
Evaluation and understanding of automated urinary
stone recognition methods
Jonathan El Beze1,2 , Charles Mazeaud1,2, Christian Daul3, Gilberto Ochoa-Ruiz4, Michel Daudon5,
Pascal Eschw�ege1,2,3 and Jacques Hubert1,2,6

1Department of Urology, CHU Nancy – Brabois, 2Universit�e de Lorraine, 3CRAN UMR 7039, Universit�e de Lorraine and
CNRS, Nancy, 5Unit of Functional Explorations, INSERM UMRS 1155, Hospital Tenon, APHP, Paris, France, 4Tecnologico
de Monterrey, Escuela de ingenier�ıa y Ciencias, Mexico and 6IADI-UL-Inserm (U1254)

Objective
To assess the potential of automated machine-learning methods for recognizing urinary stones in endoscopy.

Materials and Methods
Surface and section images of 123 urinary calculi (109 ex vivo and 14 in vivo stones) were acquired using ureteroscopes.
The stones were more than 85% ‘pure’. Six classes of urolithiasis were represented: Groups I (calcium oxalate monohydrate,
whewellite), II (calcium oxalate dihydrate, weddellite), III (uric acid), IV (brushite and struvite stones), and V (cystine). The
automated stone recognition methods that were developed for this study followed two types of approach: shallow
classification methods and deep-learning-based methods. Their sensitivity, specificity and positive predictive value (PPV)
were evaluated by simultaneously using stone surface and section images to classify them into one of the main
morphological groups (subgroups were not considered in this study).

Results
Using shallow methods (based on texture and colour criteria), relatively high sensitivity, specificity and PPV for the six
classes were attained: 91%, 90% and 89%, respectively, for whewellite; 99%, 98% and 99% for weddellite; 88%, 89% and 88%
for uric acid; 91%, 89% and 90% for struvite; 99%, 99% and 99% for cystine; and 94%, 98% and 99% for brushite. Using
deep-learning methods, the sensitivity, specificity and PPV for each of the classes were as follows: 99%, 98% and 97% for
whewellite; 98%, 98% and 98% for weddellite; 97%, 98% and 98% for uric acid; 97%, 97% and 96% for struvite; 99%, 99%
and 99% for cystine; and 94%, 97% and 98% for brushite.

Conclusion
Endoscopic stone recognition is challenging, and few urologists have sufficient expertise to achieve a diagnosis performance
comparable to morpho-constitutional analysis. This work is a proof of concept that artificial intelligence could be a solution,
with promising results achieved for pure stones. Further studies on a larger panel of stones (pure and mixed) are needed to
further develop these methods.
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Introduction
Urolithiasis is a frequent and recurrent pathology. Its
management is medico-surgical. The medical aspect of the
management of lithiasis disease is based on overall assessment
and morpho-constitutional analysis of the stone [1]. The
objective is to identify the aetiology and avoid recurrence.

The morpho-constitutional examination consists of two steps
[2–4]: (1) morphological analysis of the surface and section of
the extracted kidney stone and (2) infrared spectroscopy to
determine the composition of the stone.

Diagnostic agreement of the morpho-constitutional analysis
reaches 95% when the whole stone is sent for analysis, but it
only reaches up to 60% for global infrared analysis of the
powder of a stone or of small fragments. However, only
29.6% of urinary stones arrive whole in the laboratory [5].

As a result of the evolution of surgical techniques and lasers
in recent decades, ureteroscopy with possible laser
fragmentation of the stone has become a popular therapeutic
option. However, given that the therapeutic objective of the
intervention is to obtain a stone-free result [6], operating
techniques may involve fragmentation of the stone, in
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‘popcorn’ mode, into smaller and smaller fragments and / or
spraying of the stone, in ‘dusting’ mode, into increasingly fine
powder. This leads to a low rate of whole stones recovered
for optimal laboratory analysis. In addition, it has been
shown that spraying in dusting mode can modify the
chemical composition of certain urinary stones and impair
their recognition by spectrophotometry, thus changing their
relation to aetiology [7,8].

These facts explain the growing interest in the intra-operative
recognition of urinary lithiasis. Indeed, the urologist is the
first to ‘see’ urolithiasis before and after its fragmentation, if
this is performed. Intra-operative description of the stone can
complement the morpho-constitutional analysis. Thanks to
the work of Estrade et al. [5,9], this approach has enabled the
validation of didactic boards of confirmed endoscopic images
to aid in the peri-endoscopic recognition of certain types of
urinary lithiasis. However, this method requires training and
expertise that is difficult for all urologists to acquire. The
objective of our study therefore was to assess the potential of
an automated method for real-time recognition of urinary
stones using machine-learning methods, utilizing images seen
during ureteroscopy.

Materials and Methods
Morpho-constitutional Analysis

In the laboratory, a stone is examined according to morpho-
constitutional analysis that comprises two steps: (1) a
morphological step, in which the surface and the section of
the stone are analysed under microscope with regard to
colour, texture and shape and (2) a constitutional step, in
which infrared spectrophotometric analysis is performed of
the crystal component(s) of the urinary calculus.

A morpho-constitutional classification system was proposed
by Daudon et al. [2,10]. The current classification divides
urinary stones into seven types and 22 subtypes (Table 1).

Groups I and II include calcium oxalate monohydrate (Group
I = whewellite) and calcium oxalate dihydrate (Group II =
weddellite) stones, Group III includes uric acid and urates,
Group IV includes calcium and/or magnesium phosphates,
and Group V includes cystine. Group VI includes protein
stones. Group VII contains miscellaneous types of stones.

Acquisition Equipment

In this study, we used 109 human urinary stones (Table 2a)
from a historical series obtained from the CRISTAL
laboratory, Paris France. These calculi are part of a study on
the analysis of the densities of urinary stones evaluated on
CT [11]. The stones are fully anonymized and were kept for
study in compliance with the regulations in place during their
endoscopic or surgical extraction.

The morpho-constitutional analysis of these stones has been
previously established. They contain at least 85% of a single
component. Thus, they are considered ‘pure’. We acquired
images of these stones using two reusable digital flexible
ureteroscopes from Karl Storz� using video carts: Storz Image
1 Hub and Storz image1 S.

To reproduce in vivo conditions, namely, a closed
environment such as urinary excretory cavities, we used a
tube with a small diameter whose inner walls were covered
with a yellowish film to simulate the appearance of the walls
of the urinary tract. The aim was for the light, light reflection
and distance to approximate the conditions found the in vivo
environment (Fig. 1A).

For each stone, we acquired images from different points of
view (far, near and/or from different angles). For the
fragmented stones, we took images of the surface and the
section. For unfragmented (whole) calculi, only surface
images were acquired. Figure 1B shows some examples of the
images taken of these stones.

For the images of the cystine stone shown (acquired with
Storz� Image 1 Hub), the resolution was lower, the light
reflection being more important than for the other images
(acquired with Storz� Image 1 S). However, the difference
was ultimately minimal and the automated recognition results
remained high, as shown below.

For each type of urinary stone, we obtained between 25
(brushite) and 62 (whewellite [calcium oxalate monohydrate])
surface images, and between 20 (brushite) and 50 (uric acid)
section images (Table 2b).

A limitation of the ex vivo database lies in the differing
number of images available for each class. Because the
brushite class was under-represented in terms of images in
comparison to the other classes, the database was extended
with images of brushite stones (14 images of section and 14
of surface) from a previous in vivo study [12].

Only parts of the images were used for classification
purposes. Indeed, after eliminating obvious artefacts (e.g.,
instruments visible in the images), each image was divided
into ‘patches’ of 256 9 256 pixels each. The use of patches
instead of whole images is not only consistent with medical
practice for morpho-constitutional analysis, but also allows
the construction of a larger training and test dataset. Thus,
the amount of information extracted for training the
automated machine-learning models is increased, avoiding the
well-known problem of overfitting.

The optimal patch size was determined in a previous study as
that which offered the best accuracy with the minimal loss of
information during the automated stone recognition [12]. The
patch extraction process was performed randomly after the
automated segmentation and image pre-processing process
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Table 1 Morpho-constitutional analysis [2–4,7,10].

Type Main crystal
component

Main morphological stone characteristics Common causes

Surface Section

I Ia Whewellite
(COM)

Mammillary surface. Frequent
umbilication and Randall’s
plaque.

Colour: brown

Concentric layers with
radiating organization
starting from a nucleus
(often Randall’s plaque)

Colour: brown

Insufficient water intake (low
diuresis) and dietary
hyperoxaluria (high
consumption of oxalate-rich
foods (e.g., dark chocolate
and spinach) and
hydroxyproline-rich foods and
low calcium intake (increased
oxalate absorption by the gut)

Ib Mammillary, rough surface. No
umbilication.

Colour: brown to dark brown

Unorganized.
Colour: brown to dark
brown

Moderate hyperoxaluria with
stasis

Ic Budding surface.
Colour: cream to pale yellow-
brown

Finely granular and poorly
organized.

Colour: cream to pale
yellow-brown

Primary hyperoxaluria type I

Id Smooth surface.
Colour: homogenous, beige, or
pale brown.

Compact section showing
thin concentric layers
without radiations.

Colour: beige, or pale
brown.

Malformative uropathy, stasis
and confined multiple stones

Ie Locally budding, mamillary or
rough surface.

Colour: often heterogeneous, pale
yellow-brown to brown.

Locally unorganized
section or radiating
structure.

Colour: often
heterogeneous, pale
yellow-brown to brown

Enteric hyperoxaluria:
inflammatory bowel disease
(Crohn’s disease and/or
extensive ileal resections),
bariatric surgery, and chronic
pancreatitis

II IIa Weddellite
(COD)

Spiculated surface showing
aggregated bipyramidal
crystals with sharp angles and
edges.

Colour: pale yellow-brown

Loose radial
crystallization.

Colour: pale yellow-brown

Hypercalciuria

IIb Weddellite �
whewellite

Smooth, long bipyramidal
crystals, resembling small
desert roses

Colour: pale yellow-brown

Compact unorganized
crystallization.

Colour: pale brown-yellow.

Hypercalciuria � hyperoxaluria �
hypocitraturia

IIc Weddellite Rough
Colour: grey-beige to pale brown

Unorganized core with
diffuse concentric
structure in periphery

Colour: grey-beige to pale
brown

Hypercalciuria, stasis and
confined multiple stones

III IIIa Uric acid
anhydrous

Homogeneous smooth surface.
Colour: typically orange

Concentric layers with a
radiating organization
around a well-defined
nucleus.

Colour: typically orange

Stasis conditions with low urine
pH (e.g., prostatic adenoma
hyperplasia)

IIIb Uric acid
dihydrate (�
anhydrous)

Embossed, rough and porous.
Colour: heterogeneous, beige to
brown-orange

Poorly organized, porous.
Colour: orange

Metabolic syndrome, diabetes

IIIc Urate salts,
including
ammonium
hydrogen
urate

Homogeneous or slightly
heterogeneous, rough, and
locally porous surface

Colour: homogeneous beige to
greyish

Unorganized porous
section

Colour: whitish to greyish

Hyperuricosuria and alkaline
urine (therapeutic alkalinization
or UTI)

IIId Ammonium
hydrogen
urate

Heterogeneous, embossed,
rough and porous surface.

Colour: greyish to brown

Alternated layers, thick
and brownish or thin
and greyish, locally
porous

Colour: greyish

Hyperuricosuria and chronic
diarrhoea

IV IVa1 Carbapatite Rough and homogenous.
Colour: whitish to beige

Poorly organized or diffuse
concentric layers.
Colour: whitish to beige

Hypercalciuria, UTI
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described above, thereby mitigating any operator bias towards
specific areas of the urinary calculus and preserving as much
variance in the samples as possible.

Also, to avoid any bias, patches were extracted in such a way
that they have a maximum border overlap of 20 pixels to

limit redundant information. Moreover, patches including a
high number of ‘non-stone’ pixels were not included in the
dataset (an experimentally set threshold value of 10% was
used to discard inappropriate patches located close to the
fragment periphery or those including instruments). Thus,

Table 1 (continued)

Type Main crystal
component

Main morphological stone characteristics Common causes

Surface Section

IVa2 Carbapatite Embossed and varnished
surface

with small cracks. Glazed
appearance.

Colour: homogeneous, pale
brown-yellow to pale brown

Alternated layers, thick
brown-yellow and thin
beige.

Often multiple nuclei (from
collecting duct origin)

Distal renal tubular acidosis

IVb Carbapatite +
struvite

Heterogeneous, both embossed
and rough.

Colour: heterogeneous, cream to
dark brown

Alternate thick whitish
and thin brown-yellow
layers

UTI, hypercalciuria. Aetiology
depends on minor
components identified in the
stone

IVc Struvite Aggregates of large crystals with
blunt angles and edges.

Colour: whitish

Diffuse, loose radial
crystallization.

Colour: whitish

UTI by urease-splitting bacteria

IVd Brushite Finely rough or dappled surface
Colour: whitish to beige

Radial crystallization with
locally concentric layers.

Colour: whitish to beige

Hypercalciuria, Primary
hyperparathyroidism,
phosphate leak

V Va Cystine Homogeneous, rough surface
Waxy aspect.

Colour: yellowish

Diffuse radial organization
or unorganized section

Colour: yellowish

Cystinuria

Vb Homogeneous smooth or finely
rough surface.

Colour: whitish to pale beige

Heterogeneous structure
made of finely
concentric
microcrystalline beige
organization in the
periphery around a
compact, crystalline
unorganized light
brown-yellow core

Cystinuria + inadequate therapy

VI VIa Proteins Matrix soft calculi, homogeneous
surface.

Colour: cream to pale brown

Unorganized structure.
Colour: light brown

Chronic pyelonephritis

VIb Proteins and
drugs or
metabolic
compounds

Heterogeneous, irregularly rough
surface.

Locally scaled.
Colour: dark brown to black.
Other components often present
in these stones may alter the
structure and the colour

Crude and diffuse foliated
Colour: dark brown to
black

Proteinuria, drugs, clots

VIc Proteins and
whewellite

Homogeneous, smooth surface
with clefts and scales

Colour: dark brown

Protein shield surrounding
a loose, unorganized
light core containing
whewellite crystals
mixed with proteins.

Colour: dark brown

End-stage renal failure and
excessive calcium + vitamin D
supplementation

VII Miscellaneous Various
morphologies
and colours
according to
the stone
composition
(infrequent
purines and
drugs)

Variable organization and colour
according to the stone
composition

xanthine stones: xanthine
oxidase deficiency;
dihydroxyadenine
stones: adenine
phosphoribosyl
transferase defect; and
drug-containing stones:
phenazopyridine,
oxypurinol, silica, and
calcite stones

COD, calcium oxalate dihydrate; COM, calcium oxalate monohydrate.
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more than 35 000 patches were obtained to construct the
final dataset. Of these samples, 80% were used to train the
machine-learning algorithm and for validation purposes,
while 20% of the samples were used for the test dataset.

Recognition Methods (Stone Classification)

Two types of recognition approaches were studied: a
shallow method and a deep-learning method. Shallow
methods rely on the extraction of handcrafted statistical
characteristics or feature vectors used to encode colour and
texture information characteristics such as those the human
eye could perceive.

After a careful feature sensitivity analysis [13], a vector whose
components encode hue, saturation, value of lightness (HSV)
and local binary pattern (LBP) features (representing local
textures) have been identified as those that best discriminate
urinary stones. The colour information was represented in the
HSI space, where H, S and I stand for hue (the tint of the
colour), saturation (the amount of grey in the colour) and
intensity (the brightness of the colour), respectively. With this
colour space the advantage is that when only the colour
intensity varies (as is the case when the endoscope’s
viewpoint changes) the hue values remain constant (i.e., the

unchanged colour aspect favours the stone classification).
LBPs encode textures in a binary code.

It must be emphasized that we have investigated the
performance of other machine-learning methods in previous
works dealing with in vivo data [12,13]. Our main goal in
comparing shallow and deep-learning methods in these works
was to show that effective feature extraction techniques can
attain very competitive results compared to previous state-of-
the-art solutions. (Serrat et al. [17] followed a similar
approach, but their feature extraction phase was suboptimal).
Thus, in a previous study [12], we demonstrated that a much
better classification can be reached using a random forest
classifier due to an improved feature selection process. The
rationale for using and only focusing on XGBoost in this
study was that it has been reliably demonstrated to be
superior to most of the machine-learning methods in the
literature. In fact, it is considered one the best off-the-shelf
machine-learning methods when working on small datasets, a
scenario where deep-learning methods will not perform as
well. The improvements obtained by XGBoost compared to
the second-best shallow machine-learning method (random
forest) are of approximately 5%, increasing from 91% to 96%
of PPV in our previous study [12] and from 87% to 91%
with the dataset used in the present study, and by more than

Table 2 Number of used stones, images and patches extracted depending on their type.

Morpho-constitutional
classification

Group I Group II Group III Group IV Group IV Group V Total

Crystalyn component Whewellite
(COM)

Weddellite
(COD)

Uric acid Brushite
(calcium phosphate
dihydrate)

Struvite (magnesium
ammonium phosphate
hexahydrate)

Cystine

(a) Type and number of
stones used ex vivo

Number 28 5 25 8 17 25 109
Number according to
morpho-constitutional
classification

Ia: 21
Ib: 4
Ic: 2
Id: 1

IIa: 2
IIb: 3

IIIa: 16
IIIb: 9

IVd: 8 IVb: 1
IVc: 16

Va: 24
Vb: 1

109

Class Images number Presence (%) Patches number

(b) Number of images and patches
Surface COM 62 22.30 5614

COD 43 14.45 2642
Brushite 25* 9.00 2095
Uric acid 58 20.85 2185
Cystine 47 16.90 2058
Struvite 43 14.45 4237
Total 278 100.0 18831

Section COM 25 11.70 2260
COD 47 21.95 2355
Brushite 20* 9.35 2668
Uric acid 50 23.35 2837
Cystine 48 22.45 2695
Struvite 24 11.20 2048
Total 214 100.00 14863

*To balance the different classes, 14 section images and 14 surface images were captured in in vivo procedures for the brushite type and were
added to the database. COD, calcium oxalate dihydrate; COM, calcium oxalate monohydrate.
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(A)

(B)

Fig. 1 Image acquisition technique and examples of acquired images. (A) Device (left) and installation (right) during image acquisition. (B) Examples

of calculi images used. COM, calcium oxalate monohydrate; COD, calcium oxalate dihydrate.
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10% compared with methods based on Support Vector
Machines.

The second method assessed in this study corresponds to a
deep-learning approach exploiting features automatically
learned during the training process of convolutional neural
networks (CNNs; in contrast to the predefined feature vectors
used for traditional machine-learning methods). In such an
approach, a CNN is trained to learn and select the best
features to be extracted from the images to maximize
classification performance, without guiding or influencing the
recognition by a priori knowledge.

The amount of information extracted is colossal, far
exceeding that of shallow methods, and understanding the
physical meaning of the features is not always possible.
Their ability to establish relationships between these
characteristics explains the strength of deep-learning
methods, even if some of the information extracted is not
significant for the recognition. For the reasons described
above, we have made use of modern visualization techniques
to compare the performance of the two methods; these
visualizations can also help in understanding the decisions
made by the algorithms when classifying a kidney stone
given only visual data.

An important contribution of this work is that it compares
shallow methods that are inherently ‘interpretable’ with deep-
learning algorithms whose performance might be superior at
the expense of reduced explainability of the results. In the
future, we will explore some recent advances in the field of
Explainable AI (XAI, [22]) to contrast our results with the
morpho-constitutional analysis introduced by Daudon et al. [2].

Qualitative Assessment

It was possible to represent the class separability of stones in
a three-dimensional space as explained below (Fig. 2). Each
image was divided into patches. For each patch, a feature
vector was extracted, either by a shallow method or by a
deep-learning method. All the extracted features could then
be reduced to a set of three ‘main’ features, shown as umap1,
umap2 and umap3 in Fig. 2. This representation method is
known as ‘uniform manifold approximation and projection
for dimension reduction’ (UMAP) [14]. These main
components were calculated from more complex features
extracted from the image patches; the original features were
vectors of very high dimension (40 elements for shallow
models and 1024 elements for deep models) so UMAP tries
to find a projection that best represents all the information of
a patch in a compact way using three values: umap1, umap2
and umap3.

A point with coordinates (umap1-umap2-umap3) in the
three-dimensional space represents a patch. Each type (i.e.,
class) of urinary calculus was represented by a given colour

and the dots corresponding to the patches of each class
form ‘clouds’ or clusters. The more compact the clouds
were, and the more distant each cloud was from other
clouds, the more discriminating the features extracted from
the images are. On the other hand, the more the clouds
overlapped in three-dimensional space, the lower the ability
of the classification to correctly identify stones. After
learning the classes visualized (Fig. 2), a new image (or
patch) of urinary calculus, was treated as follows by the
classification method. The features that make it possible to
identify the urinary calculus were first extracted from the
patches. Then, these characteristics were used to identify the
class with the greatest resemblance. In other words, the
closest point cloud, or one that included the point whose
characteristics were extracted, was identified. This
identification made it possible to recognize the stone type.
In addition, for deep learning, the image class was
recognized by a CNN.

For the shallow approaches, the characteristic extraction
method was the same regardless of the classifier (or the
method of using the scatterplot to recognize a stone) as it
represented a separate step. The classifier was used to name
the identification method and used these data to the
hyperplane that best separated the points of Fig. 2A. In this
study, the classifier used for the shallow methods was
XGBoost [15]. Readers interested in the technical details of
the training and operation of the XGBoost classifier should
refer to Appendix A of this paper.

For deep-learning methods, the feature extraction method
was also specific to each type of neural network (referred to
as neural network architecture). These methods were
therefore distinguished both by the way they extract
information from images or patches and by the way they
used point clouds for classification. In this study, we present
the results of a deep-learning method called ‘Inception v3’
[16]. The transfer-learning method and the inception v3
network architecture used in this study are described in detail
in Appendix B.

Quantitative Assessment

Four complementary quality criteria were used to assess the
performance of the classification methods: (1) sensitivity,
which relates to the ability of the classifier not to miss a stone
in a given class; (2) specificity, which refers to the ability to
avoid over-detection in a given class; (3) positive predictive
value (PPV), which represents the probability that a stone
belongs to the recognized class; and (4) area under curve
(AUC). The AUC values were determined using receiver-
operating characteristic curves, which show the relationship
between true-positive identification rates and false-positive
identification rates. AUC values were individually determined
for each class and for a given classification method. They
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(A)

(a)

(b)

(c)

(B) 

(b)

(c)
(c) 

(a)

Fig. 2 Scatterplot using feature extractions. Each cloud represents a type of stone after classification by ‘shallow methods’ (A) and by the ‘deep-

learning method’ (B). For each method, the results are shown for surface patches (a), section patches (b) and the effect of mixing both of them (c).
The more distant each cloud was from other clouds, the more discriminating the features extracted from the images were. Using the deep-learning

method (B), clouds are more distant from each other, offering higher discrimination than that achieved using the shallow method. AU, uric acid (dark

purple); BR, brushite (green); CYS, cystine (blue); STR, struvite (yellow); WD, weddellite (calcium oxalate dihydrate [COD]; red); WW whewellite (calcium

oxalate monohydrate [COM]; light purple); Sur, surface; Sec, section. HSI, hue, saturation intensity colour model; LBP, local binary patterns. (a)
Scatterplot for individual surface patches. (b) Scatterplot for individual section patches. (c) Scatterplot obtained using both types of patches.
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were also globally computed for all classes (weighted AUC
across the classes) and a given classification method.

Evaluating a model based on both sensitivity and specificity is
appropriate for most datasets because these measures consider
all entries in the confusion matrix. Sensitivity relates to true-
positive and false-negative rates, while specificity is determined
using false positives and true negatives. The combined use of
sensitivity and specificity therefore leads to a holistic measure
in which both true positives and true negatives are considered.
The AUC values given globally over all classes and for each
individual class highlight respectively the discriminatory
capabilities of the classifiers between a set of classes (weighted
AUC over the classes), and the recognition power inside
individual classes (individual class AUC).

Results
Qualitative Assessment

Shallow Methods

Figure 2A shows the different classes of urinary stones
according to the UMAP method explained above, which uses
texture features (LBP) and colour features (HSV) extracted in
a controlled way and which has a physical meaning.

For individual surface or section data, point clouds intertwine
and overlap. Automatic discrimination by a classifier is
therefore complicated. By simultaneously using the surface
and section images, point clouds corresponding to the classes
‘weddellite’ and ‘cystine’ become more discriminative (i.e., in
the subplots in Fig. 2Ac and Bc, the two classes or clusters
move apart in the three-dimensional space). The point clouds
of the other classes remain intertwined and superimposed,
offering little discrimination.

Deep Learning

Figure 2B represents the different classes of urinary stones
whose cloud points were obtained using a feature extraction
with the Inception v3 deep-learning method.

For individual surface or section images, each type of stone
has its own more or less compact point cloud, these clusters
being also more or less distant from each other in three-
dimensional space. For surface patches (see Fig. 2Ba), however,
the point clouds of uric acid and whewellite are touching each
other, which does not facilitate their separation during
classification. Combined use of surface and section images
(Fig. 2Bc) leads to more compact and spaced point clouds,
offering better discrimination (see, in particular, the classes of
uric acid and whewellite that are no longer attached).

Quantitative Assessment

Table 3 shows the results of the classification of stones
obtained with the shallow algorithm (XGBoost) and the deep-
learning (Inception v3) methods, using both surface and
section patches.

With the shallow method, the sensitivity, specificity and PPV
are: 91%, 90% and 89%, respectively, for whewellite; 99%,
98% and 99% for weddellite; 88%, 89% and 88% for uric acid;
91%, 89% and 90% for struvite; 99%, 99% and 99% for
cystine; and 94%, 98% and 99% for brushite. As shown in
Table 3 for the XGBoost classifier, the individual AUC values
range in interval (90% to 99%), while the corresponding
weighted AUC value is 93%.

For the deep-learning approach, the sensitivity, specificity and
PPV are: 99%, 98% and 97%, respectively for whewellite;
98%, 98% and 98% for weddellite; 97%, 98% and 98% for
uric acid; 97%, 97% and 96% for struvite; 99%, 99% and 99%
% for cystine; and 94%, 97% and 98% for brushite. For the
Inception V3 classifier, the individual AUC values range from
96% to 99%, with the weighted AUC value being 98%.

Classification tests can be performed at the github link
provided in this paper.1

Discussion
The peri-operative morphological recognition of stones is
highly challenging. Estrade et al. and CLAFU [5,9] (Comit�e
Lithiase de l’Association Franc�aise d’Urologie [Lithiasis

Table 3 Results obtained with shallow methods and deep-learning methods of classification using combined section and surface images, by urinary
stone type.

Stone type Classic methods Deep learning

XGBoost Inception V3

Sensitivity Specificity PPV AUC Sensitivity Specificity PPV AUC

Whewellite 91% 90% 89% 92% 99% 98% 97% 98%
Weddellite 99% 98% 99% 98% 98% 98% 98% 97%
Uric acid 88% 89% 88% 89% 97% 98% 98% 97%
Struvite 91% 89% 90% 90% 97% 97% 96% 96%
Cystine 99% 99% 99% 99% 99% 99% 99% 99%
Brushite 94% 98% 99% 95% 94% 97% 98% 97%

AUC, Area under curve; PPV, positive predictive value.
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Committee of the French Association of Urology]) have
etablished didactic boards of confirmed endoscopic
images for pure (I to VI) and mixed stones (IIb + Ia), (IIb +
IVa1)c, (IIb + IVa1)i, IIIab + Ia.

Furthermore, Estrade et al. published a comparison between
in vivo endoscopic analysis of urinary stones by a urologist
and ex vivo morphological analysis of these stones by a
biologist according to the morpho-constitutional
classification of Daudon et al. [2]. Good agreement between
the results for the two recognition methods was established
for the calculi of whewellite (Ia or Ib), weddellite (IIa or
IIb), uric acid (IIIa or IIIb), carbapatite-struvite association
(IVb), and brushite stones (IVd). Endoscopic stone
recognition is therefore visually possible when performed by
a trained urologist.

In this study, we have shown that endoscopic stone
recognition by artificial intelligence is possible for images
acquired in ex vivo conditions. The proposed recognition
methods use the morphological (colour and texture) aspect of
the surface and the section, which is similar to the way in
which morphological analysis is carried out by the biologist.
Furthermore, the results are optimized by combining the
surface view and the section view.

Figure 3 shows the results of other studies that have
evaluated the automated recognition of urinary stones
according to the morphology of the stone surface and section.
Serrat et al. [17] studied an identification method based on
453 calculi from four classes, with ex vivo acquired images,
analysed using a shallow classification method known as
random forest. Black et al. [18] examined 63 stones of five
classes of urinary calculi ex vivo, images of which were
processed by a deep-learning method (ResNet101). Martinez
et al. [13] used in vivo images of 125 calculi for three types
of stone.The results obtained with the shallow classification
method used in our study are consistent with these previous
studies (Fig. 3), and sometimes even better, especially for
struvite, cystine and brushite. Using the proposed deep-
learning approach, precision is increased, especially for
whewellite for which the PPV increases from 89% (shallow
method) to 97% (deep learning). For brushite and weddellite,
the shallow method offered a slightly better result than deep
learning (99% and 98%, respectively).

Furthermore, Serrat et al. [17] and Black et al. [18] studied
ex vivo images of urinary stones using devices allowing highly
controlled acquisition conditions and conventional cameras
not associated with an endoscope. In this study, images were
obtained using a digital flexible ureteroscope, manipulated by

Fig. 3 Review of the literature.

� 2022 The Authors.
BJU International published by John Wiley & Sons Ltd on behalf of BJU International. 795

Evaluation and understanding of automated urinary stone recognition methods



human hand. Although motion artefacts were avoided to the
maximum, they were still possible and impacted the quality
of the images. However, these images remained exploitable.
Two different ureteroscopes were used. While the image
quality was not equal, the data were usable for automated
recognition.

In addition, we divided the images into patches whose size
was previously studied to optimize the ratio of information
gain to amount of kidney stone data [13].

Also worthy of consideration is whether or not the proposed
feature extraction and machine-learning methods would be
generalizable to different acquisition conditions or to images
acquired with different instruments and to cope with the
increased number of classes in this study. In fact, in previous
work [12,13] we have demonstrated that the results hold for
images despite the use of different ureteroscopes in in vivo
conditions, even with varying image resolutions, albeit only
for three classes of kidney stones. In order to study the
robustness of our results, we carried out extensive
experiments in which we blurred the acquired images with
different filters and trained the same models used in this
study with these ‘colour-distorted’ images (these image
changes simulate the differences between endoscopes to an
extreme extent); the deep-learning models are indeed capable
of extracting discriminating features even with large levels of
blurring, at the cost of a slight loss in terms of PPV,
sensitivity and specificity (a 3% loss on average for deep-
learning models).

Deep-learning methods can extract more discriminating
features and find more complex relationships among these
features, yielding superior classifications results. Therefore, as
with any deep-learning-based approach, in order to cope with
different conditions, the models must be trained with images
acquired under different operational conditions, which we
consider a promising future avenue of research.

Nonetheless, this study has several limitations. The images
were acquired in ex vivo conditions (the lighting conditions
were not the same as those in the urinary tract). In in vivo
conditions stones appear brighter. However, the main
advantage of using ex vivo data is that the stone type is
known since for each acquired fragment a morpho-
constitutional analysis was available. The results obtained
show the ability to recognize stone type (subtypes were not
considered in this study). Moreover, as shown in a
preliminary study [12], the same classification algorithms can
be trained for in vivo data, the ground truth for the training
being given by an expert who performed a visual
classification based on images visualized and acquired during
ureteroscopies. This expert (Vincent Estrade MD [7]) is
among the few urologists able to perform a visual
classification approaching the results given by a morpho-
constitutional analysis. A similar high performance in terms

of kidney stone recognition (comparable criterion values as in
Table 3) was also achieved by the algorithms described in this
paper for these in vivo data. However, it is worth noting that,
in this paper, the ground truth is provided by the widespread
morpho-constitutional analysis, which remains undeniably the
reference method. This justifies performing the study on
ex vivo data to validate the classifications methods (the idea
was to validate the classification methods on medically
recognized ground truths, and then to adapt them later to
in vivo conditions). The use of many patches extracted from
few urinary stones can induce a favourable bias in the
recognition of these urolithiasis and increase the
corresponding PPV. It should also be noted that, for the
brushite type, in vivo and ex vivo images were used in
combination to train and test the classifiers since only few
ex vivo data were available (the patch number of this class
was increased using in vivo data). Mixing both image types
increases the intra-class variability of the brushite kidney
stones and makes the situation more complicated for the
classification algorithm. The fact that for the brushite class
the recognition performances remained very high (sensitivity
94%, specificity 98% and PPV 99% for the XGBoost approach
and sensitivity 94%, specificity 97% and PPV 98% for the
deep-learning Inception v3 algorithm) is an indication that
the algorithm is robust and can deal with high intra-class
variability. It is also notable that the AUC values given in
Table 3 for individual classes are systematically high for both
classification approaches. This result confirms that the
capabilities of the classifiers to discriminate between the set of
the six classes tested is high.

Acquisition of the images took place in air and not in liquid
medium. The kidney stones have been kept for several years
under dry conditions that may affect their morphological
characteristics. For some calculi, these artefacts were clearly
identifiable and were eliminated from image patches. Indeed, it
is possible that the appearance of a stone will change after
exposure to air. This study aims to understand the method and
feasibility of an automated recognition system. To apply it in
real endoscopy, it will be necessary to create a new database
with images acquired in vivo with ureteroscopes. The urinary
stones studied are considered pure, that is, they consist of at
least 85% of a single constituent. However, it has been shown
that almost half of the stones have mixed morphologies and
consist of several different crystal components [3,4].

We used digital flexible reusable ureteroscopes in this study,
the quality of whose images is better than that of other
ureteroscopes commonly used, such as single-use flexible
ureteroscopes, non-digital ureteroscopes, or even rigid
ureteroscopes.

Furthermore, deep learning, by its nature, is uncontrolled. We
do not yet understand what type of data it selects, or how it
selects them.
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In conclusion, automated endoscopic recognition of urinary
stones would allow for reliable stone recognition during
ureteroscopies independently of the urologist’s level of
expertise.

This study represents an important first step towards peri-
operative stone recognition, which would make it possible to
quickly offer patients targeted therapies or adequate metabolic
investigations according to the type of urinary stone to
prevent recurrence.

The laser energy required to spray stones may vary according
to their composition [19]. We could imagine a system
allowing first for automated stone recognition and then for
the parameters of the laser to be adapted to target these to
the recognized class in order to optimize spraying of the
stone.

This preliminary study shows that automatic recognition of
urinary stones can be used with ureteroscopes with good
results. The deep-learning recognition method seems more
accurate than shallow methods. The deep-learning method is
more efficient as the database is important. Further ex vivo
and in vivo studies on all types of calculi (pure and mixed)
and in large numbers are necessary before a reliable model
for a rapid and peri-operative automated recognition can be
established.

In the future, we expect to see the deployment of a system
that can recognize a stone during surgery, but our work
remains for the moment a proof of concept. The aim is that
the urologist takes pictures of the stone during the
endoscopy, then the stone type is recognized in a few
milliseconds directly intra-operatively via software installed
on the endoscopy trolley. This could allow the urologist to
recommend lifestyle and dietary measures or even medication
as soon as the patient leaves the operating room according to
the type of stone (e.g., to alkalanize the urine in case of a uric
acid stone, or to extend antibiotic therapy for struvite stones).
To facilitate accurate classification, the urologist can acquire
the calculi from different points of view (for visual
classification the kidney stone is also observed from various
viewpoints). Indeed, several acquisitions of the same stone
must lead to an identical recognition result (type). The
clinician has an important role to play because the urologist
must learn how to guide the image acquisition so that the
algorithm is placed in realistic conditions, with images that
can be used to recognize a stone.

Finally, it should be remembered that the morphological
analysis of kidney stones is only one of the elements of the
analysis of lithiasis diseases. Indeed, many other elements
must be considered such as the patient’s clinical data (weight,
history, treatments taken, etc.), biological data (metabolic
evaluation including a blood and urine analysis), and finally
the analysis obtained from spectrophotometry of the stone.
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Appendix A
Training of the XG-Boost classifier and classification test

In order to find the best configuration of the XGBoost model,
we performed hyper-parameter tuning and cross validation
with 10 splits; we used a combination of a grid and random
search using the Scikit-Learn software [20]. For training the
model, we followed a stratified k-fold cross-validation approach
in order to maximize the amount of data in the testing phase
and to mitigate biases. Therefore, we trained and validated the
model with 80% of the samples and tested it with 20% of the
patches. The best hyper-parameter settings for the XGBoost
model using the combined patches were as follows. The base
score value was set to 0.5. gbtree was used as booster. The
learning rate was set to 0.1, while gamma value was 0. A
maximum depth of 3 and 100 estimators were used for the
three sets of data. All the tests after the hyper-parameter tuning
and validation have been carried out on the hold-out test data
(20% of the original patches dataset). The data for training,
validation and test data have been split randomly.

Appendix B
Training and validation of the Inception v3 architecture
model using transfer learning

The choice of model is not arbitrary: it represents a good
balance between algorithm complexity and accuracy
performance when compared to other models in the
literature.

For training this deep-learning model, we adopted a
transfer-learning strategy, due to the relatively moderate
amount of available training data. The rationale for using
transfer-learning is that some models can be reused when
pre-trained with natural images in order to take advantage
of some useful patterns (i.e., features) already learned by
the model. This strategy further avoids model overfitting to
this new domain if combined with data augmentation
strategies [21].

For our experiments, we proceeded as follows: the
convolution layers of the Inception v3 modes were pre-
trained using ImageNet. Then, to specialize the model to
our task (urinary calculus recognition), the fully connected
(FC) layer of the feature extraction backbone was replaced
by a custom FC layer consisting of 256 channels. The
outputs of this layer are then concatenated with a batch
normalization module, followed by a ReLU activation
function, another 256 channel FC layer and ends with a
softmax layer with six class outputs for yielding the class
prediction. The fully connected layers weights were
randomly initialized. During the training of the deep-
learning model, the weights in the convolutional layers
(obtained during the pre-training with ImageNet) were
maintained constant, and only the weights in the FC layers
were updated. As with the previous model, we used 80% of
the patches for training and validation, and 20% of the
samples (never seen during training) for testing the model.
During training, data augmentation strategies were heavily
applied for increasing the number of available samples; the
applied transformation consisted of vertical and horizontal
flips, perspective distortions, and four affine transformations
on the original patches in our dataset.

All the experimental studies reported in this paper made use
of Pytorch 1.7.0 and CUDA 10.1. The hyper-parameters such
as the learning rates were automatically adjusted using the
optimizer provided by Pytorch (Lightning 1.0.2). The learning
rates used for training Inception v3 was 0.0006, using ADAM
as optimizer and a batch size of 64. All the tests after the
validation of the models have been carried out on the hold-
out test data. The data for training, validation and test data
have been split randomly.
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