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ABSTRACT: It is chemically intuitive that an optimal atom
centered basis set must adapt to its atomic environment, for
example by polarizing toward nearby atoms. Adaptive basis
sets of small size can be significantly more accurate than
traditional atom centered basis sets of the same size. The
small size and well conditioned nature of these basis sets leads
to large saving in computational cost, in particular in a linear
scaling framework. Here, it is shown that machine learning
can be used to predict such adaptive basis sets using local
geometrical information only. As a result, various properties of
standard DFT calculations can be easily obtained at much lower costs, including nuclear gradients. In our approach, a
rotationally invariant parametrization of the basis is obtained by employing a potential anchored on neighboring atoms to
ultimately construct a rotation matrix that turns a traditional atom centered basis set into a suitable adaptive basis set. The
method is demonstrated using MD simulations of liquid water, where it is shown that minimal basis sets yield structural
properties in fair agreement with basis set converged results, while reducing the computational cost in the best case by a factor
of 200 and the required flops by 4 orders of magnitude. Already a very small training set yields satisfactory results as the
variational nature of the method provides robustness.

1. INTRODUCTION

The rapid increase in computational power and the develop-
ment of linear scaling methods1,2 now allow for easy single-
point density functional theory (DFT) energy calculations of
systems with 10,000−1,000,000 atoms.3,4 However, the
approach is computationally demanding for routine applica-
tion, especially if first-principles molecular dynamics or
relaxation is required. The computational cost of a DFT
calculation depends critically on the size and condition number
of the employed basis set. Traditional linear scaling DFT
implementations employ basis sets which are atom centered,
static, and isotropic. Since molecular systems are never
isotropic, it is apparent that isotropic basis sets are suboptimal.
Therefore, in this work a scheme is presented to define small
adaptive basis sets as a function of the local chemical
environment. These chemical environments are subject to
change, e.g., during the aforementioned relaxations or
sampling. In order to map chemical environments to basis
functions in a predictable fashion, a machine learning (ML)
approach is used. The analytic nature of a ML framework
allows for the calculation of exact analytic forces, as required
for dynamic simulations.
The idea of representing the electronic structure with

adapted atomic or quasi-atomic basis functions dates back
several decades. It underlays, e.g., many early tools used for the
investigation of bonding order.5−10 Also more recent methods
for extracting atomic orbitals from molecular orbitals build on

this idea.11−16 Besides using adaptive basis sets for analytic
tasks, they can also be used to speed up SCF algorithms, which
was pioneered by Adams.17−19 The approach was later refined
by Lee and Head-Gordon20,21 and subsequently applied to
linear scaling DFT by Berghold et al.22 Many linear scaling
DFT packages have also developed their own adaptive basis set
scheme: The CONQUEST program4 uses local support
functions, derived either from plane waves23 or pseudoatomic
orbitals.24 The ONETEP program25 uses nonorthogonal
generalized Wannier functions (NGWFs).26 The BigDFT
program27 uses a minimal set of on-the-fly optimized
contracted basis functions.28 Other related methods include
numeric atomic orbital29−32 and localized filter diagonaliza-
tion.33−37 Recently Mao et al. used perturbation theory to
correct for the error introduced into a DFT calculation by a
minimal adaptive basis.38

Here, we focus on polarized atomic orbitals (PAOs) and
build on the work of Berghold et al.22 PAOs are linear
combinations of atomic orbitals (AOs) on a single atomic
center, called primary basis in the following, that minimize the
total energy when used as a basis. As a result, small PAO basis
sets are usually of good quality and their variational aspect is
advantageous when computing properties, such as, e.g., nuclear
gradients. While there is no fundamental restriction on the
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PAO basis size, minimal PAO basis sets have been studied in
the most detail and are also the focus of this work. Despite
their qualities, the use of PAOs in simulation has been very
limited, which we attribute to the difficulty of optimizing these
PAOs for each molecular geometry in addition to the implied
approximation. Our aim is to exploit the adaptivity of the PAO
basis but to avoid this tedious optimization step by a machine
learning approach.
The application of machine learning techniques to quantum

chemistry is a rather young and very active field. For a recent
review see Ramakrishnan and von Lilienfeld.39 Its aim is to
mitigate the high computational cost associated with quantum
calculations. Initially, the research focused mostly on
predicting observable properties directly from atomic posi-
tions.40 For example, very successful recent applications
include the derivation of force fields using neural network
descriptions.41−43 However, such end-to-end predictions pose
a very challenging learning problem. As a consequence they
require large amounts of training data with increasing system
size, and the learning must be repeated for each property.
Fortunately, the past decades of research have provided a
wealth of quantum chemical insights. One can therefore build
onto established approximations, such as DFT, and apply
machine learning only to small, but expensive, subparts of the
algorithms. Examples are schemes for learning the kinetic
energy functional to perform orbital free DFT44 or learning the
electronic density of states at the Fermi energy.45 Alternatively,
machine learning can be used to improve the accuracy of
semiempirical methods by making their parameters config-
uration-dependent.46,47 In this work, machine learning is used
to predict suitable PAO basis sets for a given chemical
environment. The present method is thus essentially a standard
DFT calculation in a geometry-dependent, optimized basis.
Contrary to methods learning specific properties, including the
total energy, the present method thus provides access to all
properties in DFT calculations.

2. METHODS

2.1. Polarized Atomic Orbitals. The polarized atomic
orbital basis is derived from a larger primary basis through
linear combinations among functions centered on the same
atom. In the following, the notation from Berghold et al.22 has
been adopted. Variables with a tilde denote objects in the
smaller PAO basis, while undecorated variables refer to objects
in the primary basis. Formally, a PAO basis function φ̃μ can be
written as a weighted sum of primary basis functions φν, where
μ and ν belong to the same atom:

B∑φ φ̃ =μ
ν

μν ν
(1)

As a consequence of the atom-wise contractions, the
transformation matrix B assumes a rectangular block-diagonal
structure. Since the primary basis is nonorthogonal, the tensor
property of the involved matrices has to be taken into
account.48 Covariant matrices such as the Kohn−Sham matrix
H and the overlap matrix S transform differently than the
contravariant density matrix P. Hence, two transformation
matrices A and B are introduced.

P A PA P BPB

H B HB H AHA
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PAO primary primary PAO
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covariant
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Notice that ATB = BTA =  ̃ gives the identity matrix in the PAO
basis, while ABT = BAT is the projector onto the subspace
spanned by the PAO basis within the primary basis. In order to
treat the matrices A and B in a simple and unified fashion, they
are rewritten as a product of three matrices:

B NUY A N UY1= = − (3)

Due to the atom-wise contractions, the matrices N, U, and Y
are block-diagonal as well. The matrices N±1 transform into the
orthonormal basis, in which co- and contravariance coincide
and the distinction can be dropped. The unitary matrix U
rotates the orthonormalized primary basis functions of each
atom such that the desired PAO basis functions become the
first mI components. The selector matrix Y is a rectangular
matrix, which selects for each atom the first mI components.
Each atomic block YI of the selector matrix is a rectangular
identity matrix of dimension nI·mI, where nI denotes the size of
the primary basis and mI the PAO basis size for the given atom
I:

Y
1 0 0 ... 0

0 1 0 ... 0
I
T

∏ ∂ ∂=
i

k

jjjjjjjjj

y

{

zzzzzzzzz
(4)

In the formulation from eq 3 the PAO basis is now solely
determined by the unitary diagonal blocks of matrix U, without
any loss of generality. None of the matrix multiplications
required in the transformation is expensive to compute,
because the matrices either are block-diagonal or expressed in
the small PAO basis.

2.2. Potential Parametrization. The PAO basis is
determined by the unitary matrix U. In order to ensure the
unitariness of U, it is constructed from the eigenvectors of an
auxiliary atomic Hamiltonian Haux:

H N H V N( )aux 0= + (5)

H U Udiag( )iaux λ= { } †
(6)

Effectivly, the lowest m states of the auxiliary Hamiltonian are
taken as PAO basis functions. Here, the atomic Hamiltonian
H0 describes the isolated spherical atom, and V is the
polarization potential that models the influence of neighboring
atoms. In the absence of V the PAO basis will reproduce the
isolated atom exactly.
In the context of machine learning a parametrization should

also be rotationally invariant. A parametrization without
rotational invariance, on the contrary, would require training
data for all possible orientations and still bear the risk of
introducing artificial torque forces. In this work rotational
invariant parameters X are obtained by expanding the potential
V into terms Vi that are anchored on the neighboring atoms:

V X V
i

i i∑=
(7)
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When the system is rotated, the potential terms Vi change
accordingly, while the Xi remain invariant. As a consquence,
the optimal X⃗ is independent of the system’s orientation.
Explicit Form of the Potential Terms. The explicit form of

the potential terms Vi must be sufficiently flexible to span the
relevant subspace. Yet, they must also depend smoothly on
atomic positions, be independent of the atom ordering, and be
sufficiently local in nature. While we expect that more
advanced forms can be found, the following scheme has
been employed:

V V P r r P r r( ) ( ) ( ) ( ) ( ) di kuv u k v∫ ϕ ϕ= = * ⃗ Φ ⃗ ⃗ ⃗μν μν μ ν (8)

where

r w r R r R

k
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k
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J J
k
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=

≠

(9)

is a potential that results from spherical Gaussian potentials
centered on all neighboring atoms.

P
u, shell

0, otherwise
uϕ

ϕ ϕ
=

∈
ν

ν ν
l
m
oo
n
oo (10)

is a projector on shells of basis functions that share a common
radial part, and the same angular momentum number l, but
have different m quantum numbers. Specializing the terms by
different l quantum number and radial part introduces the
needed flexibility, while retaining the rotational invariance.
Nonlocal pseudopotentials have some resemblance to this
scheme. Finally, additional terms are added that just result
from the central atom, these are give by

V
P P l l

( )
,

0, otherwise
uv

u v u vδ
=

=
μν

μν
l
m
oo
n
oo (11)

Trivially degenerated terms with lu = lv = 0 are included only
once. The weights wJ and exponents βJ could be used for fine-
tunning the potential terms. However, througout this work
simply wJ = 1, βJ = 2, and k ≤ 2 are used.
2.3. Machine Learning. Machine learning essentially

means to approximate a complex, usually unknown, function
from a given set of training points. The amount of required
training data grows with the difficulty of the learning problem.
Therefore, the learning problem should be kept as small as
possible by exploiting a priori knowledge about the function’s
domain and codomain.
For the co-domain side this simplification is achieved

through the previously described potential parametrization. It
takes as input a PAO parameter vector and returns the unitary
matrix that eventually determines the PAO basis: X⃗ → U.
For the domain side a so-called descriptor is used. It takes as

input all atom positions and returns a low-dimensional feature
vector that characterizes the chemical environment: {R⃗I} → q⃗.
The search for a good general-purpose descriptor is an ongoing
research effort.49−51 For this work a variant of the descriptor
proposed by Sadeghi et al.52 and inspired by Rupp et al.53 was
chosen. For each atom I an overlap matrix of its surrouding
atoms is constructed:

Q re e e dJK
J K r R r R r R( ) ( ) ( )I I J J K K

2 2 2∫
β

π
β
π

= ⃗σ β β− ⃗− ⃗ − ⃗− ⃗ − ⃗− ⃗

(12)

The eigenvalues of this overlap matrix are then used as
descriptor. They are invariant under rotation of the system and
permutation of equivalent atoms. The exponent σI acts as a
screening parameter, while βJ allows the descriptor to
distinguish between different atomic species. With these two
simplifications in place, the learning machinery only has to
perform the remaining mapping of feature vectors onto PAO
parameter vectors: q⃗ → X⃗. A number of different learning
methods have been proposed, including neural networks54 and
regression.40 For this work a Gaussian process (GP)55 was
chosen as a relatively simple, but well characterized, ML
procedure. As kernel served the popular squared exponential
covariance function:

q q
q q

cov( , ) exp
( )

2

2

2σ
⃗ ⃗′ = − ⃗ − ⃗′

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ (13)

However, the PAO-ML scheme makes no assumptions about
the employed ML algorithm and can be used in combination
with any other machine learning method. Finally, a small
number of hyper-parameters had to be optimized to achieve
good results. While fixing the descriptor screening to σI = 1
and the GP noise level to ϵ = 10−4, the descriptor’s βJ and the
GP length scale σ were determined with a derivative-free
optimizer as βO = 0.09, βH = 0.23, and σ = 0.46 au. For an
overview of the entire PAO-ML scheme see Figure 1.

2.4. Analytic Forces. In order to run molecular dynamics
simulations, accurate forces are essential. Forces are the
derivative of the total energy with respect to atom positions.
While a variationally optimized PAO basis does not contribute
any additional force terms, the same does not hold for
approximately optimized PAO basis sets. The advantage of
using a pretrained machine learning scheme is the possibility to
calculate accurate forces nevertheless.
The PAO-ML scheme contributes two force terms that have

to be added to the common DFT forces F⃗DFT. One term
originates from the potential terms Vi from eq 8, which are
anchored on neighboring atoms. The other force term arises
from the descriptor, which takes atom positions as input. Both
additional terms can be calculated analytically:

Figure 1. Overview of the PAO-ML scheme for using the potential
parametrization and machine learning to calculate the PAO basis from
given atomic positions.
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2.5. Training Data Acquisition. Training data are
obtained by explicitly optimizing the PAO basis for a set of
training structures. This poses an intricate minimization
problem because the total energy must be minimal with
respect to the rotation matrix U and the density matrix P̃.
Additionally, the solution has to be self-consistent because the
Kohn−Sham matrix H depends on the density matrix.
Significant speedups can be obtained from temporarily relaxing
the self-consistency by fixing the Kohn−Sham matrix H during
an optimization cycle of P̃ and U.
Regularization. For high-quality training data the optimal

parameters X⃗ should be unique and vary smoothly with atomic
positions. To this end, two carefully designed regularization
terms were introduced. The first term is inspired by Tikhonov
regularization56 and penalizes expansion on linearly dependent
potential terms in eq 7. The second term is a L2 regularization
for the excess degrees of freedom in the potential V. Together
both regularizations can be expressed via the overlap matrix of
the potential terms:

V Vtrij i
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j= [ ] (15)
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Througout this work the values α = 10−6 and β = c = 1 mHa
are used.

3. RESULTS
In this section, the performance of the method for bulk liquid
water is explored. This system has a long tradition within the
first-principles MD community, as it is both important and
difficult to describe.57 From an energetic point of view, the
challenge arises from the delicate balance between directional
hydrogen bonding and nondirectional interactions such as van
der Waals interactions.58 The relatively weak interaction can
furthermore be influenced by technical aspects, such as basis
set quality. Additionally, the liquid is a disordered state, which
requires sampling of configurations for a proper description.
The disorder makes it also an interesting test case for the ML
approach, as the variability of the environment of each
molecule can be large.
3.1. Learning Curve. In order to validate the PAO-ML

method a learning curve is recorded. To do this, 71 frames
containing 64 water molecules, spaced 100 fs apart, are taken
from an earlier MP2 MD simulation at ambient temperature
and pressure.59 The first 30 frames are used as training data
while the last 30 frames serve as a test set. For each training
frame the optimal PAO basis is determined via explicit
optimization using DZVP-MOLOPT-GTH as the primary
basis. The PAO-ML method is then used to predict basis sets
for all test frames based on an increasing number of training
frames. The learning curve in Figure 2 shows the standard
deviation of the energy difference with respect to the primary
basis taken across all 64 water molecules in all 30 test frames. It
shows that already a single frame, i.e., 64 molecular geometries,

is sufficient training data to yield an error below 0.1 mHa per
water molecule. The curve furthermore shows good resilience
against overfitting as the error continues to decrease even for
large training sets, eventually reaching 0.083 mHa per
molecule. In comparison, a traditional minimal (SZV-
MOLOPT-GTH) basis set exhibits an error of 0.360 mHa.
The learning can at best reach the accuracy of the underlying
PAO approximation (0.074 mHa). It is unlikely that the
current descriptor would be sufficient to attain that bound.

3.2. Consistency of Energy and Forces. In order to
validate that the forces provided by the PAO-ML implementa-
tion are consistent with its energies, a series of short molecular
dynamics simulations with different time steps was performed
on a water dimer. For the integration of Newton’s law of
motion the velocity−Verlet algorithm60 has been employed,
which has an integration error that is of second order in the
time step. Figure 3 shows the fluctuations obtained with time
steps of 0.4, 0.2, and 0.1 fs. The standard variations extracted
from these fluctuation curves are 5.00, 1.23, and 0.31 μHa.
This matches nicely the 4-fold decrease expected for a time
step halving and confirms the consistency of the PAO-ML
implementation.

3.3. PAO-ML Molecular Dynamics of Liquid Water. So
far, we have tested the performance of the method based on
frames sampled with a traditional approach. More challenging
for a ML method is sampling configurations based on
predicted energies, in particular, to verify that instabilities
and unphysical behavior are absent when the method is given
the freedom to explore phase space. To test and verify the
performance, molecular dynamics simulations have been
performed for 64 molecules of water at experimental density
and 300 K, producing trajectories between 20 and 40 ps
depending on the method. Besides PAO-ML, a traditional
minimal (SZV-MOLOPT-GTH) basis set, a standard basis sets
of triple-ζ quality (TZV2P-MOLOPT-GTH), and density
functional tight binding (DFTB)61,62 were used. TZV2P serves
as a reference converged result, while SZV and DFTB provide
insight in the performance of methods with a basis set size
identical to PAO-ML. The oxygen−oxygen pair correlation

Figure 2. Learning curve showing the decreasing error of PAO-ML
(blue) with increased training set size. For comparison the error of a
variationally optimized PAO basis (green) and a traditional minimal
SZV-MOLOPT-GTH (red) basis set are shown. With very little
training data, the variational limit is approached by the ML method.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00378
J. Chem. Theory Comput. 2018, 14, 4168−4175

4171

http://dx.doi.org/10.1021/acs.jctc.8b00378


functions of liquid water are shown in Figure 4. First, these
results show that the PAO-ML simulation is similar to the

reference TZV2P-MOLOPT-GTH. The position of the first
peak in the O−O pair correlation function matches well the
one of the experimental reference, which is a significant
improvement over the result obtained with a SZV-MOLOPT-
GTH basis. Compared to the experiment, overstructuring of
the first peak can be mostly attributed to the employed PBE
exchange and correlation functional, as it also shows up with
the triple-ζ basis set. Comparing to the DFTB results, the
difference is most significant near the second solvation shell,
which is mostly absent or strongly shifted to larger distances
with DFTB, whereas the PAO-ML reproduces the reference
results rather accurately.
3.4. Check for Unphysical Minima. We checked that the

PAO-ML potential energy surface is free from unphysical

minima. To this end, the 30 test frames of bulk liquid water
employed in section 3.1 were geometry optimized using PAO-
ML. During this optimization the energy dropped on average
by 3.14 mHa per water molecule and each atom moved on
average 0.212 Å. Afterward, starting from the PAO-ML minima
configuration, a second geometry optimization was performed
using the DZVP-MOLOPT-GTH basis. Confirming the
physical nature of the PAO-ML minima, the average energy
difference between the configurations optimized with PAO-ML
and DZVP is a neglibile 0.028 mHa per molecule and the
positions changed on average by only 0.014 Å per atom. This
confirms the quality of the PAO-ML basis.

3.5. PAO-ML Speedup. The speedup obtained with PAO-
ML in the context of linear scaling calculations will be
quantified. As a test system, a cubic unit cell containing 6912
water molecules (∼20000 atoms) is employed. The
simulations were run on a Cray XC40 using between 64 and
400 nodes each with two CPUs. Table 1 shows the timings for

both the full energy calculation and the sparse matrix
multiplication part alone. Linear scaling calculations are
typically dominated by matrix multiplication, which made it
the target of the PAO-ML method. The largest speedup for
this part is observable on a few nodes, in which case the PAO-
ML scheme yields a 200× wall time reduction. The number of
flops actually executed decreases by 4 orders of magnitude
from 61.63 × 1015 flops for DZVP-MOLOPT-GTH to only
4.07 × 1012 flops for PAO-ML. This speedup can only be
partially attributed to the smaller basis set, as the reduction in
flops in the dense case would be only 56× (6 vs 23 basis
functions per water molecule). This demonstrates the
importance of the condition number of the overlap matrix in
sparse linear algebra, because the PAO basis exhibits a
condition number around 6, which is more than 2 orders of
magnitude lower than for the primary DZVP basis set. Due to
the large speedup of the matrix multiplication, the Kohn−
Sham matrix construction becomes a major contribution to the
timings. Nevertheless, on 64 nodes the PAO-ML method
speedup the full calculation by 60×. Running on 400 nodes
allows one to perform an SCF step in just 3.3 s.

3.6. Computational Setup. All the calculations were
performed using the CP2K software.64−66 CP2K combines a
primary contracted Gaussian basis with an auxiliary plane-wave
(PW) basis. This Gaussian and plane-wave (GPW)67 scheme
allows for an efficient linear-scaling calculation of the Kohn−
Sham matrix. The auxiliary PW basis is used to calculate the
Hartree (Coulomb) energy in linear-scaling time using fast
Fourier transforms. The transformation between the Gaussian

Figure 3. Energy fluctuation during a series of MD simulation of a
water dimer using the PAO-ML scheme. The simulations were
conducted in the NVE ensemble using different time steps Δt to
demonstrate the consistency of the forces and thus the controllability
of the integration error.

Figure 4. Shown are oxygen−oxygen pair correlation functions for
liquid water at 300 K. As reference the experimental (green, ref 63)
and TZV2P-MOLOPT-GTH basis sets (blue) results are shown. The
SZV-MOLOPT-GTH curve (red) and DFTB (orange) are examples
of results typically obtained from a minimal basis sets. The adaptive
basis set PAO-ML (black) reproduces the reference (TZV2P) better
than any of the alternative minimal basis set methods.

Table 1. Timings (seconds) for the Complete CP2K Energy
Calculation (Full) and the Matrix Multiplication Part (mult)
on a System Consisting of ∼20000 Atoms, As Described in
the Texta

nodes 64 100 169 256 400

PAO-ML
full 87 58 41 33 24
mult 23 17 13 11 8

DZVP-MOLOPT-GTH
full 5215 2765 1996 1840 1201
mult 5036 2655 1922 1779 1165

aThe PAO-ML method outperforms a standard DFT run with a
DZVP-MOLOPT-GTH basis by a factor of at least 50×.
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and PW basis can be computed rapidly. The cutoff for the PW
basis set was chosen to be at least 400 Ry in all simulations.
While the PW basis is efficient for the Hartree energy, the
primary Gaussian basis set is local in nature and allows for a
sparse representation of the Kohn−Sham matrix. For the
simulations, the Perdew−Burke−Ernzerhof68 (PBE) exchange
and correlation (XC) functional and Goedecker−Teter−
Hutter (GTH) pseudopotentials69 were used. The linear-
scaling calculations were performed with the implementation
as described in ref 3, which in particular allows for variable
sparsity patterns of the matrices. All SCF optimization used the
TRS470 algorithm. The SCF optimization was converged to a
threshold (EPS_SCF) of 10−8 or tighter; the filtering threshold
EPS_FILTER was to 10−7 or tighter. The default accuracy
(EPS_DEFAULT) was set to 10−10 or tighter. All simulations
were run in double precision. CP2K input files are available in
the Supporting Information.

4. DISCUSSION AND CONCLUSIONS

In this work, the PAO-ML scheme has been presented and
tested. PAO-ML employs machine learning techniques to infer
geometry adapted atom centered basis sets from training data
in a general way. The scheme can serve as an almost drop-in
replacement for conventional basis sets to speedup otherwise
standard DFT calculations. The method is similar to
semiempirical models based on minimal basis sets but offers
improved accuracy and quasi-automatic parametrization.
The PAO-ML approach has the interesting property that the

optimal prediction of the parameters makes the energy
minimal with respect to these parameters. During the actual
simulation, this implies a certain stability of the simulation, as
regions with poorly predicted parameters will be avoided due
to their higher energy. Ultimately, the whole PAO-ML method
provides basis sets that depend in an analytical way on the
atomic coordinates. As such, analytic nuclear forces are
available, making the method suitable for geometry optimiza-
tion and energy conserving molecular dynamics simulations.
The performance of the method was demonstrated using

MD simulations of liquid water, where it was shown that small
basis sets yield structural properties that outperform those of
other minimal basis set approaches. Interestingly, very small
samples of training data yielded satisfactory results. Compared
to the standard approach, the number of flops needed in
matrix−matrix multiplications decreased by over 4 orders of
magnitude, leading to an effective 60-fold run-time speedup.
Finally, it is clear that the approach presented in this work

can be further refined and extended. Some early results have
been published in a Ph.D. thesis.71 Possible directions for
improvements include the following: (a) systematic storage
and extension of reference data to yield a general purpose
machine learned framework for large scale simulation,
including a more rigorous quantification of the expected
error, which will improve usability; (b) refined parametrization
of the PAO basis sets, reducing the number of parameters
needed and the enhancing the robustness of the method; (c)
nonminimal PAO basis sets; (d) extensions of the method to
yield basis sets for fragments or molecules rather than atoms,
which will increase accuracy and efficiency; (e) more advanced
machine learning techniques and alternative descriptors, which
will allow for larger training sets and improved transferability of
reference results. These directions should be explored in future
work.

■ ASSOCIATED CONTENT

*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.jctc.8b00378.

Representative input files for most simulations (ZIP)

■ AUTHOR INFORMATION

Corresponding Author
*E-mail: joost.vandevondele@cscs.ch.

ORCID
Joost VandeVondele: 0000-0002-0902-5111
Funding
This work was supported by the European Union FP7 with an
ERC Starting Grant under Contract No. 277910 and by a grant
from the Swiss National Supercomputing Centre (CSCS)
under Project ID ch5.

Notes
The authors declare no competing financial interest.

■ REFERENCES
(1) Goedecker, S. Linear scaling electronic structure methods. Rev.
Mod. Phys. 1999, 71, 1085.
(2) Bowler, D. R.; Miyazaki, T. ( ) methods in electronic
structure calculations. Rep. Prog. Phys. 2012, 75, 036503.
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