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Cardiac arrest (CA) results in global ischemia-reperfusion injury damaging tissues in

the whole body. The landscape of therapeutic interventions in resuscitation medicine

has evolved from focusing solely on achieving return of circulation to now exploring

options to mitigate brain injury and preserve brain function after CA. CA pathology

includes mitochondrial damage and endoplasmic reticulum stress response, increased

generation of reactive oxygen species, neuroinflammation, and neuronal excitotoxic

death. Current non-pharmacologic therapies, such as therapeutic hypothermia and

extracorporeal cardiopulmonary resuscitation, have shown benefits in protecting against

ischemic brain injury and improving neurological outcomes post-CA, yet their application

is difficult to institute ubiquitously. The current preclinical pharmacopeia to address CA

and the resulting brain injury utilizes drugs that often target singular pathways and

have been difficult to translate from the bench to the clinic. Furthermore, the limited

combination therapies that have been attempted have shown mixed effects in conferring

neuroprotection and improving survival post-CA. The global scale of CA damage and its

resultant brain injury necessitates the future of CA interventions to simultaneously target

multiple pathways and alleviate the hemodynamic, mitochondrial, metabolic, oxidative,

and inflammatory processes in the brain. This narrative review seeks to highlight the

current field of post-CA neuroprotective pharmaceutical therapies, both singular and

combination, and discuss the use of an extensive multi-drug cocktail therapy as a novel

approach to treat CA-mediated dysregulation of multiple pathways, enhancing survival,

and neuroprotection.
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INTRODUCTION

Annually, there are over 356,000 out-of-hospital cardiac arrests
(OHCA) and 209,000 in-hospital cardiac arrests (IHCA) in
the United States with the survival to hospital discharge
only 12% and 25%, respectively. Furthermore, only 8.4% of
OHCA patients have favorable neurologic function, which
can be determined using various scales, such as modified
Rankin Scale (mRS), Cerebral Performance Categories (CPC),
and Extended Glasgow Outcome Scale (1–3). Despite the
heterogeneous etiologies of cardiac arrest (CA), the commonality
is the decreased perfusion to vital organs, such as the brain
(4). Hence, the best chances for increasing survival and
clinical outcomes requires a combination of early recognition,
early initiation of high-quality cardiopulmonary resuscitation
(CPR) and Advanced Cardiovascular Life Support (ACLS), and
appropriate post-resuscitation care that focus on protecting the
brain (5). Despite proven benefits of these interventions on
survival, the vast majority of survivors still have significant
neurologic deficits; therefore, novel neuroprotective therapies
that may be achieved through combination of evidence-
based, pathway-specific, pharmacological agents can potentially
improve outcomes for patients.

Ischemia-reperfusion injury (IRI) begins with decreased
perfusion to tissues, depletion of energetic substrates, and
subsequent upregulation of the anaerobic metabolism
(6). Under physiological conditions, the brain consumes
20% of the basal metabolic rate despite representing
only 2% of the total body weight. This high energetic
demand, the virtual absence of glycogen reserves, and
the dependance on oxidative phosphorylation makes the
brain highly vulnerable (7, 8). Resuscitation with return
of spontaneous circulation (ROSC) increases the chance
of overall survival, however the subsequent reperfusion
injury has been associated with further neurological
damage (3).

Besides ACLS, there are limited evidence-based treatments
that successfully improve survival and protect the brain after
CA. The two major therapies used for treating CA that can
aid in neuroprotection are extracorporeal cardiopulmonary
resuscitation (E-CPR) and targeted temperature management
(TTM); the former uses an external machine to oxygenate
and circulate blood within the body (9), while the latter
decreases and maintains the core temperature between
32 and 36◦C to decrease cellular metabolism, decrease
oxidative damage and stress signals, and decrease cellular
death (6, 10–13). Although both E-CPR and TTM have
therapeutic efficacy in CA patients, each has their limitations
and can influence both protective and deleterious pathways
(14). E-CPR is time, personnel, and resource intensive.
Major complications of TTM include hemodynamic
instability, arrhythmias, AV blocks, hydro-electrolyte
disorders due to cold diuresis, endocrine and coagulation
abnormalities, increased risk of infection, among others
(15, 16).

Although improvements in technology may increase the
general application of TTM and E-CPR, the major challenge

resides in tackling the various molecular mechanisms that
result in brain injury post-CA (14). Currently, preclinical
and a few clinical studies have used individual pharmacologic
agents to alleviate damage post-CA, yet these interventions
are unable to provide sufficient protection to aid in survival
with favorable neurological outcomes. As such, the focus
of this review is to highlight therapies that have attempted
to confer neuroprotection post-CA in preclinical and
clinical studies, with their proposed targeted pathway(s).
We also seek to propose the application of a multi-drug
cocktail that is comprised of extensive pharmaceutical
agents rather than a few in order to concurrently target the
distinct, multiple metabolic, oxidative, and inflammatory
alterations in the brain post-CA to potentially shift the
current paradigm of neuroprotection to a multidimensional
therapeutic approach.

OVERVIEW OF THE VARIOUS CARDIAC
ARREST-MEDIATED PATHWAY
ALTERATIONS

CA and the ensuing global ischemia generate a variety of
alterations, such as mitochondrial dysfunction, increased
reactive oxygen species (ROS) generation (17, 18), metabolic
disruption including protein and lipid dysfunction (19–
23), increased neuroinflammation, intracellular calcium
overload, and endoplasmic reticulum (ER) stress (24–
26). Ultimately, CA pathologic alterations result in cellular
dysfunction and brain injury of which substantial mitigation
necessitates a change in the current paradigm of CA
treatment from targeting singular altered pathways to
using a multifunctional, multi-drug cocktail method (14).
Figure 1A summarizes the various mechanisms of brain
damage post-CA.

Cardiac Arrest-Mediated Mitochondrial
Dysfunction and ROS Generation With the
Respective Therapeutic Interventions
Mitochondrial dysfunction has been correlated with poor
neurologic outcomes secondary to impaired aerobic metabolism
as well as increased oxidative stress, garnering attention
as a target for neuroprotection after CA (17, 27, 28).
Along with the general inefficiency in mitochondrial energy
generation (19), CA patients exhibit low activity of pyruvate
dehydrogenase (PDH) complex, the rate-limiting step in
the Tricarboxylic acid (TCA) cycle (27, 29). Therefore,
administering thiamine, a cofactor of the PDH complex,
to mice after CA resulted in improved PDH activity and
neurological outcomes (27). Decreased ATP production and
impairment of the Na+/K+ ATPase (6) after CA results in
intracellular calcium overload triggering the voltage-dependent
anion channels (VDAC) and subsequent opening of the
mitochondrial permeability transition pore (mPTP) (30, 31).
Formation of the mPTP further activates the caspase cascade and
endonuclease-mediated DNA damage resulting in mitophagy
and cellular death (30). Cyclosporin A has been studied to
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FIGURE 1 | Schematic representation of ischemia-reperfusion injury after cardiac arrest and resuscitation resulting in brain injury (A). Overview of dysregulated

pathways after cardiac arrest with a selection of inhibitory and modulatory interventions that can be combined in a cocktail therapy to confer neuroprotection (B).
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provide neuroprotection by preventing mPTP opening both
alone and in combination with hypothermia in rats, but human
trials have not supported the therapeutic benefits observed in the
preclinical setting (32–34).

The disruption of mitochondrial fusion and fission
equilibrium has been documented in rats after CA, with
temporary mitochondrial fusion shortly following CA, which
shifts toward fission within 24 h, resulting in deficient cellular
and mitochondrial function and eventual apoptosis (35).
Inhibiting mitochondrial fission has been shown to prevent
cardiomyocyte apoptosis and improve cardiac function in vitro,
ex vivo, and in vivo (36, 37). Inhibition of the mitochondrial
fission protein, Dynamin-related protein 1 (Drp1), using
the well-known fission inhibitor, mitochondrial division
inhibitor 1 (Mdivi-1), has shown to improve neurological
dysfunction and survival in mice after CA (38, 39), prevent
N-Methyl-d-aspartate (NMDA)-mediated excitotoxicity,
calcium overload, cell death in rat neurons (40), and has
cardioprotective properties in a rat model of cardiac IRI (41).
Taken together, CA results in major metabolic alterations,
including mitochondrial protein damage, that require targeting
multiple pathways simultaneously for improved survival
and neuroprotection.

Post-CA mitochondrial dysfunction generates ROS due
to enhanced electron leak at complexes I and III in the
electron transport chain, deglutathionylated complex II, and
phosphorylated complex IV, among other mechanisms (42).
ROS-mediated release of cytochrome c from the mitochondrial
membrane upregulates pro-apoptotic genes causing apoptosis
(30). General application of antioxidant therapies, such as
vitamin C, α-tocopherol, and edaravone, have shown attenuation
of ROS in preclinical and some clinical settings (43–45).
Although there are multiple ongoing clinical trials evaluating
the beneficial effects of antioxidant therapies in human CA
patients, the mixed beneficial evidence from the preclinical
setting does not support the translation of these singular
antioxidant therapies (46–48). Site-specific inhibitors of ROS
are more promising candidates because (1) they directly
control the release of ROS at the source and (2) ROS
generation at different sites can play either a beneficial, or a
detrimental role (49). N-acetylcysteine, metformin, melatonin,
and suppressor of site IQ electron leak (S1QEL) are a few
examples of site-specific inhibitors that can decrease ROS
generation after IRI and can help to potentiate survival and
neurological functions (50–53). Inhaled hydrogen gas with
its suppression of oxidative stress has also been observed
to improve survival and neurologic outcomes in a rat CA
model with an additive effect when compared to TTM
alone (54). Similarly, other inert gases, such as Argon and
Xenon seem to potentiate beneficial effects from standard
treatments post-CA via a variety of proposed mechanisms
(55–59). Mitochondrial dysfunction after IRI results from
alterations in multiple pathways and further induces substantial
metabolic and cellular disruption; therefore, utilizing a multi-
drug cocktail that incorporates these therapies can target
numerous mitochondrial pathways and may improve survival
and brain function.

Cardiac Arrest-Mediated Endoplasmic
Reticulum Stress With the Respective
Therapeutic Interventions
Endoplasmic reticulum stress after intracellular calcium
disruption or accumulation of unfolded/misfolded proteins in
the ER lumen leading to the unfolded protein response (UPR) can
be secondary to oxygen and glucose deprivation (30, 60). This,
in turn, can expedite neurodegeneration through suppression of
protein synthesis, protein degradation, and apoptosis (60). In a
rat model of cerebral ischemia, the combination of taurine and
S-Methyl-N, N-diethylthiocarbamate sulfoxide (DETC-MeSO),
a partial NMDA antagonist, resulted in decreased expression of
multiple ER stress pathways, which was insufficient when only
using the individual therapies (61). Pretreatment using Salubrinal
30min before CA improved neurological outcomes and cerebral
mitochondrial morphology 24 h after CA by preservation of the
mitochondrial membrane potential, increasing an antiapoptotic
protein, Bcl-2, stabilizing the HIF-1α pathway, and inhibiting
ER stress through the induction of eIF2α phosphorylation (62).
Overall, these studies suggest that interventions targeting ER
stress are important for neuroprotection post-CA and should be
part of a larger cocktail therapy.

Cardiac Arrest-Mediated Metabolic
Alterations and Therapeutic Interventions
Many studies have demonstrated the substantial and global
metabolic changes that occur after CA and resuscitation. In
a model of long duration CA and cardiopulmonary bypass
(CPB) resuscitation, the severe metabolome dysregulation in the
kidney and brain worsened post-resuscitation, as seen through
alterations of fatty acids, amino acids, and TCA cycle metabolites
(19). Kynurenine pathway alterations have been observed in
rat, pig, and human plasma after CA, while in rats and pigs,
higher levels of downstream metabolites were associated with
worse survival and neurological outcomes observed through
hippocampal lesions (20, 63). A study on plasma metabolomic
profiling in pigs undergoing asphyxial cardiac arrest (ACA) or
ventricular fibrillation cardiac arrest (VFCA) further supported
major alterations in the plasma metabolites related with TCA
and urea cycles (64). In a rat model of CA, pre-conditioning
with metformin demonstrated early and sustained 5′-adenosine
monophosphate-activated protein kinase (AMPK) activation
in hippocampal brain tissue, reduced neuronal death, and
improvement in overall survival with favorable neurologic
outcomes (65). However, the role of AMPK after IRI has been
controversial as a focal brain ischemia model suggested that
downregulating AMPK may show better outcomes (66). AMPK
is a mediator of metabolism and is involved in many cellular
mechanisms (67) suggesting its role after different types of IRI
pathologies and varying degrees of injury may either facilitate
neuroprotection or participate in injury. This is an active area
of exploration.

Along with individual metabolic alterations post-CA, specific
changes in lipids and proteins are observed that implicate CA-
induced mitochondrial injury. Lipids comprise a substantial
category of biological materials that have unique and crucial
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functions in the body, such as cellular membrane composition,
energy substrates and metabolites, transport mediators, as well
as intracellular and hormonal signaling (68, 69). Free radical-
mediated lipid peroxidation and decomposition of membrane
phospholipids occurs after IRI (70, 71). Dogs undergoing
10min CA had significantly increased levels of lipid oxidation
in the frontal cortex, which continued to increase until
24 h post-resuscitation when ventilated with 100% oxygen;
normoxic ventilation significantly lowered lipid oxidation
and improved neurologic outcomes (21, 72). CA induces
phospholipid changes in the brain, heart, kidney, and liver of
rats post-CA with the brain having increased concentrations of
lysophosphatidylethanolamine (LPE), lysophosphatidylcholine
(LPC), and lysophosphatidylinositol (LPI), whereas only LPI was
increased in the other organs; the brain’s inability to regulate
phospholipids could be related to decreased mitochondrial
function (73–75). Decreased levels of brain cardiolipin (CL)
post-CPB resuscitation in rats adversely affected mitochondrial
integrity and decreased normal function resulting in decreased
complex I and III activity in the brain (76). Plasma accumulation
of brain-specific cardiolipin species after CA may represent
the degree of neuronal injury after human and rat CA (77),
while changes in mitochondrial lipids, phospholipids, and free
fatty acids were noted after lethal ventricular tachyarrhythmia-
mediated ischemia in rats (78). Administration of SS-31, a
CL-targeting drug, in a severe CA rat model resulted in
lower lactate levels and improved survival time, suggesting that
improved support of CL can improve mitochondrial function
(79). Furthermore, treatment with a cannabinoid receptor
agonist, WIN55, 212-2, in combination with TTM was able to
support lipid metabolism and improve neurologic outcomes after
rodent CA (80). The use of probucol, a lipid-lowering agent
used for hypercholesterolemia (81), increased survival time and
decreased oxidative stress in post-CA rats potentially through
antioxidant mechanisms (82). Collectively, these studies suggest
that utilization of drugs that are lipid-based and/or target lipid
pathways are vital components of a multi-drug cocktail for the
treatment of CA.

Cardiac Arrest-Induced Neurochemical
and Neuroinflammatory Alterations With
Their Respective Therapeutic Interventions
Following cerebral ischemia, the acute efflux of dopamine and
norepinephrine propagate brain injury (83), with the potential to
significantly damage cerebral nerve terminals (84). Additionally,
dopamine is considered a prerequisite for ischemic injury, since
dopamine depletion protects the striatum from ischemic injury
in a rat model of global brain ischemia by four-vessel occlusion
(85). It is postulated that metabolic degradation of dopamine
produces 2,4-dihydroxyphenylacetic acid (DOPAC), hydrogen
peroxide, superoxide, and hydroxyl radicals, which have varying
degrees of neurotoxic effects (86). In a small cohort of CA human
patients undergoing TTM, lactate/pyruvate ratio measured using
cerebral microdialysis progressively increased in the group of
patients with an unfavorable neurologic outcome (87). In a
swine model of CA, administration of intravenous pyruvate

that can function as an antioxidant helped to minimize CA-
induced protein glycation in the brain (88). Thus, the resultant
neurochemical changes after IRI provide specific targets for
therapeutic interventions.

Cerebral ischemia results in increased release of
proinflammatory cytokines, such as IL-1 and TNF-α, microglial
activation, disruption of the blood-brain barrier (BBB) and
subsequent cerebral edema, all facilitating leukocyte migration
into the brain (6, 83). Directly targeting inflammatory cytokine
receptors is neuroprotective, as seen with reduced cortical
infarct size after mild hypoxia/ischemia in knockout mice for
IL-1-receptor (89) and with diminished brain injury in rats after
blocking TNF-α via a neutralizing antibody (90). A majority
of the neuroinflammation post-ischemia is microglia- and
peripheral leukocyte-mediated (91). IRI stimulates IL-1β, IL-18,
and NF-κB, activating the NLRP3 inflammasome, caspase-1, and
other downstream mediators resulting in cell death and brain
damage (92). Glibenclamide (GBC), a sulfonylurea drug used for
diabetes, has been shown to inhibit the NLRP3 inflammasome
pathway, suppress microglia and astrocyte activation, and
support favorable neurologic outcomes following rodent CA
(93). Furthermore, the immunomodulatory and antioxidative
properties of statins have also shown efficacy in ischemic
diseases (94). Thus, targeting the various pathways involved in
neuroinflammation post-CA is a valuable therapeutic option,
especially when used in a cocktail therapy.

CURRENT COMBINATION THERAPIES
APPLIED FOR CONFERRING
NEUROPROTECTION AFTER CARDIAC
ARREST

A detailed compilation of various pharmaceutical interventions
attempted after CA in the preclinical and clinical settings
along with their proposed mechanisms of actions and potential
disadvantages is discussed in Table 1. Previous studies have
examined some neuroprotective drugs in cerebral ischemia and
CA (57, 58, 83, 107). While these studies have occasionally
examined drug combinations, the drugs mentioned often target
a singular pathway among the background of a global disease,
potentially explaining the lower effectiveness of these therapies.

The use of combined therapy of adenosine triphosphate-
magnesium chloride (ATP-MgCl2), norepinephrine, and
vanadate improved protein synthesis and conferred
neuroprotection after CA and resuscitation in rats as compared
to individual drug treatment (108). Norepinephrine counteracts
the vasodilatory effects of ATP and maintains blood pressure
resulting in a selective vasodilatory effect in the brain as a
result of this combination therapy. In ventricular fibrillation
cardiac arrest (VFCA) rats, a combination therapy of niacin and
selenium reduced ROS generation by enhancing glutathione
(GSH) reductase activity and improved the GSH/GSSG ratio,
attenuated brain injury, and improved the 7-day neurological
outcomes by suppression of mechanisms that would normally
increase caspase-mediated cell death (109). Another major
limitation in these combination therapies is the use of very mild
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TABLE 1 | Pharmacological interventions with their study results, mechanisms of action, and potential drawbacks for conferring survival and neuroprotection after

cardiac arrest.

References Drug(s) studied Study model and

delivery route

Pathway impacted Study results Drawbacks

Katz et al. (95) HBN-1 (ethanol,

epinephrine, and

vasopressin)

Rat/IV Pharmacologically

induced hypothermia

Decreased time to reach target

temperature, improved survival,

improved NDS

Mechanism of action not clear

Argaud et al. (33)

Knapp et al. (34)

Liu et al. (32)

Cyclosporine

Cyclosporine A

(CsA)

Cyclosporine A

(CsA)

and Hypothermia

Human/IV

Rat/IV

Rat/IV

mPTP pathway

mPTP pathway

mPTP pathway

OHCA patients with non-shockable

rhythms did not show improvement

in outcomes or neurological status

Non-statistically significant

improvement in neurological tests

and outcomes

Mitochondrial membrane

stabilization, apoptosis inhibition,

ROS mitigation; synergistic effects

of CsA and hypothermia

Unclear interaction with TTM; ideal

timing of drug administration still

unknown

Animals kept normothermic; no

examination of nephrotoxicity of

immunosuppression

End point only 2 h after

resuscitation; did not study side

effects of CsA; only studied one

CsA dose

Cariou et al. (96)

Cariou et al. (97)

Erythropoietin

Erythropoietin

and Hypothermia

Human/IV

Human/IV

Erythropoietin-mediated

pathways and

mechanism not

discussed

Erythropoietin-mediated

pathways and

mechanism

not discussed

OHCA patients resuscitated from

presumed cardiac cause, early

administration of erythropoietin plus

standard therapy did not confer a

benefit, and was associated with a

higher complication rate

OHCA patients resuscitated with

administration of erythropoietin plus

hypothermia demonstrated

non-statistically significant

increased survival rate

Significant adverse effects were

observed with no benefits to

survival with minor neurological

sequelae

Hematologic adverse events were

observed, non-statistically

significant increased survival rate,

and no significant difference

observed in neurological recovery

Ikeda et al. (98) Estrogen Mice/IV Mechanism not

discussed

Increased kidney protection in male

and aged female mice

Did not show survival difference,

neurological outcomes, and lacked

mechanism

Huang et al. (99)

Yang et al. (93)

Glibenclamide

(GBC)

Glibenclamide

(GBC)

Rat/IP

Rat/IP

SUR1-TRPM4 channel

NLRP3

inflammasome pathway

GBC comparable to TTM in

improving both survival and

neurologic outcomes, suppressed

activation of microglia and

astrocytes, hypoglycemia not

detected

GBC improved electrophysiological

recovery and neurological

functional outcome

Mechanism of action incompletely

understood—did not prove causal

relationship with SUR1-TRPM4

channel

Mechanism of action

incompletely understood

Scott et al. (88) Pyruvate Pig/IV Attenuating

mitochondrial

dysfunction

Preserved multiple enzyme systems

that protect the brain from glycation

stress

Specific glycated proteins not yet

identified; endpoint was only 4 h

after cardioversion and ROSC;

pyruvate may have limited use

clinically due to side effect of

hypocalcemia

Li et al. (100) Methylene blue

and therapeutic

hypothermia

Rat/SQ Therapeutic

hypothermia and

attenuating

mitochondrial

dysfunction

Combination yielded markedly

higher number of surviving neurons

and reduced cognitive deficits

Higher doses has significant side

effects, such as cardiovascular

effects, headaches, vomiting,

diarrhea, blue urine, epidermal

damage, serotonin syndrome in

those taking selective serotonin

reuptake inhibitors, and anemia in

those with glucose-6-phosphate

dehydrogenase deficiency

Yang et al. (52) Melatonin Rat/gavage ROS production Pre- and post-treatment can help

improve neurologic deficits and

improve cognitive function after

CA/CPR

Oral gavage had high dose due to

relatively low bioavailability as

compared to intraperitoneal or

intravenous injection; mechanism

of action not completely

understood

(Continued)
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TABLE 1 | Continued

References Drug(s) studied Study model and

delivery route

Pathway impacted Study results Drawbacks

Zhu et al. (65) Metformin Rat/intragastrically AMPK-induced

autophagy

Pre-treatment resulted in increased

7-day survival with significantly

improved NDS; post-arrest

treatment ameliorated histological

injury and neuroinflammation

AMPK pathway incompletely

understood post-CA–activation

effects may depend on stimulus

and duration

Wiklund et al. (101)

Miclescu et al. (102)

Methylene Blue

and postponed

hypothermia

Methylene Blue

Pig/IV

Pig/IV

Antioxidant, nitric oxide

inhibitor, and

participates in electron

shuttling in mitochondria

Decreasing nitric

oxide metabolism

Reduced cerebral cortical neuronal

injury and blood–brain barrier

disruption after methylene blue with

postponed hypothermia

Protected blood brain barrier

Did not measure survival and

mechanism is not completely

understood

Did not measure survival or

neurological function; mechanism

is not completely understood

Zhang et al. (79) SS-31 Rat/IV Mitochondrial inner

membrane stabilization-

cardiolipin

Lowered lactate levels and

improved survival rate 5 h after

25min CA and 30min CPB

resuscitation

Mechanism of action incompletely

understood

Zhang et al. (62) Salubrinal Rat/IP ER stress and

mitochondrial

stabilization

Improved neurological performance

and mitochondrial morphology 24 h

after CA and resuscitation

Treatment was prior to CA

induction and resuscitation; only

one dose tested; only one end

point of 24 h

Bar-Joseph et al. (103) Sodium

bicarbonate

Human/IV Mechanism not

discussed

Administration was associated with

higher early resuscitation rates with

better long-term outcome

Dose-dependence was observed:

low dose (1 mEq/Kg) was

beneficial as compared with high

dose (>1 mEq/Kg)

Ikeda et al. (27) Thiamine Mice/IV and IP PDH modulation in the

TCA

Improved neurologic outcome and

10-day survival

Impact on other organs not

examined

Tsai et al. (104)

Katz et al. (105)

Corticosteroid

Corticosteroid

Human/IV

Rat/IV

Altering the inflammatory

cascade and

microcirculatory flow

Decreased brain

enzyme changes and

decreased requirement

for vasopressor

Improved survival to discharge in

human patients

Enhancing cardiovascular and

EEG recovery

Did not influenced brain enzyme

levels at 20min post-CA

Gases

Tamura et al. (106) Hydrogen Human/inhalation Mechanism not

discussed

Efficacy of inhaled HYdrogen on

neurological outcome following

Brain Ischemia During post-cardiac

arrest care (HYBRID II trial): study

protocol for a randomized

controlled trial

Arola et al. (56)

Fries et al. (55)

Argon and Xenon Human/inhalation

Pig/inhalation

Anti-Apoptotic Effect of Xenon and Therapeutic

Hypothermia, on the Brain and on

Neurological Outcome Following

Brain Ischemia in Cardiac Arrest

Patients (Xe-hypotheca)

Significant improvements in

functional recovery and ameliorated

myocardial dysfunction

IV, intravenous; IP, intraperitoneal; SQ, subcutaneous.

CA injury in the animals that does not reflect the injury of many
human CA patients. A different combination of sevoflurane,
Poloxamer-188, and TTM improved cardiac and neurologic
functions after 17min VF in a swine model as compared with
controls that only received epinephrine and TTM (110). It is
suggested that sevoflurane promotes endothelial protection
by reducing leukocyte activation, affecting vascular tone (111),
preventing apoptosis, and reducing cytokine production post-CA
(112). Poloxamer-188 fills ischemia induced pores in the plasma
membrane (113), prevents unregulated exchange of ions between

cellular compartments, prevents cellular injury and apoptosis
(114), preserves the BBB (115), and protects neurons against IRI
(116). A major limitation with this combination is the lack of
mechanistic insight of the pharmacologic compounds which is
further complicated by TTM and the lack of dose optimization.

The combination therapy of epinephrine and vasopressin has
shown potential beneficial effects in improving ROSC, and/or
neurological and cerebral histopathological outcomes in animal
models; however, this combination has only mixed results in
the clinical setting (117–120). As potent vasoactive compounds,
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the potential adverse hemodynamic effects especially after
a severe injury like CA are important considerations when
combining these drugs, which may be one reason for the lack
of translatability. A randomized control trial in humans
with the combination of epinephrine, vasopressin, and
methylprednisolone post-CA compared to epinephrine and
saline demonstrated improved survival to hospital discharge
with favorable neurological status (121–123). In fact, the
singular administration of steroids during the post-arrest period
has been associated with diminished brain enzyme changes,
decreased requirement for vasopressor, and improved EEG
and cardiovascular recovery in rodent CA (105) and improved
survival to discharge in human patients (104, 124). The
multisystemic effects of steroids present difficulty in isolating
individual therapeutic actions, which can include hemodynamic,
metabolic, and inflammatory modulation. The combination of
vasopressin, epinephrine, and nitroglycerin has been shown to
improve vital organ blood flow in pigs (125). Combination of
epinephrine and naloxone significantly improved the survival
and brain function post-CA in rats (126, 127). These studies
emphasize that pharmaceutically managing hemodynamics
during the resuscitation and post-resuscitation phases is critical
for survival and protecting the brain.

Along with hemodynamic stabilization after arrest tomaintain
brain perfusion, managing the metabolic dysfunction is another
critical requirement for post-CA cocktail therapy. The current,
most effective method used is TTM, that is hypothesized to
decrease the global metabolic demand, which is not without
adverse effects (128). A new approach to achieve dampened
metabolic stress post-arrest is to pharmacologically induce
hypothermia (129). A combination of ethanol, vasopressin,
lidocaine, known as HBN-1, after rodent CA was able to
pharmacologically induce hypothermia by increasing heat
loss without producing shivering and improve survival and
neurological outcomes (95, 130). Similarly, HBN-1 with external
hypothermia was shown to significantly decrease serum and
cerebrospinal fluid levels of neuron specific enolase (NSE), a
biomarker associated with poor neurologic outcomes (131).
As is evident from previous preclinical and clinical post-CA
trials, combination drugs have many benefits by simultaneously
targeting different altered pathways; however, due to the severity
of injury experienced by the whole body, a multi-drug cocktail
should be similarly extensive in its therapeutic agents to
appropriately manage the disease process.

DISCUSSION

The global ischemia after CA results in a myriad of systemic
insults, such as mitochondrial dysfunction (17), increased
reactive oxygen species (ROS) generation (17, 18), metabolic
alterations including lipid and protein dysfunction (19–21),
along with other pathological sequelae. Although various
single drug and some combination therapies have shown
neuroprotection, to date, the overall outcomes have not been
substantially improved. One potential reason is the lack of
translatability of many of these agents to human patients;
it is known that animal models are helpful in modeling
disease, however, there are many challenges and limitations,

especially when attempting to model a condition with a complex
pathophysiology (19). Most preclinical studies use milder injury
CA models that are unable to effectively represent the magnitude
of human disease (132). Another explanation is that using
singular drugs may effectively target the intended pathway, but
are unable to alleviate the plethora of altered mechanisms by
which brain damage occurs post-CA. A new shift in CA treatment
can entail the incorporation of a multi-drug cocktail comprising
a variety of drugs that can individually and synergistically confer
neuroprotection based on their effects on the aforementioned
diverse pathophysiological sequelae of CA. Furthermore, with
the protective effects of TTM and E-CPR in eligible CA
patients (9), it is conceivable that a cocktail therapy may
provide additive benefits when combined with conventional
interventions (14). Figure 1B highlights the various dysregulated
pathways in the brain post-CA, and the respective interventions
required for appropriate management that can be included in a
cocktail therapy.

The important components for developing a cocktail therapy
includes the types of pharmaceutical agents, formulations,
dosages, modes of delivery and pharmacodynamics, as well as
the potential translatability to human patients. One study of
prolonged VFCA in pigs found that direct administration of the
combination of epinephrine, vasopressin, amiodarone, sodium
bicarbonate, and metoprolol worsened short-term outcomes
as compared to serial administration (133). The treatment
of CA involves a complex pathology at the arrest, ROSC,
and the post-ROSC phases. Therefore, ideally, a cocktail
therapy should be phase-based as well as incorporating the
general parameters, such as types of drugs, dosages, and
methods of administration. The phase-based approach of cocktail
development implies that the cocktail comprises of drugs
that during ROSC and post-ROSC phases can (1) stabilize
hemodynamics, (2) maintain mitochondrial membrane and
function integrity, (3) decrease ROS generation, (4) provide
metabolic supplementation, (5) reduce neuronal excitotoxicity,
and (6) modulate neuroinflammation and protect blood-brain
barrier integrity.

The concept of cocktail therapy has been applied in both
preclinical and clinical settings for stroke to target various altered
ischemic cascades with and without TTM (134–139). Although
the focal IRI in stroke contrasts the global brain ischemia
and damage observed in CA, the general neuronal protection
observed in stroke combination therapies may be directly
utilized, supplemented with other agents, and repurposed in a
cocktail treatment of brain injury post-CA. Targeting multiple
pathways allows for maximal neuroprotection, as targeting
solitary pathways does not address the other dysregulated
pathways that cause organ damage. Ultimately, while a
combination of drugs is needed to mitigate the damage post-CA,
the drugs chosen should be mechanistically multi-functional in
order to use the fewest number of drugs possible to create the
most efficacious multi-drug cocktail.

CONCLUSION

This review has summarized the current landscape of CA
interventions using single drug therapy or a few drug
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combination therapies to target one or a few pathways to
potentiate neuroprotection in both the preclinical and clinical
environments. Furthermore, the implicated pathways of CA
pathophysiology are the targets of various interventions
and provide a foundation for the development of an
extensive multi-drug cocktail; the use of a cocktail, involving
several pharmaceutical agents, can simultaneously target the
multitude of altered pathways and may synergistically confer
neuroprotection. This cocktail may be further combined with
more advanced resuscitation procedures, such as TTM and
E-CPR. A cocktail therapy that combines various studied agents
that can stabilize the hemodynamic, mitochondrial, metabolic,
oxidative, and inflammatory processes may aid in reducing brain
injury after cardiac arrest and improve survival with favorable
neurologic outcomes.
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GLOSSARY

ACA: asphyxial cardiac arrest
ACLS: advanced cardiovascular life support
AMPK: 5′-adenosine monophosphate-activated protein kinase
ATP-MgCl2: adenosine triphosphate-magnesium chloride
CA: cardiac arrest
CL: cardiolipin
CPB: cardiopulmonary bypass
CPR: cardiopulmonary resuscitation
DETC-MeSO: S-Methyl-N, N-diethylthiocarbamate sulfoxide
DRP1: dynamin-related protein 1
E-CPR: extracorporeal cardiopulmonary resuscitation
eIF2α: eukaryotic Initiation Factor 2 alpha
ER: endoplasmic reticulum
GBC: glibenclamide
HIF-1α: hypoxia-inducible factor 1-alpha
IHCA: in-hospital cardiac arrest
IRI: Ischemia- Reperfusion Injury
IL1-α: interleukin-1 alpha
IL-1β: interleukin-1 beta
IL-18: interleukin-18
LPC: lysophosphatidylcholine

LPE: lysophosphatidylethanolamine
LPI: lysophosphatidylinositol
MCAO: middle cerebral artery occlusion
Mdivi-1: mitochondrial division inhibitor 1
MLCL: monolysocardiolipin
mPTP: mitochondrial permeability transition pore
NDS: neurodeficit score
NF-κB: nuclear factor-kappa B
NLRP3: nucleotide-binding oligomerization domain, leucine
rich, repeat and, pyrin domain-containing 3
NMDA: N-Methyl- d-aspartate
NSE: neuron specific enolase
OHCA: out-of-hospital cardiac arrest
PDH: pyruvate dehydrogenase
ROS: reactive oxygen species
ROSC: return of spontaneous circulation
S1QEL: suppressor of site IQ electron leak
SS-31: Szeto-Schiller peptide-31
TCA: tricarboxylic acid
TH: therapeutic hypothermia
TNF-α: tumor necrosis factor alpha
TTM: targeted temperature management
UPR: unfolded protein response
VFCA: ventricular fibrillation cardiac arrest
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