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Abstract: Head and neck squamous carcinoma (HNSCC) constitutes the sixth most prevalent cancer
worldwide. The molecular pathogenesis of HNSCC includes disorders in cell cycle, intercellular
signaling, proliferation, squamous cell differentiation and apoptosis. In addition to the genetic
mutations, changes in HNSCC are also characterized by the accumulation of epigenetic alterations
such as DNA methylation, histone modifications, non-coding RNA activity and RNA methylation.
In fact, some of them may promote cancer formation and progression by controlling the gene
expression machinery, hence, they could be used as biomarkers in the clinical surveillance of HNSCC
or as targets for therapeutic strategies. In this review, we focus on the current knowledge regarding
epigenetic modifications observed in HNSCC and its predictive value for cancer development.

Keywords: head and neck cancer; squamous cell carcinoma; epigenetics; DNA methylation; his-
tone modification; non-coding RNA activity; RNA methylation; biomarkers

1. Introduction

Head and neck squamous cell carcinoma (HNSCC) is a common heterogeneous ma-
lignant cancer type originating from the squamous cells, located in the mucous membrane
of the oral cavity, oropharynx, paranasal sinuses, nasal cavity, nasopharynx, larynx and
hypopharynx [1]. The main prognostic features of HNSCC progression are the location,
tumor size and the presence of distant metastases [2]. The estimated number of HNSCC
accounts for more than 650,000 cases and 330,000 deaths annually [3]. Main and widely
investigated contributors to the development of head and neck cancers are tobacco smok-
ing, alcohol consumption as well as viral factors such as human papillomavirus (HPV) and
Epstein–Barr virus infections [4–7]. The treatment of an HNSCC patient involves surgical
eradication, radiotherapy (RT) and chemotherapy (CT). Moreover, the approved targeted
drug is cetuximab, a monoclonal antibody targeting epidermal growth factor receptor
(EGFR) for both HPV(+) and HPV(–) subtypes [8]. The treatment method depends on the
type and stage of cancer, possible side effects and the patient’s overall health. Unfortunately,
cetuximab and other therapies have a limited efficacy due to molecular and histological
diversity of HNSCC [9].

Molecular pathogenesis of HNSCC is a complex process with a high rate of genetic
heterogeneity. It is possible to distinguish alterations in the tumor suppressor pathways
p53, p16INK4a and retinoblastoma (RB) which affects DNA damage response, apoptosis,
cell cycle and genomic stability [10–13]. Additionally, overexpression of EGFR correlates
with poor prognosis and metastatic potential of cancer cells [14]. Moreover, disorders in
signaling pathways associated with Ras-mitogen activated protein kinase (Ras-MAPK) lead
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to disturbances in gene expression level involved in the cell proliferation, differentiation,
apoptosis, angiogenesis and cell motility. Similarly, a higher rate of cancer recurrence and
metastases is associated with mutations in NOTCH1-4 genes in HNSCC [15]. Moreover,
PI3K-Akt/mTOR constitutes a frequently disturbed pathway in HNSCC and simultane-
ously is a cascade responsible for phosphorylation and activation of many proteins [16].
The activation of STAT3 pathway, crucial in many cancer types including HNSCC, leads to
a malignant transformation of cells and protect them from recognition and degradation by
cytotoxic T lymphocytes [17]. Furthermore, overexpression of hepatocyte growth factor
receptor (MET) is correlated with cisplatin and EGFR-targeted therapies resistance as well
as with poor prognosis for HNSCC patients [18]. Additionally, a nuclear transcription
factor-κB (NF-κB) modulating the expression of genes involved in inflammation, immunity,
proliferation, and apoptosis is constitutively activated in HNSCC, and affects the therapeu-
tic resistance [19]. All these signaling cascades shape complex cellular conditions which
ultimately affect squamous epithelial proliferation and differentiation, cell survival and
metastatic phenotype.

It is crucial to bear in mind the fact that, carcinogenesis of HNSCC is driven not
only by the accumulation of genetic alterations, but also by the changes in the epigenetic
landscape. Epigenetic modifications found in HNSCC include DNA methylation, histone
modification, non-coding RNA activity, as well as RNA methylation [20,21]. Since these
modifications regulate the expression of target genes (tumor suppressor genes (TSGs)
and oncogenes), they have become a focus of attention in cancer studies, also in terms of
personalized therapy strategies. They may be involved in the pathology of the disease;
therefore, they are considered candidates for diagnostic biomarkers and prognostic features
of cancer. In this review, we discuss the current literature associated with the impact of
epigenetic modification on the progression of head and neck squamous cell carcinoma.

2. The HNSCC Epigenetic Landscape and Its Clinical Implications
2.1. DNA Methylation

DNA methylation is one of the best investigated DNA modifications which modulates
the expression of genes without affecting their nucleotide sequence. DNA methylation is a
process of covalent conversion of a hydrogen atom into a methyl group at the fifth carbon
of the pyrimidine ring of cytosine (5-methylcytosine, 5-mC). In fact, this modification
constitutes an essential epigenetic marker recognized by specific proteins.

In mammals, 5-mC is highly accumulated in the DNA regions rich in CpG dinu-
cleotides (so-called CpG islands) where 70–80% of cytosines are methylated [22]. About 60%
of CpG islands are located in the gene promoter regions [23]. The presence of DNA methy-
lation in promoters causes transcriptional repression by preventing the binding of tran-
scription factors and by influencing interactions between enhancers and promoters [24].
Furthermore, 5-mCs are also found in repetitive sequences, gene bodies and intergenic
regions. 9i [25,26]. DNA methylation is also found in non-CpG sites and it includes
methylation at cytosine followed by adenine (CpA), thymine, (CpT) or another cytosine
(CpC) [27]. On the other hand, non-CpG methylation is tissue-specific and functions as a
transcriptional repressor by blocking transcription factors binding sites [28].

The enzymes responsible for DNA methylation belong to the DNA methyltransferase
(DNMT) family: DNMT1, DNMT2, DNMT3A, DNMT3B and DNMT3L [29]. In fact,
DNMT1 is responsible for maintaining methylation patterns after replication [30], whereas
DNMT2 is a methyltransferase homologue which mainly methylates aspartic acid cytosine
38 in the tRNA anti-codon loop [31,32]. Recent reports have indicated that DNMT2 can
also methylate other RNA molecules and short DNA segments in vitro [33,34]. Moreover,
DNMT3A and DNMT3B are responsible for de novo DNA methylation and are particularly
crucial in the embryonic development during determining methylation pattern. Last but
not least, DNMT3L lacks catalytic activity, but supports DNMT3A/B in the binding of the
methyl donor group S-adenosylmethionine (SAM) and regulates their multimerization and
nuclear localization [35].
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DNA methylation is a reversible modification which may occur as a passive or active
mechanism. Passive DNA demethylation occurs by inhibition or lack of DNMTs activity,
during DNA replication [35]. In contrast, active DNA demethylation is mediated by
specific enzymes from the TET (Tet methylcytosine dioxygenase) family, regardless of DNA
replication [36]. TET oxidize 5-methylcytosine to 5-hydroxymethylcytosine (5-hmC), 5-
formylcytosine (5-fC) or 5-carboxylcytosine (5caC) with an altered preference. Furthermore,
at least four mechanisms of demethylation to cytosine have been proposed [37]. The first
mechanism suggests a replication-dependent passive dilution of 5-mC, whereas the second
one includes an active replication-independent demethylation based on 5-mC removing to
cytosine by thymine-DNA glycosylase (TDG) in the base excision repair (BER) mechanism.
Another process is based on enzymatic 5-caC decarboxylation to cytosine and the last
one is associated with the activation-induced deaminase/apolipoprotein B mRNA-editing
enzyme complex (AID/APOBEC), which can deaminate 5-hmC to 5-hmU [38,39].

One of the cancer hallmarks is a global DNA hypomethylation and specific local
hypermethylation of CpG islands [38]. Hypomethylation in cancerous tissues appears
predominantly on multiple repeats elements (e.g., SAT2) and retrotransposons (e.g., LINE-1
and ALU) sequences leading to genomic instability and activation of oncogenes. Local
hypermethylation of DNA is usually associated with CpG islands in promoters of tumor
suppressor genes where their expression is downregulated [39]. In HNSCC patients,
numerous aberrantly methylated genes have been identified. The altered methylation
patterns of the selected genes have been correlated with HNSCC formation and progression,
based on clinical data, and proposed as a potential biomarker of the disease progression
with specific diagnostic significance (see Table 1). Unfortunately, there is a lack of research
concerning its diagnostic potential in in vitro and/or in vivo assays.

Table 1. Hypermethylated gene with diagnostic value identified in head and neck squamous carcinoma (HNSCC).

Gene Tissue Type of Study Diagnostic Significance References

ZNF14, ZNF160,
ZNF420 Tumor and saliva Meta-analysis confirmed in

patient samples
HNSCC detection and

surveillance [40]

hTERT Blood leukocytes Patient study HNSCC detection [41]

FAM135B Tumor Meta-analysis Overall survival of HNSCC
patients [42]

CDKN2A Tumor and saliva Meta-analysis HNSCC progression and
metastases [43]

ATM Tumor Patients study HNSCC detection in early age
and early tumor stage [44]

MGMT Tumor Meta-analysis Risk of HNSCC [45]

DAPK Tumor Patients study HNSCC HPV(–) detection in
early stage [46]

RASSF1A, MLH1,
MGMT Tumor Patients and in vitro study

HNSCC and high proliferative
potential of tumor cells

detection
[47]

CTLA4 Tumor Patients study HNSCC detection and
surveillance [48]

APC Tumor Patients study Lower number of metastatic
lymph nodes [49]

CCNA1, TIMP3 Tumor Patients study Risk of second primary
carcinomas [50]

ZIC4 Tumor Patients study Risk of lymph node
involvement [51]

PROM1 Tumor Meta-analysis HNSCC detection in early
stage and invasion potential [52]
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In addition, the genome-wide DNA methylation assays also possess significant pre-
dictive and diagnostic value. According to the literature, whole-genome analysis of DNA
methylation has been carried out in the peripheral blood of HNSCC patients in which
differently methylated CpG sites have been identified in comparison to controls [53–56].
This non-invasive approach allows to identify global specifically methylated (hypo- or
hypermethylated) regions of the DNA, particularly within promoters of genes. Moreover,
the array-based DNA methylation profiling of HNSCC allows to distinguish tumors in
terms of environmental factors and contributes to a personalized therapy [57]. Additionally,
there are differences in DNA methylation profiles between HPV(+) and HPV(–) HNSCC
as shown on the whole-genome sequencing data. The HPV(+) tumors tend to be more
globally methylated than HPV(–) [58]. Nevertheless, the novel promising non-invasive
prognostic tool for HPV(+) are biomarkers, such as circulating tumor DNA (ctDNA) from
blood. In fact, the DNA methylation of CALML5, DNAJC5G and LY6D genes found in
ctDNA from HNSCC patients had high predictive value in early diagnosis [59].

2.2. Histone Modifications

Histone proteins undergo many different post-translational modifications such as
acetylation, methylation, phosphorylation, ubiquitination or sumoylation which leads
to global epigenetic alterations in cancer cells [60]. However, the most described mecha-
nisms with prognostic potential for HNSCC development and progression include histone
acetylation and methylation [61].

Histone acetylation is an important mechanism affecting the chromatin structure
and regulating gene expression [62,63]. Histone acetyltransferase (HAT) is the enzyme
responsible for attaching the acetyl group to a specific lysine residue, mostly on H3 and
H4 histone [64]. Histone acetylation neutralizes the positive charge of lysine residues
and relaxes the chromatin structure. This process is correlated with the recruitment of
transcription coactivators and an increased transcription elongation performed by RNA
polymerase II [62]. In principle, histone deacetylase (HDAC) is responsible for the removal
of acetyl groups, restoring a positive charge to lysine residues and consequently, leading to
chromatin condensation. This configuration limits the availability of DNA for transcription
factors and results in transcriptional inhibition [65] (Figure 1).
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One of the characteristic factors of the solid and metastatic tumor as HNSCC is hy-
poxic microenvironment [66]. In response to hypoxia, H3K2 is acetylated and activates the
epithelial mesenchymal transition (EMT) correlated genes, including GLI1 and SMO genes,
thus increasing the metastatic potential of the tumor. In fact, these genes may be considered
as hypoxia-induced EMT biomarkers of HNSCC [67]. Furthermore, in oral squamous
carcinoma (OSCC), acetylation of H3K27 increased the expression of long non-coding RNA
(lncRNA) PLAC2, which induced Wnt/β-catenin signaling cascade and affected tumor
growth and metastases. Hence, overexpression of PLAC2 may be a prognostic biomarker
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of metastases in OSCC [68]. Moreover, poor prognosis of the HNSCC patients may stem
from chemoresistance. The overexpression of NF-κB protein complex leads both to histone
deacetylation and to cisplatin resistance by means of reducing BRCA1 nuclear transloca-
tion in HNSCC. Therefore, NF-κB protein complex would constitute as chemoresistance
biomarker for HNSCC [69]. Additionally, in vitro HNSCC cells assay shows global histone
H3 hypoacetylation as compared to normal oral keratinocytes. Moreover, inhibition of
HDAC leads to decreased number of cancer stem cells (CSC) and reduces the clonogenic
sphere formation [70]. Interestingly, HDAC inhibitors also possess the ability to inactivate
other genes such as ARF1 which affects the EGFR degradation and the inhibition of HNSCC
cells invasion [71].

Histone methylation in a lysine (Lys or K) or arginine (Arg or R) residue consti-
tutes another posttranslational modification which plays a vital role in gene regulation.
These modifications can be recognized by multiple positive and negative regulators acti-
vating or repressing gene transcription [72]. According to the literature, lysine residues in
histone can be mono-, di-, or tri-methylated. Di- and tri-methylation at H3K4, H3K36 and
H3K79 are typically gene-activating, whereas H3K9 and H3K27 methylations are generally
gene-repressive [73]. Moreover, H3K4me3 marks promoters, as well as H3K36 and H3K79
methylation occurs primarily over gene bodies [72,74]. Histone methyltransferases (HMT)
includes histone lysine methyltransferases (HKMT) and protein/histone arginine methyl-
transferases (PRMT) [75]. Similarly, to other epigenetic modifications, histone methylation
is also a reversible process. However, lysine-specific demethylases (KDMs) action is better
understood, whereas arginine demethylation performed by PADI4 and JMJD6 demethy-
lases is considerably less clear [76]. Alterations in histone methylation process have been
observed in several cancers, such as gastric carcinoma [77], breast [78] or colon cancer [79],
as well as hepatocellular carcinoma [80]. In the case of OSCC, the histone methylation of
H3K4 is significantly different in comparison to normal tissues [81]. Furthermore, aberrant
methylation of H3K9 carried out by G9a has been observed in HNSCC cells, and may be
involved in the lymph node-related metastases and TGF-β-induced EMT [82]. Therefore,
histone methylation profiles may be considered as biomarkers of HNSCC detection and
metastases. In addition, an elevated level of histone methylation mark at H3K27me3 in
HPV(+) HNSCC may, in turn, increase the tumorigenic potential and constitute a HNSCC
diagnostic biomarker [83]. Moreover, H3K27me3 regulates the homeobox gene transcrip-
tion in OSCC and plays a role in neoplastic phenotype of oral keratinocytes [84].

2.3. Non-Coding RNA Activity

Non-coding RNA (ncRNA) can be divided into small (less than 200 nucleotides) and
large ncRNA. Small ncRNAs include small nuclear RNA (snoRNA), PIWI-interacting RNA
(piRNA), small interfering RNA (siRNA) and microRNA (miRNA). The action of ncRNA is
based on the transcriptional and post-transcriptional gene silencing by the specific pairing
of bases with target sequences [85]. In this review, we mostly focus on the role of miRNA
and lncRNA in HNSCC progression.

MicroRNAs are endogenous small non-coding RNAs regulating the expression of
mRNA by interacting with the 3′ untranslated region (3′UTR) of target genes [86]. miR-
NAs may act as tumor suppressors or as oncogenes (oncomiRs), and play a crucial role
in angiogenesis, cell proliferation and apoptosis [87]. Besides, there are several miRNAs
influencing gene instability, immune evasion, tumor metastases and chemo- and radiore-
sistance in tumorigenesis [88]. Maturation of miRNA consists of several stages (Figure 2).
Transcription of miRNA from intergenic or intron coding region is typically performed by
RNA polymerase II [89]. The transcription results in the 5’ capped and 3’ polyadenylated
primary transcript (pri-miRNA) which forms hairpin structures. Nuclear protein DGCR8
recognizes pri-miRNA and targets it for Drosha, RNase III-driven cleavage. In fact, about
85 nucleotides long, released hairpin structure, are precursors to miRNA (pre-miRNA).
The Ran/GTP/Exportin 5 complex transports pre-miRNA from the nucleus to the cyto-
plasm where pre-miRNA is processed by RNase III enzyme Dicer and TAR RNA binding
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protein (TRBA) to double-stranded, miRNA of about 20–22 nucleotides in length [90].
Single-stranded mature miRNA attaches to RNA-induced silencing complex (RISC) and
guides RISC to the target mRNA. There are two ways of miRNA gene repression. Firstly,
miRNA hybridizes to 3′UTR of the target genes, recruits RISC complex and leads to slitting
and degradation of target mRNA. Secondly, miRNA can act as a blocker by connecting to
the mRNA and inhibiting its translation [91].Diagnostics 2020, 10, x FOR PEER REVIEW 6 of 16 
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A high-throughput meta-analysis of miRNAs expression shows a long list of miRNAs
associated with a poor prognosis, lower survival and metastases in HNSCCs [92]. The dys-
regulated expression patterns of selected miRNAs were correlated with the clinical stage,
lymph node metastases and patient survival, indicating their effectiveness as molecular
biomarkers for the HNSCC prognosis [93]. Moreover, the RNA interference mechanism,
comprising the action of miRNA and siRNA, has become a valuable research tool for a more
comprehensive understanding of the mechanisms regarding HNSCC pathogenesis [94].
Table 2 summarizes the miRNA involved in HNSCC progression.

Table 2. Examples of miRNAs involved in the development of head and neck squamous carcinoma (HNSCC).

Process microRNA
Diagnostic Significance

References
(Up- or Downregulated)

Apoptosis
miR137 downregulated [95]
miR34 upregulated [96]

miR17-92 upregulated [97]

Gene instability miR210 upregulated [98]
miR29 downregulated [99]

Immune evasion
miR21 upregulated [100]
miR210 downregulated [101]

Inflammation
miR26 downregulated [102]
miR218 downregulated [103]

Metabolism
miR26 downregulated [102]

miR125b downregulated [104]
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Table 2. Cont.

Process microRNA
Diagnostic Significance

References
(Up- or Downregulated)

Metastases

miR26 upregulated [105]
miR125b upregulated [105]
miR139 downregulated [106]
let-7d upregulated [107]

miR200b upregulated [108]
miR218 downregulated [109]
miR96 upregulated [109]
miR29 downregulated [99]
miR200 downregulated [101]

Proliferation

miR21 upregulated [100]
miR29 downregulated [99]
miR139 downregulated [106]
miR155 upregulated [110]

Resistance to the
radiotherapy and

chemotherapy

miR210 downregulated [101]
miR31 upregulated [111]

miR125b downregulated [104,109]
miR96 upregulated [110]
let-7d downregulated [107]

miR205 upregulated [107]
miR96 upregulated [109]

Following, long non-coding RNAs consist of more than 200 nucleotides and lack
protein-coding potential. They are involved in gene expression regulation at both the
transcriptional and translational levels, and participate in tumorigenesis and tumor metas-
tases [112,113]. Therefore, lncRNAs expression are promising biomarkers of cancer detec-
tion and expansion [114]. LncRNAs are found to play an important role also in HNSCC
development. LncRNA ADAMTS9-AS2 expression is significantly upregulated in tongue
squamous cell carcinoma (TSCC) of patients with lymph node metastases and follows poor
prognostic criteria for advanced disease. The ADAMTS9-AS2 knockdown experiments
in TSCC cell lines reduced the cell migration and invasion together with an inhibition of
cell growth presented in vitro and in vivo models [115]. Additionally, high expression of
lncRNA LINC00460 has been found in HNSCC patients and positively correlated with
lymph metastases, pathological differentiation and tumor size [116]. On the other hand, in
the case of laryngeal squamous cell cancer (LSCC), high expression of lncRNA MIR31HG
is associated with HIF1A and p21 action which leads to an increased cancer cells prolifera-
tion [117]. Moreover, lncRNA may act as a tumor suppressor and inhibit tumor growth,
e.g., overexpression of lncMX1-215 inhibits H3K27 acetylase resulting in a decreased pro-
liferation of HNSCC cells and a reduced metastatic capacity in vitro and in vivo [118].
Furthermore, overexpression of MYOSLID lncRNA is correlated with upregulation of
EMT-related markers, which points to the MYOSLID as a promising controlling biomarker
of metastases in HNSCC [119]. Interestingly, Zhang et al. developed a multi-RNA-based
model consisting of specific lncRNA, miRNA and mRNA with expression levels correlating
with clinicopathological features of HNSCC and predicting survival risk of HNSCC [120].
To summarize, lncRNAs as well as microRNAs expression level has a potential to effectively
predict the prognosis and tumorigenesis of HNSCC.

2.4. RNA Methylation

Methylation of adenosine at nitrogen-6 position (m6A) in RNA has recently received
great attention from cancer researchers. In fact, the m6A has been considered as the most
prevalent, dynamic and conserved internal transcriptional modification among more than
100 different chemical modifications of RNA [121,122]. Moreover, m6A is typically en-
riched near STOP codon and 3′UTR region containing 5′-RRACH-3′ sequence in which
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A3 becomes N6-methylated [123,124]. Reports suggest that this modification has been
involved in all stages of RNA processing, including nuclear export, translation modula-
tion to RNA degradation and initiation of miRNA biogenesis [125]. Additionally, m6A
RNA methylation affects tumor initiation and progression by various mechanisms [126].
RNA methylation related effects are the result of the cooperation of multiprotein complexes
known as “writers”, “erasers” and “readers” (Figure 3). The m6A methylase complex
“writers” consist of:

(1) main catalytic core enzyme which states methyltransferase like 3 (METTL3),
(2) methyltransferase like 14 (METTL14) which structurally positions mRNA for methy-

lation,
(3) WT1-associated protein (WTAP) regulating the recruitment of methyltransferase

complex to mRNA targets,
(4) RNA-binding motif protein 15 (RBM15) which is responsible for moving the complex

towards the appropriate m6A sites and the last “writer” protein,
(5) Vir like m6A methyltransferase associated (VIRMA) with uncharacterized molecular

function.
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Figure 3. RNA methylation process. Multiprotein complex writers are responsible for introducing
the methyl group on adenine in position 6. Erasers remove the methyl group while readers recognize
the presence of m6A methylation and induce processes, such as mRNA splicing, mRNA translation,
mRNA stability, nuclear export of mRNA and miRNA biogenesis. METTL3, methyltransferase like
3; METTL14, methyltransferase like 14; VIRMA, Vir like m6A methyltransferase associated; WTAP,
WT1-associated protein; RBM15, RNA-binding motif protein 15; FTO, fat mass and obesity-associated
protein; ALKBH5, alkB homolog 5; YTHDF1-3 and YTHDC1,2, proteins with YT521-B homology
(YTH) domain.

The “erasers” complex consists of demethylases FTO (fat mass and obesity-associated
protein) and ALKBH5 (alkB homolog 5) which removes the methyl group. The “readers”
complex which recognize the presence of the methyl group include YTHDF1-3, YTHDC1 and
YTHDC2. These proteins possess YT521-B homology (YTH) domain and participate in the
translation, stabilization, splicing and nuclear export of mRNA [127]. YTHDF1 recognizes
m6A-modified mRNA and increases the translation efficiency. YTHDF2 recruits the CCR4-
NOT deadenylase complex to destabilize and further decay target mRNAs. YTHDC1 is the
nuclear m6A reader, involved in exon selection during gene splicing. In contrast, YTHDC2
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is a putative RNA helicase which cooperates with the meiosis-specific coiled-coil domain-
containing protein (MEIOC) and regulates mRNA level during meiosis [128].

Variations in RNA methylation process contribute to tumor growth, progression, in-
vasion and migration of cancer cells in acute myeloid leukemia [129], glioblastoma [130],
lung cancer [131], breast cancer [132], liver cancer [133], bladder cancer [134] or pancreatic
cancer [135]. In terms of head and neck cancers, disorders in establishing and reading
of RNA methylation have been demonstrated in the case of nasopharyngeal carcinoma
(NPC) and OSCC. On the basis of the TGCA HNSCC dataset, Zhao et al. demonstrated
the significant differential expression of m6A RNA methylation regulators between tumor
and normal samples [136]. More specifically, Zhang et al. identified an increased level of
m6A RNA methylation in the ZNF750 gene coding sequence and correlated those changes
with ZNF750 lower expression in NPC. The ZNF750 overexpression experiments show
cell growth inhibition in NPC in vitro and in vivo models, and indicate the importance of
m6A RNA methylation in gene expression regulation [21]. Expression of m6A machinery
elements has also been found to be altered in squamous cell carcinoma. In OSCC patients,
METTL3 gene is significantly upregulated in cancerous tissue samples compared to healthy
counterparts and these changes correlated with the poor prognosis. The overexpression of
METTL3 promoted proliferation, invasion and migration of OSCC cells in vitro, whereas
the METTL3 knockdown inhibited the tumor growth in vivo [137]. In addition, m6A
demethylase ALKBH5 is directly upregulated by DDX3, RNA helicase, which plays an
important role in cell proliferation, invasion, and metastases in several kinds of neoplasms.
This regulation leads to a decreased m6A methylation in FOXM1 and NANOG nascent
transcript which contribute to chemoresistance in OSCC [138]. Thus, ALKBH5 has been
suggested as a potential target for novel anticancer therapies, due to a direct correlation of
its expression with primary HNSCC tumor size [139]. Moreover, the m6A modification of
lncRNA LNCAROD, mediated by METTL3 and METTL14, enhanced its stability in the HN-
SCC cells. In in vitro experiments LNCAROD silencing inhibits cell proliferation, mobility,
and tumorigenicity, whereas overexpression of LNCAROD in vivo demonstrated opposite
results [140]. Considering the crucial role of m6A RNA methylation in cell metabolism and
unquestionable effects of the disturbances in this process concerning carcinogenesis, RNA
methylation as well as RNA methylation-related mechanisms definitely will be discussed
in more detail and considered as a candidate for novel, promising HNSCC biomarkers and
therapy goals.

3. Conclusions

Currently, epigenetic modifications gain more interest in the HNSCC carcinogenesis.
Some of them promote cancer formation and progression by controlling the expression
machinery. Consequently, the detailed characteristics of the epigenetic changes in HNSCC
will ultimately deliver novel, critical prognostic and predictive factors, thus providing the
necessary information regarding the treatment and anti-cancer therapies. Moreover, the
detailed epigenome-wide profiling may improve both the diagnosis of cancer patients and
a target personalized therapy. Although presently, with limited data regarding the mecha-
nism and prognostic value for HNSCC, the role of RNA methylation in carcinogenesis is
also worth emphasizing, particularly in terms of a better understanding of the molecular
basis of HNSCC and new therapy strategies.
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Abbreviations
3′UTR 3′ untranslated region
5-caC 5-carboxylcytosine
5-fC 5-formylcytosine
5-hMC 5-hydroxymethylcytosine
5-mC 5-methylcytosine
AID/APOBEC Activation- induced deaminase/apoplipoprotein B
ALKBH5 AlkB homolog 5
APC Adenomatous polyposis coli
ATM Ataxia-telangiectasia-mutated
BER Base excision repair
BRCA1 Breast cancer type I
CALML5 Calmodulin like 5
CCNA1 Cyclin-A1
CDKN2A Cyclin Dependent Kinase Inhibitor 2A
CSC Cancer steam cell
CT Chemotherapy
ctDNA Circulating DNA
CTLA4 Cytotoxic T-Lymphocyte Associated Protein 4
DAPK Death-associated protein kinase
DNMT DNA methyltrasnferase
EGFR Epidermal growth factor receptor
EMT Epithelial-mesenchymal transition
FAM135B Family with sequence similarity 135 member B
FTO FTO Alpha-ketoglutarate dependent dioxygenase
GLI1 GLI1 Family Zinc Finger 1
HAT Histone acetyltransferase
HDAC Histone deacetylase
HKMT Histone lysine methyltransferase
HMT Histone methyltransferase
HNSCC Head and neck squamous cell carcinoma
HPV Human papilloma virus
hTERT Human telomerase reverse transcriptase
JMJD6 Jumonji domain containing 6
KDM Lysine specific demethylase
LINE-1 Long interspersed nuclear element 1
LSCC Laryngeal squamous cell carcinoma
LY6D Lymphocyte antigen 6 family member D
m6A N6-methyladenosine
MEIOC Meiosis specific with coiled-coli domain
METTL Methyltransferase like
MGMT O-6-methylguanine-DNA methyltransferase
miRNA microRNA
MLH1 MutL homolog 1
ncRNA Non-coding RNA
NF-κB Nuclear transcription factor-κB
NPC Nasopharyngeal carcinoma
OSCC Oral squamous cell carcinoma
PADI4 Peptidyl arginine deiminase 4
piRNA PIWI-interacting RNA
Pl3K/Akt Phosphatidylinositol 3-kinase/threonine protein kinase B
PRMT Histone arginine methyltransferase
PROM1 Prominin 1
RASSF1 Ras association domain family member 1
RB Retinoblastoma
RBM15 RNA-binding motif protein 15
RISC RNA-induced silencing complex
RT Radiotherapy
SAM S-adenosylomethionine
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SAT2 Spermidine/spermine N1-acetyltransferase family member 2
siRNA Small interfering RNA
SMO smoothened
snoRNA Small nuclear RNA
STAT3 Signal transducer and activator of transcription 3
TDG Thymine-DNA glycosylase
TET Tet-methylcytosine dioxygenase
TGF-β Transforming growth factor β
TIMP3 TIMP metallopeptidase inhibitor 3
TRBA TAR RNA binding protein
TSCC Tongue squamous cell carcinoma
TSG Tumor suppressor gene
WTAP WT1-associated protein
VIRMA Vir like m6A methyltransferase associated
YTH YT521-B homology domain
ZIC4 Zic family member 4
ZNF Zinc-finger protein
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