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Abstract: The PDZ family has drawn attention as possible drug targets because of the domains’ wide
ranges of function and highly conserved binding pockets. The PICK1 PDZ domain has been proposed
as a possible drug target because the interactions between the PICK1 PDZ domain and the GluA2
subunit of the AMPA receptor have been shown to progress neurodegenerative diseases. BIO124
has been identified as a sub µM inhibitor of the PICK1–GluA2 interaction. Here, we use all-atom
molecular dynamics simulations to reveal the atomic-level interaction pattern between the PICK1
PDZ domain and BIO124. Our simulations reveal three unique binding conformations of BIO124 in
the PICK1 PDZ binding pocket, referred to here as state 0, state 1, and state 2. Each conformation is
defined by a unique hydrogen bonding network and a unique pattern of hydrophobic interactions
between BIO124 and the PICK1 PDZ domain. Interestingly, each conformation of BIO124 results in
different dynamic changes to the PICK1 PDZ domain. Unlike states 1 and 2, state 0 induces dynamic
coupling between BIO124 and the αA helix. Notably, this dynamic coupling with the αA helix is
similar to what has been observed in other PDZ–ligand complexes. Our analysis indicates that the
interactions formed between BIO124 and I35 may be the key to inducing dynamic coupling with the
αA helix. Lastly, we suspect that the conformational shifts observed in our simulations may affect the
stability and thus the overall effectiveness of BIO124. We propose that a physically larger inhibitor
may be necessary to ensure sufficient interactions that permit stable binding between a drug and the
PICK1 PDZ domain.

Keywords: PICK1; PDZ domain; BIO124; dynamic allosterism

1. Introduction

The PDZ (PSD-95/Dlg1/ZO-1) family is a large protein family that is involved in
protein–protein interactions and regulating signaling pathways [1–6]. Over 250 PDZ
domains have been identified in more than 100 human proteins [7]. These domains have
been shown to have key roles in various biological processes, including managing cell
polarity, regulating tissue growth, trafficking membrane proteins, and regulating cellular
pathways [8–10]. The PDZ family has highly conserved secondary structure, as shown
in Figure 1a. Most commonly, the PDZ domain forms protein–protein interactions with
the final three to five C-terminal residues of target proteins at the conserved PDZ binding
pocket [11]. The PDZ binding pocket is a hydrophobic groove between the αB helix and
the βB strand [12]. Together, the sheer abundance of PDZ domains, their wide range of
function, and their highly conserved binding pattern has drawn attention to PDZ domains
as possible drug targets [13–15]. For example, many inhibitors have been designed to
target the PDZ domains of SHANK genes [16,17], Dishelved proteins [18–24], Scribble [25],
Syntenin [26,27], PSD-95 [28–31] and PICK1 [32–35].
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Figure 1. The PICK1 PDZ domain. (a) PICK1 PDZ domain with labeled secondary structures (PDB 
ID: 6BJO). (b) PICK1 PDZ-BIO124 complex with BIO124 shown in blue (PDB ID: 6BJO). Note that 
(b) is the starting structure of the all-atom MD simulations. 

PICK1 (Protein Interacting with C Kinase-1) is an especially unique PDZ-protein as 
it is the only protein in the human proteome that contains both a PDZ domain and a BAR 
(Bin/amphiphysin/Rvs) domain [36–38]. This combination of modular domains allows 
PICK1 to have unique biological functions. PICK1 is found in multiple tissues and organs 
where it is involved in regulating the trafficking of various membrane proteins [39–41], 
including the Dopamine Transporter [42] and the AMPA receptor [39]. Because of its func-
tional role in regulating various neurotransporter receptors, transporters, and enzymes, 
PICK1 has been suggested to play a role in neurological diseases, such as chronic pain, 
epilepsy, stroke, Parkinson’s disease, schizophrenia, and substance use disorders [43]. Re-
searchers have sought to identify inhibitors to target PICK1 and be used as potential ther-
apeutics. FSC231 was the first-identified small-molecule inhibitor of PICK1 [44]. FSC231 
showed efficacy in reducing the expression of both long-term depression and long-term 
potentiation in hippocampal cornu ammonis 1 (CA1) neurons from acute slices, signifying 
the inhibition of PICK. In addition to FSC231, peptide inhibitors such as Pep2-EVKI and 
Pep2-SVKI have also proved to be effective at targeting the PICK1 PDZ domain [35]. Spe-
cifically, Pep2-EVKI was shown to reduce cocaine seeking in mice [45]. More recently, the 
bivalent peptide inhibitor TAT-P4-(C5)2 was shown to alleviate neuropathic pain [46,47]. 
While the various efforts described above have all sought to target the PICK1 PDZ do-
main, here we will focus on the small-molecule inhibitor BIO124 (Figure S1). 

BIO124 is a sub µM inhibitor of the PICK1–GluA2 interaction that was identified by 
Marcotte et al. using a fluorescence polarization assay [32]. The PICK1–GluA2 interaction 
is responsible for the trafficking of the AMPA receptor away from the neuron surface 
[48,49]. As AMPA receptors are primarily localized on the surface of neurons, they play a 
key role in mediating synaptic communication [50,51]. It has been shown that the down 
regulation of AMPA receptors can lead to progression in neurodegenerative diseases such 
as Alzheimer disease, thus suggesting that inhibiting the PICK1-GluA2 interaction that is 
responsible for such down regulation may be an effective therapy for Alzheimer disease 
[52]. With this goal in mind, Marcotte et al. identified BIO124 [32]. BIO124 displayed a 
half-maximal inhibitory concentration (IC50) of 0.51 µM, signifying good activity. Marcotte 

Figure 1. The PICK1 PDZ domain. (a) PICK1 PDZ domain with labeled secondary structures (PDB
ID: 6BJO). (b) PICK1 PDZ-BIO124 complex with BIO124 shown in blue (PDB ID: 6BJO). Note that
(b) is the starting structure of the all-atom MD simulations.

PICK1 (Protein Interacting with C Kinase-1) is an especially unique PDZ-protein as it
is the only protein in the human proteome that contains both a PDZ domain and a BAR
(Bin/amphiphysin/Rvs) domain [36–38]. This combination of modular domains allows
PICK1 to have unique biological functions. PICK1 is found in multiple tissues and organs
where it is involved in regulating the trafficking of various membrane proteins [39–41],
including the Dopamine Transporter [42] and the AMPA receptor [39]. Because of its
functional role in regulating various neurotransporter receptors, transporters, and enzymes,
PICK1 has been suggested to play a role in neurological diseases, such as chronic pain,
epilepsy, stroke, Parkinson’s disease, schizophrenia, and substance use disorders [43].
Researchers have sought to identify inhibitors to target PICK1 and be used as potential
therapeutics. FSC231 was the first-identified small-molecule inhibitor of PICK1 [44]. FSC231
showed efficacy in reducing the expression of both long-term depression and long-term
potentiation in hippocampal cornu ammonis 1 (CA1) neurons from acute slices, signifying
the inhibition of PICK. In addition to FSC231, peptide inhibitors such as Pep2-EVKI and
Pep2-SVKI have also proved to be effective at targeting the PICK1 PDZ domain [35].
Specifically, Pep2-EVKI was shown to reduce cocaine seeking in mice [45]. More recently,
the bivalent peptide inhibitor TAT-P4-(C5)2 was shown to alleviate neuropathic pain [46,47].
While the various efforts described above have all sought to target the PICK1 PDZ domain,
here we will focus on the small-molecule inhibitor BIO124 (Figure S1).

BIO124 is a sub µM inhibitor of the PICK1–GluA2 interaction that was identified by
Marcotte et al. using a fluorescence polarization assay [32]. The PICK1–GluA2 interaction is
responsible for the trafficking of the AMPA receptor away from the neuron surface [48,49].
As AMPA receptors are primarily localized on the surface of neurons, they play a key role in
mediating synaptic communication [50,51]. It has been shown that the down regulation of
AMPA receptors can lead to progression in neurodegenerative diseases such as Alzheimer
disease, thus suggesting that inhibiting the PICK1-GluA2 interaction that is responsible for
such down regulation may be an effective therapy for Alzheimer disease [52]. With this goal
in mind, Marcotte et al. identified BIO124 [32]. BIO124 displayed a half-maximal inhibitory
concentration (IC50) of 0.51 µM, signifying good activity. Marcotte et al. produced a co-
crystal structure of the PICK1 PDZ-BIO124 complex that revealed an interaction pattern
that mimics the interactions with natural ligand GluA2.
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The purpose of this study is to use all-atom molecular dynamics (MD) simulations to
explore how the atomic-level interaction pattern between the effective sub-µM inhibitor
BIO124 and the PICK1 PDZ domain affects the dynamics of the PICK1 PDZ domain.
Because the PDZ family is a classic example of dynamic allostery in small modular domains,
it has been of particular interest to explore how natural ligands trigger dynamic changes in
various PDZ domains. We will apply MD simulations to explore how BIO124, which was
designed to mimic natural ligand GluA2, alters the dynamics of the PICK1 PDZ domain.
MD simulations have proved to be a reliable tool to explore the dynamics of the PDZ
family [53–57]. The system of interest is shown in Figure 1b. We see that BIO124 has three
unique binding conformations within the PICK1 PDZ binding pocket that we refer to as
state 0, state 1, and state 2. Each binding conformation is defined by a unique hydrogen
bonding network and hydrophobic interaction pattern between the inhibitor and the PICK1
PDZ domain. Interestingly, our results indicate that each interaction pattern between
BIO124 and the PICK1 PDZ domain can induce unique dynamic changes to the PICK1
PDZ domain. Specifically, state 0 of BIO124 directly affects the dynamics of the αA helix
of the PICK1 PDZ domain, a site that is distal from the binding pocket. We suspect that
interactions between BIO124 and I35 may be a key player in this process.

2. Materials and Methods

We modeled the PICK1 PDZ–BIO124 complex with all-atom MD simulations. BIO124
is a small-molecule inhibitor designed by Marcotte et al. to mimic PICK1 PDZ-GluA2 inter-
actions [32]. The experimentally determined crystal structure of the complex was used to
generate the starting structure for all simulations (PDB ID: 6BJO [32]). To allow direct com-
parison to our future work, the PDB file was manually edited by trimming terminal residues
to ensure an identical sequence to the PICK1 PDZ-GluR2 system. The starting structure is
shown in Figure 1b. The system was prepared using CHARMM-GUI [58,59]. The most re-
cently developed CHARMM36m [60] force field with explicit solvent (TIP3P) was used with
the Groningen Machine for Chemical Simulations (GROMACS) package [61–63] version
2020.4. Counter ions (Na+ or Cl−) were added to neutralize the system at 293 K. Steepest-
descent minimization and a 1 ns MD equilibrium simulation was carried out to generate
equilibrated starting structures for the MD simulations. All bonds with hydrogen atoms
were converted to constraints with the algorithm LINear Constraint Solver (LINCS) [64],
and a Nose-Hoover temperature thermostat [65,66] was used. The time step was set as
2 fs, and snapshots were taken every 100 ps. The system was built in a 90 Å × 90 Å × 90 Å
cubic water box. We performed four replicates of a 7 µs trajectory, a total of 28 µs (4 × 7 µs)
of simulations.

We calculated the distance between binding pocket residue I37 and BIO124 to monitor
the possibility of any dissociation events during the simulations. Distance plots are shown
in Figure S2. The distance between I37 and BIO124 suggests that BIO124 remained in the
binding pocket during trajectories 1, 2, and 3. During trajectory 4, the distance between
I37 and BIO124 sharply increases after ~4 µs, signifying the dissociation of BIO124 from
the binding pocket. Cluster analysis was used to confirm this dissociation. The top ten
clusters of BIO124 during each trajectory are shown in Figure S3. As shown in Figure S3,
all frames of trajectories 1, 2, and 3 fit into clusters that place BIO124 in the binding pocket
of the PICK1 PDZ domain. Oppositely, trajectory 4 reveals clusters with BIO124 having
dissociated from the binding pocket. Lastly, we performed two sets of cluster analysis over
trajectory 4. We performed cluster analysis across the first 4 µs of trajectory 4 and the final
3 µs of trajectory 4, as shown in Figure S4a,b, respectively. The results confirm that, during
the first 4 µs of trajectory 4, BIO124 remains in the binding pocket. With this, all further
analysis will be performed over all frames of trajectories 1, 2, and 3 and only the first 4 µs
of trajectory 4.

Protein network analysis was used to describe the allosteric network between BIO124
and the PICK1 PDZ domain. Protein network analysis calculates the correlated movements
between residues within a protein or protein complex by constructing residue-based and
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community-based weighted network graphs based on a trajectory. Each residue is repre-
sented by a node in a network and the links between nodes are the cross-correlation values
between these nodes. The displacement of the Cα atoms are used to assess the magnitude
of all pairwise cross-correlation coefficients [67]. Correlation coefficients range from −1 to
1. A value of 1 indicates that the fluctuations of two Cα atoms are completely correlated, a
value of 0 indicates that the fluctuations of two Cα atoms are not correlated, and a value
of −1 indicates that the fluctuations of two Cα atoms are completely anticorrelated (same
period and opposite phase). The correlation coefficients return a community partition
with the highest overall modularity value based on Girvan-Newman style clustering [68].
Analysis was carried out using the bio3d package [69–71].

Time-resolved force distribution analysis (TRFDA) [72] was used to reveal the punctual
stress on each PICK1 PDZ residue as a result of interactions with BIO124. TRFDA traces the
changing force on atoms/residues of interest that results from a perturbation. In our case,
the perturbation is the binding of BIO124. The calculated changing forces are transformed
into punctual stresses per residue. TRFDA was carried out to obtain the punctual stresses
on PICK1 PDZ residues as a result of perturbations from interactions with BIO124.

3. Results

Hydrogen bond analysis was performed to explore the interaction pattern between
BIO124 and the PICK1 PDZ domain in our simulations and to serve as a direct com-
parison to experimental results. The analysis revealed an interaction pattern that is in
relatively good agreement with the crystal structure of the PICK1 PDZ-BIO124 complex
(PDB ID: 6BJO [32], Figure 2a). The crystal structure of the complex revealed that the car-
boxylic acid of BIO124 forms hydrogen bonds with the backbone of I33, G34, and I35 [32].
Our simulations also identified the presence of these three hydrogen bonds. Figure 2a
displays the I33–carboxyl, G34-carboxyl, and I35-carboxyl hydrogen bonds in cyan, or-
ange, and green, respectively. Interestingly, our simulations produced the formation of
two additional hydrogen bonds, including the carboxylic acid of BIO124 with the backbone
of I37 and the center ketone of BIO124 with the backbone of I37. Figure 2a displays the
I37-carboxyl and I37-ketone hydrogen bonds in red and purple, respectively. Next, we per-
formed a statistical analysis to rank the probability of each hydrogen bond forming in the
binding pocket (Figure 2b). If BIO124 took a singular conformation for all combined frames
of the MD simulations, we would expect the distance between each hydrogen bonding pair
to fluctuate around one value and ultimately produce a Gaussian distribution. Surprisingly,
the distance distributions between each hydrogen bonding pair reveal a non-Gaussian
distribution. The distinct peaks observed in Figure 2b suggest the presence of multiple
binding conformations between BIO124 and the PICK1 PDZ domain.

We explore the possibility of multiple binding conformations between BIO124 and
the PICK1 PDZ domain by calculating the atom-atom distances between each hydrogen
bonding pair (Figure 3a). Atom-atom distance analysis (Figure 3b) was performed over each
hydrogen bonding pair in the PICK1 PDZ–BIO124 complex (I33-carboxyl, G34-carboxyl,
I35-carboxyl, I37-carboxyl, and I37-ketone). The distance curve for each pair is specified
by color in Figure 3a. Atom-atom distance analysis can be used to track the breaking and
forming of hydrogen bonding pairs during the simulations. Here, we correlate these distance
changes to the breaking of hydrogen bonds if the distance between the atoms involved in
the hydrogen bond is greater than 0.5 nm. Assuming a unique pattern of hydrogen bonds
corresponds to a unique binding conformation, our simulations suggest that three unique
binding conformations exist between BIO124 and the PICK1 PDZ domain. Trajectory 4 keeps
the conformation of the starting structure with three hydrogen bonds formed throughout
the trajectory, including I33–carboxyl, G34-carboxyl, and I35-carboxyl. During trajectories
1 and 3, the initial hydrogen bonds (I33-carboxyl, G34-carboxyl, I35-carboxyl) are almost
immediately broken while a new hydrogen bond between the backbone of I37 and the center
ketone of BIO124 is formed. During trajectory 2, the same initial hydrogen bonds are broken
while a new hydrogen bond between the backbone of I37 and the carboxylic acid of BIO124
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is formed. Our results suggest that BIO124 can make an initial conformational change and
then remain in the new stable state for the remainder of the trajectory.

Assuming that the unique sets of hydrogen bonds formed in each trajectory point to
unique binding conformations of BIO124, we repeated the statistical analysis of the hydrogen
bonding networks based on each conformation. We will refer to the frames in trajectory 4
as state 0, the frames in trajectories 1 and 3 as state 1, and the frames in trajectory 2 as state
2. First, hydrogen bond analysis was performed over each state. Hydrogen bond analysis
identified the presence of three hydrogen bonding pairs in state 0, including I33-carboxyl,
G34-carboxyl, and I35-carboxyl (Figure S5a). Subsequently, hydrogen bond analysis identified
the presence of the I37-ketone pair and the I37-carboxyl pair in state 1 and state 2, respectively
(Figures S6a and S7a). Next, we performed a statistical analysis to rank the probability of
each hydrogen bond forming in each state (Figures S5b, S6b and S7b). By separating the
frames into states, the distance distributions between each hydrogen bonding observe a
Gaussian distribution, signifying a stable binding conformation within each state.

Lastly, the presence of unique binding conformations between BIO124 and the PICK1
PDZ domain was confirmed with cluster analysis. Suspecting three unique binding con-
formations, we divided the combined PICK1 PDZ-BIO124 trajectories into three clusters.
The results agree with our suspicions drawn from hydrogen bond analysis. As shown in
Figure 3c–e, cluster analysis produced three unique binding conformations that correspond
to the three unique hydrogen bond networks. State 0 resembles the conformation in the
crystal structure (PDB ID: 6BJO [32]) with the presence of three hydrogen bonds, including
I33-carboxyl, G34-carboxyl, and I35-carboxyl. In state 1, BIO124 flips upside down so that its
center ketone forms a hydrogen bond with the backbone of I37. In state 2, BIO124 shifts down
in the binding pocket so that its carboxylic acid forms a hydrogen bond with the backbone of
I37. The size of each cluster is in relatively good agreement with the ratio of frames with each
corresponding atom-atom distance pair. The cluster corresponding to state 0 represents 31.7%
of the total frames, the cluster corresponding to state 1 represents 46.2% of the total frames,
and the cluster corresponding to state 2 represents 22.1% of the total frames.
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Figure 2. Hydrogen bonding network between BIO124 and the PICK PDZ domain. (a) Hydrogen
bonds identified in both experimental work and our MD simulations include I33-carboxyl (cyan), G34-
carboxyl (orange), and I35-carboxyl (green). Hydrogen bonds identified only in our MD simulations
include I37-carboxyl (red) and I37-ketone (purple). (b) Distance distribution between each hydrogen
bonding pair in the complex. Note that each hydrogen bonding pair produces distinct distance peaks.
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cluster analysis (right) are in good agreement. State 1 is new stable conformations taken by the lig-
and during our simulations. (e) State 2 of BIO124 (trajectory 2). Hydrogen bonding network (left) 
and cluster analysis (right) are in good agreement. State 2 is new stable conformations taken by the 
ligand during our simulations. 
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tions of each state are shown in Figure 4b. In state 0, the cyclopentyl group of BIO124 
forms frequent contact with I35 (98.90%), A87 (97.93%), V86 (73.26%), and I90 (54.55%). 
Additionally, the bromophenyl moiety forms contact with the carbon chain of K83 
(16.49%). Hydrogen bond analysis and cluster analysis suggests that State 0 of BIO124 
most readily resembles the conformation of BIO124 in the crystal structure of the PICK1 
PDZ-BIO124 complex. Contact map analysis echoes these results as our simulations point 

Figure 3. The three binding conformations of BIO124. (a) Hydrogen bonding pairs between BIO124
and the PICK1 PDZ domain. (b) Atom-atom distance analysis of the hydrogen bonding pairs in the
PICK1 PDZ-BIO124 complex by trajectory. Distance analysis suggests unique binding conformations
of BIO124. (c) State 0 of BIO124 (trajectory 4). Hydrogen bonding network (left) and cluster analysis
(right) are in good agreement. State 0 resembles the conformation of the ligand in the crystalized
structure. (d) State 1 of BIO124 (trajectories 1 and 3). Hydrogen bonding network (left) and cluster
analysis (right) are in good agreement. State 1 is new stable conformations taken by the ligand during
our simulations. (e) State 2 of BIO124 (trajectory 2). Hydrogen bonding network (left) and cluster
analysis (right) are in good agreement. State 2 is new stable conformations taken by the ligand during
our simulations.

The analyses described above point to three unique bonding conformations between
BIO124 and the PICK1 PDZ domain. Only one of these conformations (state 0) corresponds
to the X-ray structure of the PICK1 PDZ–BIO124 complex (PDB ID: 6BJO) [32]. The X-ray
structure of the PICK1 PDZ–BIO124 complex was crystalized at 4 ◦C [32]. Together, the low
temperature and the space restraints inherently induced during crystallization can limit
the sampling of conformational states. MD simulations in this work were performed at
room temperature (293 K or ~20 ◦C). This increase in temperature may permit the sampling
of states that is readily observed in this work. To explore this possibility, additional MD
simulations were performed at 277 K (~4 ◦C), which corresponds to the temperature
used in the PDZ-BIO124 X-ray experiments. At 277 K, the conformation of BIO124 is
in good agreement with the X-ray structure of the PICK1 PDZ-BIO124 complex, and no
conformational shifts to reach states 1 and 2 were observed. The additional states observed
in the 293 K simulations may be a result of an increase in temperature that permits the
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sampling of states. These results are included in the SI. Figures S8 and S9 shows the
hydrogen bonding network and the atom-atom distance analysis at 277 K, respectively.

Our simulations produce three binding conformations of BIO124 that correspond to
three unique hydrogen bonding networks. While hydrogen bonds are one category of
key atomic-level interactions in protein-ligand binding, we also wanted to explore the
role of hydrophobic forces in each of the three states of BIO124. The crystal structure of
the PICK1 PDZ-BIO124 complex reveals various hydrophobic interactions. In the crystal
structure, the cyclopentyl group of BIO124 forms hydrophobic interactions with I37, A87,
and I90. The piperidine core of BIO124 forms hydrophobic interactions with L32 and
F53. Lastly, the bromophenyl moiety aligns with the carbon chain of K83. To explore the
hydrophobic interactions in our simulations, we performed contact map analysis across
each state of BIO124. We only consider the contact formed with heavy atoms of BIO124.
The most probable contacts with the complex at each state are listed in Figure 4a, and
visual representations of each state are shown in Figure 4b. In state 0, the cyclopentyl group
of BIO124 forms frequent contact with I35 (98.90%), A87 (97.93%), V86 (73.26%), and I90
(54.55%). Additionally, the bromophenyl moiety forms contact with the carbon chain of
K83 (16.49%). Hydrogen bond analysis and cluster analysis suggests that State 0 of BIO124
most readily resembles the conformation of BIO124 in the crystal structure of the PICK1
PDZ-BIO124 complex. Contact map analysis echoes these results as our simulations point
to key hydrophobic interactions between (1) the cyclopentyl group and I35, A87, and I90
and (2) the bromophenyl moiety and the carbon chain of K83. Interestingly, our simulations
fail to reproduce the frequent contact between the piperidine core and L32/F53 that was
observed in the crystal structure. In state 1 and state 2, BIO124 has taken new conformations
in the PICK1 PDZ binding pocket and thus has adopted novel hydrophobic interaction
patterns. For example, in state 1, the bromophenyl moiety of BIO124 forms frequent contact
with A87 (96.05%), V84 (93.44%), and L83 (85.18%). Additionally, the pyrrolindine moiety
frequently contacts I37 (94.16%), the piperidine core frequently contacts L83 (87.05%), and
the tertbutyl group frequently contacts I35 (83.59%). In state 2, the cyclopentyl group forms
frequent contact with I35 (98.00%), A87 (89.75%), and V86 (39.47%). The hydrophobic
interactions between the cyclopentyl group and I35, A87, and V86 closely resembles those
observed in state 0. Unique from state 0, the bromophenyl group forms much more frequent
contact with A87 (91.31%) in state 2. Furthermore, in state 2, the electronegative carboxyl
group forms a charged interactions with the electropositive ammonium in K83.

While states 1 and 2 are not observed in the experimental structure of the PICK1 PDZ-
BIO124 complex, many of the interaction patterns observed in these states are characteristic
of the atomic-level interactions between the PICK1 PDZ domain and natural ligand GluR2
(PDB ID: 2PKU) [73], for which BIO124 is a mimic. (Notably, the final five C-terminal
residues of GluR2 and GluA2 are identical.) For example, the experimentally determined
structure of the PICK1 PDZ-GluR2 complex points to the importance of the hydrophobic
interaction between the side chain of Val(-2) of GluR2 and K83/A87 of the αB helix of
the PICK1 PDZ domain. A similar interaction is observed in state 1 of our simulations
where the bromophenyl moiety is similarly sandwiched between A87 (98.05%) and K83
(82.99%). Furthermore, the experimentally determined structure reveals a charge-charge
interaction between the side chains of Glu(-4) of GluR2 and K83 of the PICK1 PDZ domain.
In state 2 of our simulations, we observed a similar charge-charge interaction between the
electronegative carboxyl group of BIO124 and the electropositive ammonium of K83 of the
PICK1 PDZ domain. This suggests that while states 1 and 2 are not observed in the X-ray
structure of the PICK1 PDZ-BIO124 complex, the atomic-level interactions observed in
states 1 and 2 are characteristic of critical binding patterns between the PICK1 PDZ domain
and its natural ligand.
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Time-resolved force distribution analysis (TRFDA) was performed to reveal the punc-
tual stress on each PICK1 PDZ residue as a result of interactions with BIO124 [72]. TRFDA
can expose which residues are key in holding the ligand in place. The analysis was per-
formed over each trajectory and the per-trajectory results were subsequently summed. The
summed results are shown in Figure S10. The ten PICK1 PDZ residues that experienced the
greatest punctual stress for each state are listed in Figure S11. In state 0, BIO124 induces the
greatest punctual stress on residues composing the βB strand. Oppositely, in state 1 and
state 2, BIO124 induces the greatest punctual stress on residues composing the αB helix.
These results further point to key differences in the binding mechanisms between BIO124
and the PICK1 PDZ domain in each conformational state of BIO124.

The analyses described above reveal that the three binding conformations of BIO124
correspond to three unique sets of atomic-level interactions between BIO124 and the PICK1
PDZ domain. We suspect that each set of interactions will uniquely affect the dynamics
of the PICK1 PDZ domain. To explore this possibility, we performed protein network
analysis to reveal the coupling of major movements by creating protein structure networks
based off the primary motions of each residue. As shown in Figure 5, protein structure
network analysis reveals that the unique interaction pattern of each state of BIO124 alters
the coupling of major movements within the PICK1 PDZ-BIO124 complex. In state 0, the
major motions of BIO124 are coupled to the βB strand, βC strand, and αA helix of the
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PICK1 PDZ domain (Figure 5a). Oppositely, in states 1 and 2, the major motions of BIO124
are coupled to the αB helix of the PICK1 PDZ domain (Figure 5b,c).
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major motions of BIO124 couple with the αB helix of the PICK1 PDZ domain.

Protein network analysis reveals that the unique conformational states of BIO124
can induce unique dynamic changes to the PICK1 PDZ domain. We suspect that these
dynamical differences are in direct relation to the atomic-level interaction pattern between
BIO124 and the PICK1 PDZ domain. This begets the question—what specific atomic-level
interactions between BIO124 and the PICK1 PDZ domain are responsible for the unique
dynamic changes in each binding conformation? Here, we will specifically address the
dynamic coupling between BIO124 and αA helix that occurs in state 0.

Our recent review of allosterism in the PDZ family [74] revealed that the αA he-
lix has been consistently identified as an allosteric region by various experimental and
computational techniques [54,56,57,75–82]. Furthermore, previous work has identified
pathways that may be responsible for the propagation of signal from the ligand to the
αA helix through key residues on the βB strand [78,83,84]. For example, in the PTP-BL
PDZ2 domain, signal propagates from the ligand to I20 (βB strand) and finally to A46
(αA helix) [84]. In the PSD-95 PDZ3 domain, signal propagates from the ligand to F325
(βB strand) and finally to A347 (αA helix) [78]. The structural alignment of PICK1 PDZ,
PTP-BL PDZ2, and PSD-95 PDZ3 (Figure S12) suggests that the allosteric alanine residue
(A46/A347) on the αA helix is evolutionarily conserved across all three PDZ domains. The
structural equivalents of A46/A347 and I20/F325 on the PICK1 PDZ domain are A58 and
I35, respectively. We suspect that interactions between the ligand and I35 of the PICK1 PDZ
domain may have a role in the propagation of signal to the αA helix. The three binding
conformations of BIO124 present a unique opportunity to explore our hypothesis.

In effort to explore the role of I35 in propagating signal to the αA helix, we performed
distance distribution analysis and time-resolved force distribution analysis (TRFDA) to
gain an in-depth understanding of the interactions between BIO124 and I35 in the three
conformational states of BIO124. As shown in Figure 6a, distance distribution analysis
was performed between BIO124 and I35 for each state. Here, distance is defined as the
shortest distance between any two atoms in BIO124 and I35. BIO124 forms the closest
contact with I35 in state 0 (blue). Next, we calculated the punctual stress on I35 induced by
the BIO124 by using TRFDA. As shown in Figure 6b, BIO124 induces the greatest punctual
stress on I35 in state 0. Together, distance distribution analysis and TRFDA reveal that the
conformation of BIO124 in state 0 forms the closest contact with and induces the greatest
punctual stress on I35. Interestingly, BIO124 only affects the dynamics of the αA helix
in state 0. These results point to the importance of interactions between the ligand and
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I35 in inducing dynamic allosterism at the αA helix of the PICK1 PDZ domain. It is also
important to note that, compared to state 1 and state 2, the interactions with I35 in state 0
most closely resemble those with the natural ligand GluR2 [73].
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Figure 6. The role of I35 in inducing dynamic allosterism at the αA helix of the PICK PDZ domain.
(a) Distance distribution between I35 of the PICK1 PDZ domain and BIO124 in each state. (b) Punctual
stress on I35 of the PICK1 PDZ domain induced by BIO124 in each state.

4. Discussion

The purpose of this work is to use all-atom MD simulations to investigate how the
atomic-level interactions between BIO124 and the PICK1 PDZ domain affect the dynamics
of the PICK1 PDZ domain. We found that (1) BIO124 has multiple binding conformations
with the PICK1 PDZ domain, (2) the three unique binding conformations of BIO124 result
in unique dynamic changes to the PICK1 PDZ domain, and (3) interactions between BIO124
and I35 may be key to inducing dynamic allosterism at the αA helix.

Our simulations reveal three unique binding conformations between the PICK1 PDZ
domain and BIO124, referred to here as state 0, state 1, and state 2. Each conformation is
characterized by a unique hydrogen bonding network. In state 0, BIO124 forms a hydrogen
bonding network with the backbone of I33, G34, and I35. These hydrogen bonds agree
with those observed in the experimental structure of the PICK1 PDZ–BIO124 complex [32].
In state 1 and state 2, different regions of BIO124 form a hydrogen bond with the backbone
of I37. Interestingly, while hydrogen bonding with I37 is not observed in the experimental
structure of the PICK1 PDZ-BIO124 complex, it is characteristic of interactions between the
PICK1 PDZ domain and natural ligands [73,85]. In addition to unique hydrogen bonding
networks, each conformation of BIO124 is characterized by a unique set of hydrophobic
interactions with the PICK1 PDZ domain. In state 0, the cyclopentyl group of BIO124 forms
frequent contact with I35, V86, A87, and I90. In state 1, the bromophenyl moiety of BIO124
forms frequent contact with L83, L84, and A87. Additionally, the pyrrolindine moiety, the
piperidine core, and the tertbutyl group frequently contact I37, L83, and I35, respectively.
In state 2, the cyclopentyl group forms frequent contacts with I35, V86, and A87 that closely
resemble those observed in state 0. Unique from state 0, the electronegative carboxyl group
of BIO124 forms a charged interaction with the electropositive ammonium in K83.

While the three binding conformations of BIO124 may indeed be an artifact of our
simulations, they present a unique opportunity to explore the role of specific interactions in
inducing specific dynamic changes to the PICK1 PDZ domain. Our results indicate that the
conformation of BIO124 directly affects the dynamics of the PICK1 PDZ domain. In state 0,
the major motions of BIO124 are coupled with the carboxylate-binding loop, βB strand, βC
strand, and αA helix of the PICK1 PDZ domain. In state 1 and state 2, the major motions of
BIO124 are coupled with the αB helix of the PICK1 PDZ domain. It is worth stressing that
state 0 of BIO124 can induce dynamic changes to regions of the PICK1 PDZ domain that are
distal from the binding pocket, including the βC strand and the αA helix. Previous work
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has identified the αA helix of the PDZ family as a region affected by dynamic allostery
and has pointed to a pathway of signal transduction from structural equivalents of I35 to
structural equivalents of A58 [78,83,84]. Our results also support the role of interactions
between the ligand and I35 as a key player in propagating signal to the αA helix. In state 0,
BIO124 forms both the closest contact with and induces the greatest punctual stress on I35.
These results suggest that the interaction pattern between state 0 of BIO124 and the PICK1
PDZ domain provides the necessary signals to induce dynamic allostery at the αA helix of
the PICK1 PDZ domain.

Inhibiting PICK1–GluA2 interactions may be an effective therapy for Alzheimer dis-
ease [52] and, potentially, could address substance use disorders as well. Previous efforts
have identified sub µM inhibitors that demonstrate efficacy in targeting the PICK1 PDZ
domain and disrupting interactions with GluA2, including BIO922 [52] and BIO124 [32].
The crystal structure of the PICK1 PDZ-BIO124 complex reveals an interaction pattern
that mimics the interactions with the natural ligand GluA2. Here, our simulations reveal
additional conformations of BIO124 in the PICK1 PDZ binding pocket (states 1 and 2).
While the atomic-level interactions in states 1 and 2 are dissimilar to those observed in the
experimental structure of PICK1 PDZ-BIO124, the novel conformations remain character-
istic of interactions with the natural ligand [73]. For example, in states 1 and 2, BIO124
forms a hydrogen bond with I37, a hydrophobic core with K83/A87, and a charge-charge
interaction with K83. Furthermore, additional simulations performed at 277 K suggest that
the population of states 1 and 2 may be a result of an increase in temperature that permits
the sampling of states. Point mutation experiments and nuclear magnetic resonance (NMR)
experiments performed at room temperature may be useful approaches to explore these
novel conformations.

Each conformation of BIO124 dynamically couples with different regions of the PICK1
PDZ domain to form a stable complex. For example, in state 0, BIO124 dynamically couples
with the βB strand, βC strand, and αA helix, and in states 1 and 2, BIO124 dynamically
couples with the αB helix. Interestingly, natural ligands binding to well-studied PDZ
domains such as PSD-95 PDZ3 and PTP-BL PDZ2 have been shown to induce allosteric
networks that include residues from both regions described above [54–57,78,80–82,86,87].
While each state of BIO124 emulates the interactions of the natural ligand to some degree,
the conformational shifts of BIO124 between such states that were observed in our simula-
tions may affect the stability and thus the overall effectiveness of the drug. We propose that
a physically larger inhibitor may be necessary to ensure sufficient interactions that permit
stable binding between a drug and the PICK1 PDZ domain. A larger inhibitor may be able
to encompass all the necessary atomic-level interactions to emulate both dynamic coupling
patterns and thus increase the binding affinity overall. Lastly, the novel conformations
observed in our simulations fail to induce dynamic allostery at the distal βC strand and the
αA helix as the natural ligand does. Our results suggest that an inhibitor may not need to
mimic natural ligand interactions to form stable interactions with the target protein. These
results suggest a new potential strategy in drug development that would widen the doors
for possible inhibitors.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/cells11152451/s1, Figure S1: Structure of BIO124; Figure S2:
Distance between I37 of the PICK1 PDZ domain and BIO124; Figure S3: Cluster analysis of BIO124 per
trajectory; Figure S4: Cluster analysis of BIO124 in trajectory 4; Figure S5: State 0 hydrogen bonding
network between BIO124 and the PICK1 PDZ domain; Figure S6: State 1 hydrogen bonding network
between BIO124 and the PICK1 PDZ domain; Figure S7: State 2 hydrogen bonding network between
BIO124 and the PICK1 PDZ domain; Figure S8: 277 K hydrogen bonding network; Figure S9: 277 K
atom-atom distance analysis of the hydrogen bonding pairs; Figure S10: Summed time-resolved
force distribution analysis (TRFDA) for each state of BIO124; Figure S11: Top ten residues from
time-resolved force distribution analysis (TRFDA); Figure S12: Structural alignment of PICK1 PDZ,
PTP-BL PDZ2, and PSD-95 PDZ3.
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