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Abstract. A method for quantification of images of immunohistochemically stained cell nuclei by computing area proportions
is presented. The image is transformed by a principal component transform. The resulting first component image is used
to segment the objects from the background using dynamic thresholding of the P?/A-histogram, where P?/A is a global
roundness measure. Then the image is transformed into principal component hue, defined as the angle around the first
principal component. This image is used to segment positive and negative objects. The method is fully automatic and
the principal component approach makes it robust with respect to illumination and focus settings. An independent test set
consisting of images grabbed with different focus and illumination for each field of view was used to test the method, and the
proposed method showed less variation than the intraoperator variation using supervised Maximum Likelihood classification.
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1. Introduction

Quantification of the proportions of specifically stained regions in images is of significant interest
in a growing number of biomedical applications. These applications include histology and cytology
where quantification of various stainings performed on histological tissue sections, smears, imprints,
etc. is of utmost importance. Through the use of special stains, biological components of interest can
be given a specific colour. Qualitatively, this can be evaluated visually as the presence of a specific
colour. But to do a quantitative evaluation the number of stained cell nuclei and/or the proportion of
specimen area that has been stained needs to be measured. Pure visua estimates of this provide very
crude results with poor inter- and intraobserver reproducibility. For this purpose image anaysis-based
methods have been developed. A very extensive survey of general image segmentation techniques
is found in [7], and the problem of quantification of cell images using colour information has been
studied for some time by many researchers, e.g., [2,5,10]. In previous studies we developed a method
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based on a supervised colour classifier from selected training areas [8,9]. But even with this method,
inter- and intrapperator variability is a problem. An objective standardised method for quantifying the
proportions of different stained regions is desirable. Such a method should be insensitive to changes
in illumination and focus. The approach described in this paper is to normalise the data by making a
principal component (PC) transformation of the colour space. The first principal component is used
to extract the objects of interest and the principal component hue, defined as the angle around PCL1,
is used to segment the positive and negative objects.

2. Materials and methods
2.1. Immunohistochemistry

For this study we used images from immunohistochemically (IHC) stained bladder carcinoma and
reactive tonsil tissue sections. The primary mouse monoclonal antibody, clone Mibl, recognises a pro-
liferation associated protein localised in the nucleus. A biotinylated secondary, anti-mouse, antibody
was applied followed by incubation in peroxidase-labelled streptavidin-biotin complex. We wanted
to test different types of staining and therefore, developing was performed in both diaminobenzidine
(DAB) and nickel-enhanced DAB (Ni-DAB) on consecutive tissue sections. Developing in DAB gives
a dark brown reaction product whereas Ni-DAB results in a black, crisp staining of the nuclei. Harris
haematoxylin was used as counterstain when DAB was used as chromogen, staining the IHC-negative
nuclei distinctly dark blue. As counterstain to Ni-DAB alight blue staining in Ehrlich’s haematoxylin
was chosen in order to produce a better contrast to the black positive nuclei.

2.2. Image acquisition

The 756 x 572 pixel colour images with 3 x 256 grey levels were grabbed by a Sony DXC-151
colour video camera attached to a standard Olympus BH-10 optical microscope, using a magnification
of 40x. This results in a pixel size of about 0.4 um. The Rayleigh resolution criterion [1] gives a
resolution limit of 0.24 um for a wavelength of 550 nm and a numerical aperture of 0.7. We are thus
not fully resolving the images, but our application is not concerned with details of the nuclei texture.
A larger field of view was considered more important than maximum resolution.

For all images Kohler illumination was maintained and the aperture iris diaphragm ring was fixed
to 0.5.

The method was trained on 75 images collected so that for five fields of view, 15 images differing
only in illumination and focus were grabbed. Examples of such images are shown in Fig. 1.

2.3. Method
2.3.1. Overview of the method

1. Segment objects from background.

(@) Perform aprincipal component transform of the RGB data and use the first component image.
(b) Compute P2/ A-histogram from the PC1 image.
(c) Threshold the PC1 image at minimum in P2/ A-histogram.

2. Segment positive and negative objects.
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Fig. 1. Typical images of immunohistochemically stained cell nuclei.
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(a) Project the object pixels onto a plane orthogona to PC1 and compute the direction to the
centre of gravity for the object pixels on this plane. We call the angle between this direction

and a reference direction principal component hue (PCH).
(b) Compute P?/A-histogram in clockwise direction of PCH.

(c) Compute P?/A-histogram in counter-clockwise direction of PCH.
(d) Analyse the P?/A-histograms to find the direction which gives the most significant peaks.

(e) Perform a constrained threshold between the peaks.
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Fig. 2. Histogram of the first principal component for the imagesin Fig. 1. In this histogram and in al following histograms,
the values on the z-axis are the intensity. Here the values on the y-axis are the corresponding number of pixels.

2.3.2. Segmenting objects from background
Perform a principal component transform of the RGB values [6]. The sign of the first principal
component, PC1, is defined so that the sum of the componentsis positive. In this way high PC1 value
corresponds to “light”. The data is scaled so that the entire interval (here 0-255) is used.
We now want to do a histogram-based global thresholding of the PC1 image, but it is difficult to
automatically set the thresholds based on analysis of the ordinary grey level histograms (see examples
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Fig. 3. P?/A-histograms (P?/ A-values on the y-axis) of the images in Fig. 1. (a) has two significant peaks, but (b) has only
one significant peak.

in Fig. 2). Therefore P?/A-histograms are computed instead. P?/A is the square of the perimeter
divided by the area. A perfect circle gets the value and the more complex the object becomes, the
higher the value, i.e., P?/A is a scale invariant measure of “roundness’. By thresholding the image
to a binary image and computing the P?/A-value for this binary image, and doing so for all possible
threshold values, a P?/A-histogram is created (see examples in Fig. 3).



34 P. Ranefall et al. / Automatic quantification of immunohistochemically stained cell nuclei

(@

(b)

Fig. 4. Threshold for Fig. 1(a) at the left maximum, the minimum and the right maximum, respectively, of the P?/A-
histogram in Fig. 3(a).

The P2/ A-histogram is defined for each grey level i as the sum of, for each pixel with grey level
<1, the number of neighbours with grey level >i.

This could be implemented efficiently with only one pass over the image (see Appendix). We have
used 4-connectivity when computing neighbourhood, i.e., only pixels sharing an edge are regarded as
neighbours.

This histogram has the following useful properties: the P?/A-value increases when the number of
objects increases and when the objects (or background) become more fragmented. The P2/A will
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Fig. 4. (Continued).

be low when we have a threshold that gives a good segmentation into a small number of compact
objects. For light microscopic images with dark objects on a light background it will be large for high
thresholds that cause fragmented background, and also large for low thresholds that cause fragmented
objects. The histogram should thus typically have two significant peaks with a minimum in between.
The global threshold is set at the minimum. Effects of threshold settings at the minimum and maxima
are shown in Fig. 4.

The significant peaks are defined primarily as the two maxima that come after the longest sequence
of increasing values, and before the longest sequence of decreasing values, respectively (see example
of peaks that fulfill this criterion in Fig. 3(a)). If no minimum exists between these maxima (i.e., they
are identical), then the P?/A-histogram is approximated with a mixture of two normal distributions
(see [4] for details) and if there is a minimum between the mean values of these distributions, then the
maxima are significant. It is also required that the two peaks are on different sides of the P?/A-pesk
for the 11 x 11 mean filtered PC1 image. The motivation for this is that for a mean filtered image
the P2/ A-histogram will typically have its peak rather close to where objects and background overlap
(see example of peaks that fulfill this criterion in Fig. 5 and an example of nonsignificant peaks in
Fig. 3(b)).

The procedure described above works well for most images, but if the range where the objects
are becoming fragmented overlaps the range where the background is becoming fragmented, then the
histogram will have only one peak (see example in Fig. 3(b)). If we threshold at the level of this
peak, then we will get too many objects. There could be many ways to handle this problem. One
heuristically derived approach is to use low pass filtered versions of the PC1 image, which will reduce
the fragmentation. We thus first create a 5 x 5 filtered PC1 image, which is to be thresholded. We
then inspect a second 11 x 11 filtered image. If the P?/A-peak of this second image is to the left of
the inflection point before the original P?/A-peak, then this level is used as threshold, otherwise the
threshold level will be at the inflection point before the peak of the grey level histogram of the5 x 5
filtered image.
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Fig. 5. Example of histogram with two significant pesks, despite the fact that the maximum after the longest sequence of
increasing values is equivalent to the maximum before the longest sequence of decreasing values.

2.3.3. Segmenting positive and negative objects

The object pixels are projected onto a plane orthogonally to PC1. On this plane the centre of gravity
for the object pixels is computed and then each pixel is associated with the direction to the centre
of gravity, defined as the angle between this direction and a reference direction. We call this angle
principal component hue (PCH). Since it is computationally desirable to have a linear, instead of a
circular, scale, we go around the preliminary PCH histogram to find the most data-free section and
set the reference direction (0 angle) in the middle of this section. To be able to relate the angles to
colour we compute the angle for pure red, green and blue, respectively.

Next we compute the P?/A-histogram clockwise and counter-clockwise for the PCH image. In
practice this is done by computing the P?/A as in Section 2.3.2 on the PCH image and the inverted
PCH image, respectively, with the background set to 255 in both cases.

For the P?/A-histogram with the most significant minimum, defined as the difference between the
second highest maximum and the minimum between the two highest maxima, the inflection points
to the right of the left maximum and to the left of the right maximum are used as input thresholds
to constrained thresholding. Constrained thresholding is defined so that all pixels with grey values
below threshold 1 are set to class 1, and pixels with grey values between threshold 1 and threshold 2,
that have a neighbour with grey value below threshold 1, are also set to class 1. In the same manner
pixels with grey values above threshold 2 are set to class 2, and pixels with grey values between
threshold 1 and threshold 2, that have a neighbour with grey value above threshold 2, are also set to
class 2. Pixels between threshold 1 and threshold 2 that only have neighbours with values between
threshold 1 and threshold 2, or if they have neighbours both below threshold 1 and above threshold 2,
are set to background. This could be implemented efficiently with one pass over the image (see
Appendix).

The result of the proposed procedure applied to Fig. 1 is shown in Fig. 6.
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Fig. 6. Result when the described method is applied to the imagesin Fig. 1. Black is positive cell nuclei and grey is negative
cell nuclei.

3. Results

Since different quantification methods can give reasonable results when viewed one at atime, it is
difficult to tell what the true estimate should be. Another criterion for a good quantification method is
that it is robust and gives low variation. We have tested the robustness and variation of the proposed
method and of methods based on supervised Maximum Likelihood (ML) classification [3] by using
images from the same field of view, captured with varying focus and illumination.
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Fig. 7. Standard deviations for the four different ML methods and the proposed method on 20 tested fields of view, where
1-10 are stained using DAB and 11-20 are stained using Ni-DAB. Line: training image variation; dashed line: intraoperator
variation; dash—dot line: intraoperator and training image variation; dotted line: classification image variation; asterisks:
proposed method.

For evaluation we have used an independent test set consisting of 20 fields of view. Ten from IHC
stainings using DAB as chromogen and the remaining 10 fields of view were the same histological
areas as above but from Ni-DAB stained consecutive tissue sections. The fields of view were all
selected from three specimens from three patients, two bladder carcinomas and one reactive tonsil.
For each field of view 12 images were grabbed, differing in focus and illumination. Thus, in total we
got 240 images. The difference in focus was approximately +1.5 pm and the difference in illumination
was about +50 on a 0-255 scale.

Since we have 12 images for each field of view, the standard deviation of the estimated proportions
is a measure of the variability of the results for a field of view. These standard deviations can be
compared to the standard deviations obtained using a supervised ML classifier. We used a general
ML classifier with no assumptions about the covariance matrices. In the following ways we used the
ML classifier on the images from the same field of view (ordered after expected variation):

1. The same training region is applied to all images to create different classifiers and each image
is classified with its corresponding classifier. This tests the variability due to the differences in
the training images. This should give low variation.

2. Twelve training regions are applied to the same image to create 12 different classifiers and the
classifiers are used to classify the same image. This tests the intraoperator variahility.

3. Every image is trained and classified with its own training region. This tests the differences due
to intraoperator variability and training image differences.

4. One training region is used to create a classifier on one image, and the resulting classifier is
then used to classify al images. This tests the variability due to differences in the classified
image. This should give high variation, since this method does not compensate for differences
in intensity.
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Table 1
Average standard deviations for the four ML methods and the proposed method
Method Mean (SD (total)) Mean (SD (stain 1)) Mean (SD (stain 2))
Training image variation 0.0304 0.0258 0.0351
Intraoperator variation 0.0600 0.0604 0.0594
Intraoperator/training image variation 0.0505 0.0465 0.0545
Classification image variation 0.2155 0.1824 0.2485
Proposed method 0.0582 0.0325 0.0839

Note that only the differences to the classification image are significant.
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Fig. 8. Mean values for the four different ML methods and the proposed method on 20 tested fields of view, where 1-10 are
stained using DAB and 11-20 are stained using Ni-DAB. Line: training image variation means; dashed line: intraoperator
variation means; dash—dot line: intraoperator and training image variation means; dotted line: classification image variation
means, asterisks: means for proposed method.

The standard deviations for these four methods and for the proposed method are shown in Fig. 7 and
in Table 1. The resultsindicate that the proposed method is suitable for chromogens giving differences
in hue, i.e., the DAB, but less suitable for chromogens giving differences mainly in grey scae, i.e.,
Ni-DAB. The variation for the proposed method on images from the same field of view is smaller
than the intraoperator variation for a supervised ML classifier on the same image.

A comparison of the estimated proportions (see Fig. 8) gives some clear differences, even though
most results seem reasonable when looking at the images. It could be argued that it is not meaningful
to compare proportions computed with different methods, since what we want to achieve is not to
copy the performance of another method, but a stable and automatic method. If it is desired to obtain
estimations that are as similar as possible to those obtained by a different method, one possible way
is to do a linear transformation between the resulting proportions to translate between the different
methods.

It should be noted that when using supervised ML classification it is sometimes necessary to redraw
the training areas in order to get satisfactory results, which involves more subjectivity as well as more
user interaction time.
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The proposed method uses about 5 s of CPU time per image on a 233 MHz DEC Alpha 2000,
which is about the same as the classification time for the general ML classifier.

4. Discussion

Principal component hue as defined in this paper is a powerful tool for segmentation, but since it
is related to the centre of gravity of only the object pixels, the PCH will always have values spread
over alarge range of the unit circle. This could make the method detect different classes even though
there is only one class in the image.

Some pathol ogists suggest that the fields of view to be analysed must be subjectively selected by the
observer. Thisis to ensure that images describing patterns and features of interest in the sample and
images representative for the sample are included in the quantification. By using such an approach the
images are guaranteed to contain both positive and negative staining. But for the proposed method to
be part of a method that is unsupervised al the way from image acquisition, we need to automatically
detect when the images contain only one class. One way to do this is to compute the average hue
(note: not PCH!) for the classes, respectively, and test if the absolute difference between the two
classes is below some threshold. Ten degrees seems to be a reasonable threshold value.

It is possible to postprocess the resulting thresholded segmentation to get rid of objects too small
and to make objects more homogeneous. If the parameters (e.g., filter size, object size, etc.) for these
operations are trimmed properly one can expect that the results would improve. In our study we have
not used this kind of postprocessing.

Another problem is that if the image is too light, the shape of the data could be distorted towards
white, and if the data shape is too dark then the colour range is not being used properly. This can be
detected through a ssmple analysis of the grey level histogram.

Together with a standardised staining method, such as immunohistochemistry autostainer equipment,
the algorithm described in this article could be used as a standard for quantification of immunohis-
tochemically stained specimens. The remaining subjectivity is limited to the selection of images to
analyse. Compared to interactive methods, the proposed method also has the advantage of working
very quickly, a couple of seconds per image. The described method could also be applied to other
types of images and extended to more classes, but so far we have concentrated on stained cell nuclei
from human bladder carcinoma and reactive tonsil tissue.
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Appendix

Pseudo-code for computing P2/ A-histogram:

Input: image f. Output: histogram h.
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FOR i:=0 TO 255
areali]: =0;
perineter[i]:=0;
END FOR
FOR y: =0 TO YMAX
FOR x: =0 TO XMAX
this:=f(x,y);
right:=f(x+1,y);
down: =f (x, y+1);
area[this]:=area[this]+1;
| F this<right THEN
perimeter[this]:=perinmeter[this]+1;
perineter[right]:=perinmeter[right]-1;
ELSE
| F this>right THEN
perinmeter[this]:=perineter[this]-1;
perineter[right]:=perinmeter[right]+1;
END | F
END | F
| F thi s<down THEN
perimeter[this]:=perinmeter[this]+1;
peri net er[ down] : =peri nmet er [ down] - 1;
ELSE
| F t hi s>down THEN
perinmeter[this]:=perineter[this]-1;
peri nmet er[ down] : =peri net er [ down] +1;
END | F
END | F
END FOR
END FOR
Cunul ati veAr ea: =0;
Cunul ati vePeri neter: =0;
FOR i:=0 TO 255
Cumul ati veArea: =Cunul ati veArea+areali];
Cunul ati vePerineter: =Cunul ati vePerineter+perimeter[i];
h{i]:=Cunul ativePerineter/Cunul ati veArea;
END FOR

Note: The border outside the image could be set either to 0 or 255. We have used 255.

Pseudo-code for constrained threshold:

Input: image f, thresholds ¢1, t2. Output: image g.

FOR y: =0 TO YMAX DO
FOR x: =0 TO XMAX DO
g(X, y): =UNDEFI NED;
END FOR
END FOR
FOR y: =0 TO YMAX DO
FOR x: =0 TO XMAX DO
this:=f(x,y);
right:=f(x+1,y);

41
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down: =f (x, y+1);
I F this<tl THEN
g(x, y): =CLASS1;
I F ti<right<t2 THEN
| F g(x+1, y)=UNDEFI NED OR g(x+1, y)=CLASS1 THEN
g(x+1, y): =CLASS1;
ELSE
g(x+1, y): =CONFLI CT;
END | F
END | F
| F t 1<down<t 2 THEN
o(x, y+1): =CLASS];
END | F
ELSE
I F t1<this<t2 THEN
I F g(x, y)=UNDEFI NED THEN
I'F (right<tl AND down<t2) OR (down<t1l AND right<t2) THEN
g(x, y): =CLASS1;
ELSE
I F (t 1<down AND t2<right) OR (t 1<ri ght AND t 2<down) THEN
g(x, y): =CLASSZ;
ELSE
I F (downgt1l AND t2<right) OR (right<tl AND t 2<down) THEN
g(x, y): =CONFLI CT;
END | F
END | F
END | F
ELSE
I F g(x, y)=CLASS1 THEN
I F t2<right OR t2<down THEN
g(x, y): =CONFLI CT;
END | F
ELSE
I F g(x, y)=CLASS2 THEN
IF right<tl OR downgt1l THEN
g(x, y): =CONFLI CT;
END | F
END | F
END | F
END | F
ELSE
IF t2<this THEN
g(x, y): =CLASS2;
| F tl<right<t2 THEN
| F g(x+1, y)=UNDEFI NED OR g(x+1, y)=CLASS2 THEN
g(x+1, y): =CLASS2;
ELSE
g(x+1, y): =CONFLI CT;
END | F
END | F
| F t 1<down<t 2 THEN
o(x, y+1): =CLASS2;
END | F
END | F
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END | F
END | F

END FOR
END FOR

Note: The edge of the image should be treated so that no references outside the image are made.

References

(1]
(2]

(3]
(4]
(9]

(6]
(7]
(8]
(9]
[10]

K.R. Castleman, Digital Image Processing, Prentice-Hall, 1979.

S. Caulet, C. Lesty, M. Raphael, D. Schoevaert, P. Brousset, J.-L. Binet, J. Diebold and G. Delsol, Comparative
quantitative study of Ki-67 antibody staining in 78 B and T cell malignant lymphoma (ML) using two image analyser
systems, Pathol. Res. Pract. 188 (1992), 490-496.

R.O. Duda and PE. Hart, Pattern Classification and Scene Analysis, Wiley, 1973.

B. Everitt and D. Hand, Finite Mixture Distributions, Chapman and Hall, 1981.

C. Garbay, G. Brugal and C. Choquet, Application of colored image analysis to bone marrow cell recognition, Anal.
Quant. Cytol. 3(4) (1981).

I. Joliffe, Principal Component Analysis, Springer, 1986.

N.R. Pal and SK. Pdl, A review on image segmentation techniques, Pattern Recognition 26(9) (1993), 1277-1294.
P. Ranefall, L. Egevad, B. Nordin and E. Bengtsson, A new method for segmentation of colour images applied to
immunohistochemically stained cell nuclei, Anal. Cell. Pathol. 15 (1997), 145-156.

P. Ranefall, B. Nordin and E. Bengtsson, A new method for creating a pixelwise box classifier for color images,
Machine Graph. Vision 6(3) (1997), 305-323.

F. Willemse, M. Nap, S.C. Henzen-Logmans and H.F. Eggink, Quantification of area percentage of immunohisto-
chemical staining by true color image analysis with application of fixed thresholds, Anal. Quant. Cytol. Histol. 16(5)
(1994), 357-364.



