4p and Ysp1p showed the same pattern, also at low levels of expression

(Figure 3—figure supplement 1B,C). These peripheral puncta might either be on the PM or on the

cortical ER (cER). In contrast to these four peripheral proteins, both Lam5p and Lam6p showed

complex intracellular targeting to multiple MCSs, including the NVJ and ER-mitochondrial contacts

(Figure 3—figure supplement 2). These localizations imply that Ysp1p, Ysp2p, Sip3p and Lam4p are

involved in similar or overlapping functions, while Lam5p and Lam6p have a different function.

Because we knew the lipid specificity for Ysp2p and Lam4p, we decided to focus on these proteins

as well as Sip3/Ysp1p that are also found in peripheral puncta. First we considered the effect of

over-expression. For Ysp2p, high expression had little effect on its distribution (Figure 3—figure

supplement 3A). However, in cells highly expressing Sip3p, protein accumulated in the ER

(Figure 3B). This suggests that Sip3p, and by extension Ysp1p, Ysp2p and Lam4p, target a saturable

punctate subdomain of the cER. However, additional information is required to make a precise

assignment because cER occupies a high proportion of the periphery in yeast, so co-localization with

cER could be coincidental. To refine the localization data, we therefore genetically reduced the

amount of cER using a strain lacking 90% of cER. In this ‘Δtether’ strain six proteins involved in

ER-PM tethering are deleted, and the proportion of PM with cER is reduced from 40% to 4% with

ER accumulation in the center of cells (Manford et al., 2012). In Δtether cells GFP-Ysp2p and

GFP-Sip3p were still found in peripheral puncta, although these were less numerous compared to

wild-type (Figure 3C and Figure 3—figure supplement 3B). All puncta with GFP-Ysp2p were in

close proximity to a strand of ER extending into the periphery, although each ER strand appeared in

fewer confocal sections than the associated punctum (Figure 3C, arrows). The same was found for

Ysp1p, Sip3p and Lam4p (Figure 3—figure supplement 3C), indicating that all four proteins target

ER-PM contacts that are distinct from those mediated by the six tether proteins previously

identified.

We next determined sequence elements required for contact site targeting by analyzing variants

of Ysp2p. Surprisingly, we found that Ysp2p is targeted normally to cER puncta in the absence of its

N-terminal domains. Unexpectedly, this targeting resulted from just the Ysp2 C-terminal region

(Ysp2CT), including the predicted luminal domain (Figure 3—figure supplement 4). Similarly, for

Ysp1, the C-terminus alone produced punctate targeting (data not shown). Also, because localization

to ER-PM contacts is consistent with being embedded either in the PM or in the ER, we induced

expression of GFP-Ysp2CT from the GAL1 promoter after inactivating SEC18 (yeast NSF). Despite the

block in secretion, newly expressed Ysp2CT still localized to peripheral puncta, while a PM resident

protein could only attain its normal distribution if expression was induced before inactivating SEC18

(Figure 3—figure supplement 5). This indicates that Ysp2p reaches its final destination without

leaving the ER.

Finally we asked if Ysp2p is colocalized with other cER proteins. We first found partial but

significant overlap between Ysp2 and Lam4p, its paralog (Figure 3—figure supplement 6A).

Next, we found a much greater colocalization of Ysp2p with Sip3p with 87% of puncta being

double positive (18 cells, 17.2 puncta per cell, s.d. 11%) (Figure 3D). This was only true in low

expressing cells, as overexpression of Sip3p caused delocalization of Ysp2p from puncta into the

ER (Figure 3E). For comparison, we examined other punctate cER markers, including the tricalbin

Tcb2p, the most punctate of the known ER-PM tethers. Tcb2-GFP at endogenous levels did not

significantly colocalize with Ysp2CT (Figure 3—figure supplement 6B). Similarly, other punctate

cER proteins such as Lnp1p and viral TGBp3 did not colocalize with Ysp2CT (data not shown)

(Wu et al., 2011; Chen et al., 2012). The colocalisation of Ysp2p and Sip3p is therefore specific,

and suggests a functionally important relationship between Ysp2p and Sip3p.

In summary, Ysp2p and its homologs are ER proteins strongly enriched at puncta in the cER that

may define a sub-class of ER-PM contact site.
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Figure 3. GFP-Ysp2p and Sip3 at ER-PM contacts in wildtype and Δtether cells. (A and B) GFP-Ysp2p and GFP-Sip3p (PHO5 promoter) in cells

co-expressing RFP-ER, showing separate channels (inverted grey-scale) and merges. Arrowheads indicate nuclear envelopes containing GFP-Sip3p.

(C) Confocal sections of a Δtether cell expressing GFP-Ysp2p and RFP-ER (top), with high contrast inverted grey-scale images of RFP-ER (bottom) to

Figure 3. continued on next page
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Ysp2p function correlates with sterol binding to its StART-like domain
Since we know the lipid binding specificity of Ysp2p and Lam4p, we next looked for sterol-related

phenotypes associated with loss of these genes. While Δlam4 has no known phenotype, Δysp2 induces

sensitivity to the polyene antifungals amphotericin B (AmB) and nystatin, which function by extracting

ergosterol from membranes (Anderson et al., 2014). Δysp2 is 30th most sensitive out of 4130 single

gene deletion strains tested with AmB and nystatin, while Δysp1 and Δsip3 are even more sensitive

(11th and 3rd/4130) (Hillenmeyer et al., 2008). Deletion strains that we re-made for the six yeast

StART-like proteins accurately reproduced the published sensitivities to polyenes (AmB Figure 4A

and Nystatin Figure 4—figure supplement 1A). Δysp1 and Δsip3 were both highly sensitive and

Δysp2 was moderately sensitive, while Δlam4, Δlam5 and Δlam6 were as wildtype. The same pattern of

sensitivities was found with natamycin, another polyene (data not shown).

Since loss of Ysp2p causes AmB sensitivity, we used this phenotype to identify which aspects of

the protein are critical for its function. Firstly, plasmid-borne GFP-tagged Ysp2p expressed from its

own promoter restored AmB resistance (Figure 4B), showing that the construct localized to cER

puncta is functional. Next, we looked for active domains within Ysp2p. By deleting regions of Ysp2p

(Figure 4—figure supplement 1B), we found that rescue of AmB-sensitive growth was affected

most upon removing either the C-terminal anchor or the second StART-like domain (Figure 4B).

On the other hand, deletion of Ysp2S1 had no effect. This indicated that both the C-terminus and the

second StART-like domain are necessary for Ysp2p function. We next determined which domains

are sufficient for rescue. The C-terminus was inactive, even though it is sufficient for punctate cER

localization, (Figure 4C, Figure 3—figure supplement 4B). In contrast, both Ysp2S1 and Ysp2S2

rescued AmBs growth, although these required over-expression (Figure 4C), possibly because the

constructs are diffusely cytoplasmic (data not shown). Therefore Ysp2S2 is the only component that

is both necessary and sufficient, but it requires overexpression if it is cytoplasmic rather than

membrane anchored.

To investigate the activity of YspS2 in rescuing AmB sensitivity, we compared it to other StART-like

domains. Activity was found not only in Ysp2S1, but also Lam4S1, Lam4S2, and the StART-like

domains of Lam5p and Lam6p (Figure 4C). Significantly, human GramD1a increased resistance to

AmB in both mutant and wild-type cells. The conservation of activity from yeast to human strongly

indicates that the StART-like domains are the active portions of this protein family. Furthermore,

constructs that rescued Δysp2 generally also rescued Δysp1 and Δsip3 (Figure 4—figure supplement 1C),

which indicates that there may be considerable overlap in function between these homologs.

To investigate the role of sterol binding, we made a non-sterol-binding mutant by mutating

a conserved glycine residue in the C-terminal helix predicted to interact with the omega-1 loop

(Figure 1B and Figure 2—figure supplement 1B). Replacing G1205 in Ysp2p with alanine, threonine

Figure 3. Continued

visualize endoplasmic reticulum (ER) strands extending to Ysp2p-positive peripheral puncta (arrowheads). (D) Cells co-expressing GFP-Sip3p and

RFP-Ysp2 at low levels, with separate channels as inverted grey-scale images and the merge, showing colocalization in most puncta. (E) As D, but showing

cells with high levels of GFP-Sip3p, which accumulates internally with delocalized internal RFP-Ysp2p.

DOI: 10.7554/eLife.07253.008

The following figure supplements are available for figure 3:

Figure supplement 1. Sip3p Ysp1p and Lam4p expressed from their own promoters.

DOI: 10.7554/eLife.07253.009

Figure supplement 2. GFP-Lam5p and -Lam6p target the NVJ and ER-mitochondrial contact sites.

DOI: 10.7554/eLife.07253.010

Figure supplement 3. Ysp2p and its homologs target ER-PM contacts.

DOI: 10.7554/eLife.07253.011

Figure supplement 4. Analysis of punctate targeting by Ysp2p.

DOI: 10.7554/eLife.07253.012

Figure supplement 5. Ysp2CT targets peripheral puncta after imposition of sec18-1 blockade to SNARE-mediated transport.

DOI: 10.7554/eLife.07253.013

Figure supplement 6. Ysp2 colocalizes partially with Lam4p but not significantly with Tcb2p.

DOI: 10.7554/eLife.07253.014
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and arginine successively reduced the ability of Ysp2S2 to rescue AmB-sensitive growth (data not

shown). Mutating the equivalent residue in Lam4S2 (G1119R) completely inhibited sterol binding in

vitro (Figure 4—figure supplement 1D), showing that this residue is indeed critical. Substitution of

this G → R mutated domain abolished rescue of AmB sensitivity by Ysp2p (Figure 4D), supporting

a correlation between Ysp2p function and sterol binding by Ysp2S2. We next tested if the AmB-

sensitive phenotype of Δysp2 cells could be rescued by a heterologous StART domain with very little

sequence similarity to Ysp2S2, as was previously done for PITP/Sec14 (Skinner et al., 1993). For this

we expressed StART domains of human MLN64 (sterol-specific), PCTP (phosphatidylcholine-specific)

and CERT (ceramide-specific) (Figure 1B and Figure 1—figure supplement 2B). The StART domain

of MLN64 produced significant rescue, but the StART domains of PCTP and CERT did not (Figure 4E).

This strongly supports the idea the function of Ysp2p resides in its interaction with sterol, rather than

a specific protein–protein interaction.

Figure 4. Amphotericin B (AmBS) phenotypes and rescue by StART-like domains that bind sterol. (A) Dilutions of cells

with single gene deletions were compared with the wild-type parental strain (WT) for ability to grow at two

concentrations (moderate and high) of AmB, with AmB = 0 to control for cell number. (B) Effect of AmBS growth by

Δysp2 cells from GFP-Ysp2p under its own promoter with individual domains deleted. (C) Rescue of Δysp2 by domains

of Ysp2p (S1/S2/CT), Lam4S1/S2, and StART-like domains of Lam5p Lam6p and human GramD1a. All plasmids had the

PHO5 promoter for moderately high expression, except Y2S2LO had the weakly expressing YSP2 promoter. (D) Growth

by Δysp2 cells expressing Ysp2p or the G > R mutant under the YSP2 promoter ± AmB. ‡ indicates that Ysp2S2 in both

plasmids was substituted by Lam4S2 (53% identical, 72% homologous). (E) Growth ± AmB by Δsip3 cells

overexpressing human LTP domains of MLN64, PCTP and ceramide transfer protein (CERT) (TPI1 promoter).

DOI: 10.7554/eLife.07253.015

The following figure supplement is available for figure 4:

Figure supplement 1. Activities of different StART-like domains.

DOI: 10.7554/eLife.07253.016
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Ysp2p function correlates with the ability of its StART-like domain to
reach across ER-PM contacts
Without its C-terminus, Ysp2p loses both targeting and function (Figure 3—figure supplement 2 and

Figure 4C). To examine the importance of anchoring further, we used the AmB resistance assay to

determine the role of intracellular localization of Ysp2S2 by anchoring it to the cytoplasmic face of

different organelles (Figure 5A). Ysp2S2 activity was completely inhibited when anchored to either

mitochondria or the vacuole. It was slightly activated by anchoring throughout the ER, and greatly

activated by anchoring either to ER-PM contacts (with Ysp2CT) or to the PM as a whole. Thus, Ysp2S2

is activated by anchoring to either side of ER-PM contacts, especially to the contacts themselves, but

inhibited by anchoring elsewhere.

Ysp2p is anchored to the ER membrane, which at contact sites is separated from the PM by a gap

of ∼30 nm (range 15–60 nm) (West et al., 2011). This distance is large compared to the size of the

StART-like domain itself (diameter 2.5 nm). While Ysp2p may act to extract or sense ER sterol, that is,

function in cis, we wondered if its function requires it to act in trans by reaching across ER-PM

contacts. Since unstructured peptide chains can extend up to 0.38 nm per residue (Pillardy et al.,

2001), a linker between Ysp2S2 and a TMD anchor would need to be ≥40 aa to allow Ysp2S2 to cross

the minimal 15 nm gap. We expressed constructs with Ysp2S2 linked to the generic ER anchor by

unstructured linkers of varying length. Linkers of up to 10 aa (≤4 nm) completely inhibited Ysp2S2.

In contrast, YspS2 was active when the linker was 40 aa (≤15 nm) or longer (Figure 5B). More stringent

testing, achieved using a higher concentration of AmB, showed that the 40 aa linker was only partially

active, and that Ysp2S2 with linkers of 71 aa (≤27 nm) and 103 aa (≤39 nm) was progressively more

active (Figure 5C). This suggests that Ysp2p is only active when its StART-like domain can reach across

the ER-PM contact to the other side.

Elimination of Ysp1p, Ysp2p and Sip3p slows transport of exogenously
supplied sterols to the ER
We have shown that (i) Ysp2p is localized to puncta in the cER, (ii) Ysp2p can bind ergosterol via its

StART-like domain, (iii) the function of Ysp2 and related genes can be partially rescued by an

evolutionarily distant sterol transfer domain, and (iv) expression of Ysp2p variants can rescue the

AmB-sensitivity of Δysp2 cells only when the StART-like domain is attached to a linker capable of

spanning the ER-PM contact distance. Thus Ysp2p is positioned either to mediate sterol exchange

between the ER and PM at a MCS or to act as a sterol-sensor that transmits information on lipid

composition/organization between the ER and PM. Although we know less about the other members of

the yeast StART-like family, we have established that Sip3p and Ysp1p localize to peripheral ER puncta

and have overlapping functions, so we are interested in these other proteins alongside Ysp2p.

First we measured the anterograde transport of ergosterol between the ER and PM

(Georgiev et al., 2011). This is a direct transport assay that measures the appearance in the PM

of a pulse of radiolabelled ergosterol generated in the ER. We metabolically labeled cells with

[3H-methyl]-methionine for 4 min and either stopped the reaction immediately or chased the

cells in excess unlabelled methionine for 15 min. At both time points we measured the ratio of

radioactive ergosterol to total ergosterol (specific radioactivity, or SR) in purified PM fractions

(SRPM) and in unfractionated extracts (SRcell). The amount of newly synthesized sterol in the PM

was expressed as the relative specific ratio (RSR) = SRPM: SRcell. At long time points (90 min) RSR

typically tends to 1, but even by the end of the pulse, RSR was 0.38 (s.d. 0.035, n = 5) in wild-type

cells, which is similar to values achieved previously (Georgiev et al., 2011). RSR increased to

0.61 (s.d. 0.072, n = 5) after 15 min chase. Deletion of YSP2 alone produced no significant

change in traffic during the pulse or after the chase (0.33 and 0.63, range for both ±0.032, n = 2).

This results rules out that Ysp2p is the sole transporter of sterol between ER and PM. However,

because the assay has a rapid first phase (pulse period >t1/2), we cannot determine whether loss

of Ysp2p causes a partial defect that would be undetectable in our protocol.

To test for more subtle effects that Ysp2p and homologs might play in sterol transport, we

deployed two assays to measure the transport of exogenously supplied sterols (DHE and cholesterol)

from the PM to the ER (Georgiev et al., 2011). Both assays require cells to be permissive for sterol

uptake, which was achieved for DHE by reversibly inducing hypoxia (Georgiev et al., 2011), and for

cholesterol by using upc2-1 strains (Crowley et al., 1998). Key mechanistic steps that generate the

eventual read-out of the assays are the insertion of sterol into the PM (requiring the ABC transporters
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Aus1p and Pdr11p), non-vesicular movement from PM to ER, and esterification at the ER requiring the

ACAT enzymes Are1p and Are2p (Figure 6A) (Raychaudhuri et al., 2006).

We first assayed the rate of DHE esterification in wild-type cells and single delete strains. DHE was

loaded into the PM under hypoxic conditions and transport was initiated by exposing the cells to air.

DHE esterification commenced after an initial lag period of 1 hr that was common to all strains tested.

The rate of DHE esterification was reduced by ∼40–50% in all of Δysp1, Δysp2 and Δsip3 cells, but not

affected by Δlam4, Δlam5 or Δlam6 (Figure 6B and data not shown). We next assayed cholesterol

import in the upc2-1 strain background. The use of this background avoided the lengthy hypoxic

induction used for DHE uptake, and because cholesterol is poorly tolerated in the yeast PM its flux

through the import pathway leading to esterification is more rapid than for DHE (Li and Prinz, 2004).

Compared with the upc2-1 parental strain, the rate of cholesterol esterification was reduced by

30–35% in both Δysp2 and Δsip3 single deletes (Figure 6C). This indicates that similar defects exist for

retrograde traffic of both exogenous sterols we tested.

To rule out trivial explanations for these results, we verified that Aus1p and Pdr11p localized similarly in

deletion and wild-type cells (data not shown) (Li and Prinz, 2004). We also found that sterol esterification

activity was not altered by deletion of Ysp2p and was marginally increased by loss of Ysp1p or Sip3p

Figure 5. Ysp2S2 is activated by anchoring that allows crossing of ER-PM contacts. (A) Anchoring at different

locations. AmBs growth of Δsip3 cells transformed with plasmids weakly expressing (YSP2 promoter) Ysp2S2-RFP

(dimeric) followed either by nothing (cytoplasmic) or by anchors for specific sites: vacuole (Nyv1p, all), mitochondria

(Tom6p, all), own anchor (Ysp2 1249–1438), generic ER (Scs2: 220–244), and plasma membrane (PM) (Sso1p, all).

WT and Δsip3 cells carrying empty plasmids were included as controls. (B and C) Varying the length of the linker.

AmBs growth of Δysp2 cells carrying an empty plasmid or weakly expressing (YSP2 promoter) Ysp2S2 anchored to

the ER by the TMD of Scs2 (residues 226–244) with intervening linkers of 5, 10, 40, 71 or 103 residues. Cells in B were

grown on plates with moderate AmB (63 ng/ml AmB). In C, cells with 40, 71 and 103 aa linker constructs were grown

at higher stringency (125 ng/ml AmB). Diagrams indicate the variable sites for each experiment in blue. Equal cells

were plated, as shown on control plates (Figure 5—figure supplement 1).

DOI: 10.7554/eLife.07253.017

The following figure supplement is available for figure 5:

Figure supplement 1. Controls for tests of LAM domain function at ER-PM contacts.

DOI: 10.7554/eLife.07253.018
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(Figure 6—figure supplement 1A). Another issue

we investigated was whether loss of StART-like

proteins altered overall ergosterol distribution,

which could interfere with the kinetics of our assays

(Li and Prinz, 2004). Firstly, we measured the total

amount of ergosterol in gradient fractions enriched

for PM; this was not significantly changed in the

delete strains (Figure 6—figure supplement 1B).

Secondly, we assessed the organization of PM

sterol, since changes in other lipids, especially

sphingolipids, might lead to increased traffic of

endogenous sterol that would compete with

exogenous lipid (Simons and Ikonen, 2000;

Li and Prinz, 2004; Das et al., 2014). The

proportion of sterol that partitions into

detergent–insoluble complexes was unaffected

by Δysp1, Δysp2 or Δsip3 deletions (54 ± 1%,

Figure 6—figure supplement 1C). Therefore,

effects on the distribution and organization of

ergosterol do not explain the effect of Δysp1,
Δysp2 and Δsip3 on esterification of exogenous

sterol. This leaves one major site of action of these

proteins: they appear to act on the retrograde

transport step itself, although we have not tested

if their mechanism of action is direct or indirect.

Discussion
We discovered a StART-like family of membrane-

anchored lipid-binding proteins that is conserved

throughout eukaryotes. Among the six yeast

family members, the StART-like domains of Ysp2p

and Lam4p specifically bind sterols, and the

StART-like domains of GramD1a, Lam5p and

Lam6p rescue AmBs growth, indicating that

these too bind sterol. We were not able to test

the StART-like domains of Ysp1p and Sip3p as

they were poorly expressed, but since the AmBs

phenotype of Δysp1 and Δsip3 cells could be

rescued by sterol-specific StART-like domains (Figure 4—figure supplement 1B), it appears that

these proteins also bind sterols. Thus, all members of this new protein family in yeast and humans

may be specific for sterol.

The presence of TMDs is a key aspect for the entire StART-like family. Ysp1p, Ysp2p, Sip3p

and Lam4p reside in puncta in the cER network that may define a novel class of ER-PM contact

sites, while Lam5p and Lam6p target internal MCSs. This suggests that the fundamental

molecular feature for members of this family is being a lipid transfer protein anchored at

a membrane contact site (hence ‘LAM’). Previous studies of Ysp1p, Ysp2p and Sip3p antedated

the prediction of StART-like domains (Lesage et al., 1994; Pozniakovsky et al., 2005; Sokolov

et al., 2006), and we suggest providing a uniform nomenclature in the future by renaming these

Lam1-3p respectively. Little is known about the human proteins, except that variation at the

GramD1b locus is linked to lymphoma/leukemia (Di Bernardo et al., 2008; Conde et al., 2010),

and we suggest renaming GramD1a-c as hLAMa-c. Intriguingly, the one LAM gene to have

previously been linked to lipids is LAM4, which we previously identified in a random transposon

screen as one of 20 genes involved in sterol import (Sullivan et al., 2009). Although Δlam4 has

no sterol traffic defect, this might be explained by its lower level of expression compared to

Ysp2p, so the previous results suggest that transposon insertion in LAM4 can produce a

dominant negative effect.

Figure 6. Retrograde sterol traffic is slower in strains

lacking Ysp1p Ysp2p or Sip3p. (A) Diagram of retro-

grade traffic pathway for exogenous sterols. Apart from

the hypothesized sterol transfer protein (double headed

arrow), other steps include insertion into the PM by ABC

transporters Aus1p and Pdr11p, and esterification in the

ER by ACAT enzymes Are1p and Are2p prior to storage

in lipid droplets (LD). (B) Retrograde traffic of DHE in

four single delete strains of the yeast StART-like family

were compared to wildtype controls. DHE ester forma-

tion was followed by HPLC during redistribution of DHE

away from the PM. (C) Retrograde traffic of cholesterol

in wildtype and two delete strains (Δysp2 and Δsip3) as
determined from esterification of cholesterol added

exogenously. Strains were created in a WPY361 (upc2-1)

background to allow cholesterol uptake.

DOI: 10.7554/eLife.07253.019

The following figure supplement is available for figure 6:

Figure supplement 1. Strains lacking Ysp1p Ysp2p or

Sip3p have no significant changes in sterol handling.

DOI: 10.7554/eLife.07253.020
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Ysp1p and Sip3p are outliers in terms of sequence to the other yeast and human StART-like

proteins (Figure 1—figure supplements 1, 2). Nevertheless, the co-localization of Sip3p with Ysp2p,

and the fact that altered levels of Sip3p cause redistribution of Ysp2p suggest that these proteins

interact. It is possible that they target a specific class of ER-PM contact site, similar to the sub-division

of ER-mitochondria contacts into regions with different molecular components (Lahiri et al., 2014).

However targeting to puncta by Ysp2p does not appear to require stoichiometric interaction

with Sip3p, as highly overexpressed Ysp2p remains punctate (Figure 3—figure supplement 3A).

Furthermore, Δsip3 has a much greater polyene sensitivity than Δysp2, even though the two

mutants have similar retrograde sterol defects, which indicates that the these proteins have

significant non-overlapping functions.

We focused on studying the physiological role of Ysp2p. The activity of the StART-like domain

of Ysp2S2 was maximized by anchoring it to either PM or ER with a linker of ≥100 aa. With

a linker of 10 aa (≤4 nm) it was completely inactive, even though this is long enough for the

domain to access lipids in cis (Schulz et al., 2009). Therefore, when anchored in the ER, Ysp2S2

function appears to function in trans. The activity of Ysp2S2 increased as the linker was extended

from 40 aa (≤15 nm) to 103 aa (≤39 nm). However, linkers in the StART-like proteins are 55–75 aa

(Figure 1A), similar to TULIPs (45–75 aa), which are also membrane anchored (Toulmay and

Prinz, 2012; Schauder et al., 2014). Since the natural linkers are shorter than those we needed

for maximal activation of artificial Ysp2S2–TMD constructs, other factors, such as the accessory

domains found commonly in this family, may contribute to activation in vivo. Hydrophobic loops

of C2 domains and of PH-like domains penetrate into membranes to destabilize them

(Ramachandran et al., 2009; Paddock et al., 2011), which may disturb the local bilayer and

contribute to function.

An important point to make is that we have not yet established how Ysp1p, Ysp2p and Sip3p

modulate the movement of sterol between the PM and ER. Their mode of action might be

indirect and regulatory, or they themselves might directly mediate sterol transfer. This lack of

certainty arises because our assays of retrograde transport can be affected by sterol partitioning

within the PM (Li and Prinz, 2004). A key experimental question for the future will be to develop

a new biophysical approach that shows how many sterol molecules that traffic between PM and

ER actually pass into (and out of) the pocket of one of these LTPs. We have also not established

how polyene sensitivity arises in cells lacking the StART-like proteins. Studies in pathogenic fungi

(Vincent et al., 2013) and in sphingolipid mutants (Sharma et al., 2014) suggest that AmB

sensitivity might be accompanied by gross biophysical change in sterol levels or extractability

respectively, but this was not found. Mutations of several different ERGosterol biosynthetic

genes in pathogenic fungi induce clinically relevant polyene resistance that is mediated by

a range of stress responses to reduced sterol (Vincent et al., 2013). However the situation may

be different in S. cerevisiae where deletions of single non-essential ERG genes do not induce

polyene resistance, and one deletant is sensitive to both AmB and nystatin (Δerg4: 38th out of

4130 deletion strains tested) (Hillenmeyer et al., 2008). As for altered sphingolipid metabolism,

which can affect sterol traffic and AmB sensitivity (Li and Prinz, 2004; Das et al., 2014; Sharma

et al., 2014), this has been linked to Pmp3p, a conserved small hydrophobic PM protein of

unknown function (Huang et al., 2013; Bari et al., 2015). However, Pmp3 only affects sensitivity

to AmB not other polyenes, so it seems likely that LTPs anchored at MCSs, mutants of which are

sensitive to all polyenes, act in a separate pathway.

Materials and methods

Chemicals
Unless otherwise stated chemicals were obtained from Sigma–Aldrich, UK. Lipids were obtained from:

Avanti Polar Lipids, Alabaster, Alabama (cholesterol, DOPE); Lipid Products, UK (PC, PS); MP

Biomedicals, Santa Ana, California (ergosterol) and Sigma (DHE).

Plasmids and strains
All plasmids are listed in Table 1. Deletion strains were obtained either from freezer stocks of the

yeast deletion collection (BY4741/2, and KanMX) or were made by the PCR method with heterologous

markers, as listed in Table 2.
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Table 1. Plasmids used in this study
Bacterial expression Constructs all start: MGGSHHHHHHGMASHHHHHARA

His-Ysp2S1 + PVMT + Ysp2 829-1027 + R

His-Ysp2S2 + PVMT + Ysp2 1027-1244 + R

His-Lam4S1 + M + Lam4 731-938 + DV

His-Lam4S2 + M + Lam4 946-1155 + DV

His-Lam4S2(G > R) as His-Lam4S2, G1119 > R

Yeast expression unless stated pRS series, 405 = integrating LEU2, 406 =
integrating URA3, 316 and 416 = CEN URA3; unless stated
PHO5 promoter {168}

GFP-Ysp2p 416: GFP + Ydr326c/Ysp2p ORF [1438], with 2 extra residues to
facilitate cloning in five sections: K828 > KT and S1244 > SR

GFP-Ysp1p/Sip3p/Lam4p 416: GFP + whole ORFs: Yhr155w/Ysp1p [1228], Ynl257c/Sip3p
[1229], Yhr080cp/Lam4p [1348]

GFP-Lam5/6p* 406: GFP + whole ORFs: Yfl042cp/Lam5p M1 > S [674],
Ylr072wp/Lam6p M1 > S [693]

GFP-Ysp1p/Ysp2p/Sip3p/Lam4p: own
promoters

as above for GFP-ORF, except replace PHO5 promoter with:
YSP1 {951}, YSP2 {459}, SIP3 {360}, LAM4 {701}

RFP-ER 405: dimeric dsRed tdimer2(12) [464] + RNSKP (linker) +
ENESSS•MGIFILVALLILVLGWFY•R = Scs2p 220–244 = linker[6] +
TMD[18] + lumen[1]

RFP-Tom6p as RFP-ER, but after RNSKP: G + Tom6p [61]

RFP-Ysp2p 406: dimeric dsRed tdimer2(12) [464] + Ysp2 K828 > KT and
S1244 > SR

GAL > GFP-Ysp2p as for GFP-Ysp2p, except 406, and replace PHO5 promoter with
GAL1 {807}

GFP-Ysp2ΔN 416 YSP2 prom.: GFP + Ysp2 611-1438

GFP-Ysp2ΔPH 416 YSP2 prom.: GFP + Ysp2 1-610 + 829-1438

GFP-Ysp2ΔS1 416 YSP2 prom.: GFP + Ysp2 1-828 + T + 1028-1438

GFP-Ysp2ΔS2 416 YSP2 prom.: GFP + Ysp2 1-1027 + R + 1245-1438

GFP-Ysp2S1S2CT 416 YSP2 prom.: GFP + Ysp2 829-1438

GFP-Ysp2S2CT 416 YSP2 prom.: GFP + Ysp2 1028-1438

GFP-Ysp2CT 416 YSP2 prom.: GFP + Ysp2 1245-1438

GFP-Ysp2ΔextremeC 416 YSP2 prom.: GFP + Ysp2 1-1319

GFP-Ysp2ΔCT 416 YSP2 prom.: GFP + Ysp2 1-1246

RFP-Ysp2CT as RFP-ER, but after RNSK: LGSAPVMSR + Ysp2 1245-1438

GFP only 416: GFP + GFP

GFP-Ysp2S1 416: GFP + Ysp2 829-1028

GFP-Ysp2S2 416: GFP + Ysp2 1027-1244 + R

GFP-Lam4S1 416: GFP + Ysp2 759-929

GFP-Lam4S2 416: GFP + Lam4 968-1140

GFP-Lam5S 416: GFP + Lam5 381-586 + AS

GFP-Lam6S 416: GFP + myc tag + Lam6 374-582 + DV

GFP-GramD1aS 416: GFP + GramD1a 359-547 + DV

GFP-Ysp2S2sw4 416 YSP2 prom.: GFP + Ysp2 1-1044 + Lam4 S953-V1161 + SR +
Ysp2 1245-1438

GFP-Ysp2S2sw4G > R as GFP-Ysp2S2sw4 G1119 > R

GFP-StART-MLN64 406: TPI1 prom. {412}: GFP + MLN64 216-445

GFP-StART-PCTP 406: TPI1 prom.: GFP + PCTP [214]

GFP-StART-CERT 406: TPI1 prom.: GFP + CERTL 397-624

Table 1. Continued on next page
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Bioinformatics
HHpred (at toolkit.tuebingen.mpg.de) was used online and seeded with sequences of StART

domains only (170–210 aa) using HHblits and with maximum accuracy alignment on. HHblits was

used with the following settings: 8 rounds, E-value threshold for inclusion = 0.01 (Remmert

et al., 2012). For the alignment with StARTs, sequences aligned by HHpred seeded with Ysp4S2

were exported into JalView, and edited by hand to eliminate redundant and incomplete

sequences and add the sequence of GramD1b, which is missing from the database. For tree

drawing, 888 StART-like sequences were reduced to 143 using a non-redundancy filter (PISCES

at dunbrack.fccc.edu/) and then the best tree inferred with PHYML (http://www.trex.uqam.ca/)

(Guindon and Gascuel, 2003). For structural modelling, the sequence of Lam4S2 was submitted

to SAM-T08 (Karplus, 2009).

Joint sensitivity of strains to AmB and nystatin was obtained by rank ordering the 4130

deletants that were tested with both drugs by Hillenmeyer et al. (2008) according to the

sensitivities to the two different drugs (data downloaded from Yeast Fitness Database at http://

chemogenomics.pharmacy.ubc.ca/fitdb/fitdb2.cgi).

Lipid binding in HL60 cells
Binding to cellular lipids was carried out as described (Holic et al., 2014). In summary, 107 HL60 cells

were labelled with 1 μCi/ml [14C]-acetate and then permeabilized with Streptolysin-O, prior to

incubation with 200 μg of the indicated His-tagged proteins at 37˚C for 20 min, recapture of proteins

on nickel beads, and then extraction of total lipids. Lipids were resolved by thin layer chromatography

on a Whatman Silica Gel 60 TLC plate developed using chloroform:methanol:acetic acid:water

75:45:3:1 (vol/vol). The chromatogram was imaged using a Fuji PhosphorImager screen. Bands that

migrated near the solvent front were scraped and re-chromatographed using hexane:diethylether:

acetic acid 155:45:2 (vol/vol). For data analysis in ImageJ, background was estimated from the

adjacent negative control lane loaded with repurified GFP-PHOSBP.

Table 1. Continued

Ysp2S2-RFP 405 YSP2 prom.: M + Ysp2 1022-1244 + 40 aa linker + RFP + 27
aa linker + RFP + HLFLRNSK + final 8aa: LGSQSMFD

Ysp2S2-RFP-Vacuole as Ysp2S2-RFP; final 8 aa → PGASYQ + Nyv1p [253]

Ysp2S2-RFP-Mito as Ysp2S2-RFP; final 8 aa → PG + Tom6p [61]

Ysp2S2-RFP-own CT as Ysp2S2-RFP; final 8 aa → LGSAPVMSR + Ysp2 1245-1438

Ysp2S2-RFP-ER as Ysp2S2-RFP; final 8 aa → P + Scs2p 220-244 (see RFP-ER,
above)

Ysp2S2-RFP-PM as Ysp2S2-RFP; final 8 aa → PGAS + Sso1p [290]

Ysp2S2-5aa-ER 405 YSP2 prom.: M + Ysp2 1057-1224 + linker SRLE + Scs2
225-244 = linker [1] + TMD[18] + lumen [1]
(S•MGIFILVALLILVLGWFY•R). Total linker = 5 aa

Ysp2S2-10aa-ER as Ysp2S2-5aa-ER; after SRLE insert extra 5 aa: Scs2 220-224

Ysp2S2-40aa-ER as Ysp2S2-5aa-ER; after SRLE insert extra 35 aa: Scs2 190-224

Ysp2S2-71aa-ER as Ysp2S2-5aa-ER; after SRLE insert extra 66 aa: Scs2 159-224

Ysp2S2-103aa-ER as Ysp2S2-5aa-ER; after SRLE insert extra 98 aa: KL + Scs2
129-224

Pdr11p-GFP† pWP1251. 316: PDR11 prom.: Pdr11p-GFP

Aus1p-GFP† pWP1220. 316: AUS1 prom.: Aus1p-GFP

Cloned regions are from S. cerevisiae (S288c) or human I.M.A.G.E. clones; size of whole proteins/promoters are in

brackets, for protein [aa] and DNA {bp}; promoters are regions of genome just prior to open reading frame starts;

ranges within proteins are not in brackets; changes in natural residues are written as ‘X123 > Z’; specific amino acid

sequences (e.g., linkers) are underlined.

Plasmids were received as kind gifts from

*Sean Munro.

†Will Prinz.

DOI: 10.7554/eLife.07253.021
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Protein expression and purification
Polyhistidine tagged proteins were expressed on plasmids based on pTrcHis (Life Technologies) in

BL21(DE3) Escherichia coli, which were induced at 37˚C with 0.2 mM IPTG for 6 hr. After lysis in 25 mM

TrisHCl pH 8.0, 300 mM NaCl, 5 mM imidazole, 1× complete EDTA-free protease inhibitor cocktail

(Roche) and clearing by centrifugation, lysate was loaded onto Ni-NTA agarose beads and washed

repeatedly before eluting with the same buffer with 300 mM imidazole. Eluted protein was desalted

into 20 mM PIPES, 137 mM NaCl, 3 mM KCl, pH 6.8 and evaluated by Coomassie staining of

SDS-PAGE gels. All preparations were >95% pure.

Tryptophan/DHE FRET
For binding to DHE alone, lipid was pre-incubated with fivefold molar excess of methyl β-cyclodextrin
prior to mixing with protein. For competitive binding between DHE and other sterols, lipids (3 μM)

were mixed together in methanol and added to protein (2 μM), with a final methanol concentration of

0.2%. Titration of DHE binding to Lam4S2 (WT and G1119R, 1.1 μM) was carried out by incubation

Table 2. Strains used in this study

Strain Genotype Reference

BY4741 (Euroscarf) MATa his3Δ1 leu2Δ0 met15Δ0
ura3Δ0

Euroscarf

Δysp1 BY4741 YHR155W::KANMX4 Euroscarf

Δysp2 BY4741 YDR326C::KANMX4 Euroscarf

Δsip3 BY4741 YNL257C::KANMX4 Euroscarf

Δlam4 BY4741 YHR080C::KANMX4 Euroscarf

Δlam5 BY4741 YFL042C::KANMX4 Euroscarf

Δlam6 BY4741 YLR072W::KANMX4 Euroscarf

WPY361 (upc2-1) MATa upc2-1 ura3-1 his3-11,-15 leu2-3,-
112 trp1-1

(Li and Prinz, 2004)

Upc2-1 Δysp2 WPY361 (upc2-1) YDR326C::KanMX4 This study

Upc2-1 Δsip3 WPY361 (upc2-1) YNL257C::HYGROR This study

RS453C MATα ade2-1 his3-11,15 ura3-52 leu2-
3112 trp1-1

(Levine and Munro, 2001)

Δysp1 RS453C YHR155W::HIS5 S.p. This study

Δysp2 RS453C YDR326C::HIS5 S.p. This study

Δsip3 RS453C YNL257C::HIS5 S.p. This study

Δlam4 RS453C YHR080C::HIS5 S.p. This study

Δlam5 RS453C YFL042C::HIS5 S.p. This study

Δlam6 RS453C YLR072W::HIS5 S.p. This study

Tcb2-GFP RS453C TCB2-EGFP::HIS5 S.p. This study

SEY6210 MATa leu2-3,-112 ura3-52 his3Δ200
trp1Δ901 lys2-801 suc2-Δ9 GAL

(Manford et al., 2012)

ANDY198 (Δtether) * SEY6210 ist2Δ::HISMX6 scs2Δ::TRP1
scs22Δ::HISMX6 tcb1Δ::KANMX4 tcb2Δ::
KANMX46 tcb3Δ::HISMX6

RSY271 sec18-1† MATa sec18-1 ura3-52 his4-619 (Novick et al., 1980)

Lnp1-GFP‡ SFNY 2092, MAT a, ura3-52, leu2-3,112,
his3Δ200, LNP1-3xGFP::URA3

(Chen et al., 2012)

Kind gifts of strains:

*Chris Stefan.

†Mike Lewis.

‡Susan Ferro-Novick.

DOI: 10.7554/eLife.07253.022
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with 100 nm diameter liposomes composed of 40% PC, 20% DOPE, 10% PS and 30% DHE. In all cases

protein was incubated with lipids for up to 30 min and fluorescence measured with excitation of 295

nm (slit 5 nm). The FRET response was calculated after deducting DHE alone background, as the ratio

between the DHE emission peak (373 nm) and the tryptophan emission peak (340 nm). Curve fitting

was carried out using Prism software.

Microscopy
Cells were grown at 30˚C to mid log phase in synthetic medium +2% dextrose containing the

appropriate amino acids and bases for plasmid maintenance. Live cells were immobilized between

slide and coverslip, and visualized on a confocal microscope (either Leica AOBS SP2 or Zeiss LSM 700)

at room temperature. Two color images were obtained using line-by-line switching, and single

labelled cells with full range of GFP/RFP expression were used to ensure lack of bleed through

between channels.

Growth assay
Sensitivity to AmB was determined by spotting yeast from log-phase cultures at 20-fold dilutions

(e.g., 2000/100/5 cells per spot) on freshly made up plates with AmB added from a 250 μg/ml

stock. Final concentrations of AmB were higher for yeast peptone medium (range 125–500 ng/ml)

than synthetic defined medium (range 63–250 ng/ml), with BY4741-derived strains sensitive at

the top of these ranges and RS453–derived strains at lower concentrations. Growth was for

48–72 hr at 30˚C.

Sterol transport assays
Procedures for hypoxic incubation of yeast cells, quantification of DHE, DHE esters and ergosterol

by reversed phase HPLC, quantification of radiolabeled cholesterol and cholesteryl esters by TLC,

and sucrose gradient fractionation to measure transport of ergosterol from the ER to the PM were

carried out as described previously (Georgiev et al., 2011) with the following modifications. For

assays of the retrograde transport of DHE, cells were inoculated at OD600 = 0.005 and incubated in

a hypoxic chamber for 36 hr prior to initiating the aerobic chase. For anterograde transport of

[3H]-ergosterol, the breaking buffer (Georgiev et al., 2011) additionally contained 10% (wt/vol)

sucrose.

Other assays
ACAT assays and isolation of detergent–insoluble complexes was carried out as described previously

(Georgiev et al., 2011).
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