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Traditional visual search tasks in the laboratories
typically involve looking for targets in 2D displays with
exemplar views of objects. In real life, visual search
commonly entails 3D objects in 3D spaces with
nonperpendicular viewing and relative motions between
observers and search array items, both of which lead to
transformations of objects’ projected images in lawful
but unpredicted ways. Furthermore, observers often do
not have to memorize a target before searching, but may
refer to it while searching, for example, holding a picture
of someone while looking for them from a crowd.
Extending the traditional visual search task, in this study,
we investigated the effects of image transformation as a
result of perspective change yielded by discrete viewing
angle change (Experiment 1) or continuous rotation of
the search array (Experiment 2) and of having external
references on visual search performance. Results
showed that when searching from 3D objects with a
non-zero viewing angle, performance was similar to
searching from 2D exemplar views of objects; when
searching for 3D targets from rotating arrays in virtual
reality, performance was similar to searching from
stationary arrays. In general, discrete or continuous
perspective change did not affect the search outcomes
in terms of accuracy, response time, and self-rated
confidence, or the search process in terms of eye
movement patterns. Therefore, visual search does not
require the exact match of retinal images. Additionally,
being able to see the target during the search improved
search accuracy and observers’ confidence. It increased
search time because, as revealed by the eye movements,
observers actively checked back on the reference target.
Thus, visual search is an embodied process that involves
real-time information exchange between the observers
and the environment.

Introduction

Imagine a common scenario, on a rainy day, students
leave their umbrellas outside the university’s cafeteria
on their way to lunch. After their meal, they walk out
and swiftly pick up their own umbrellas. This everyday
action requires visual search, which encompasses the
observer, search items, and motions of either or both.
Cognitive psychologists have been studying visual
search using laboratory-based experiments, in which
participants report the presence or absence of a specific
object (the target) among other items (the distracters)
displayed on computer monitors. The targets and
distracters are typically simple (e.g. letters or color
graphics) and distinguished on several dimensions
(Treisman & Gelade, 1980; Koch & Ullman, 1987;
Duncan & Humphreys, 1989; Wolfe & Gancarz, 1997).

However, there are key differences between a
laboratory-based visual search and visual search in
the real world. Classic laboratory-based visual search
contains static image information, which is sufficient for
accomplishing the laboratory-based experimental tasks.
In a classic laboratory-based search task, the search ar-
ray normally contains 2D stimuli (such as contours, line
drawings, or silhouettes) that have countable distinct
features between targets and distracters (for example,
shape, color, size, orientation, etc., and their combi-
nations), occupy the central part of the visual field,
and do not change their appearances during the search
(Zhang, Feng, Ma, Lim, Zhao, & Kreiman, 2018).
But in real life, the appearances of 3D search items
change as the spatiotemporal relations between search
objects and observers change. Factors such as viewing
distances, angle of observation, lighting and shadows,
occlusion, and relative motion between the observer
and search items may alter the appearances of the
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search items and yield uncountable combinations of
features that may or may not be saliently distinguishable
(Seidl-Rathkopf, Turk-Browne & Kastner, 2015). Al-
though these changes of appearance are regular (mean-
ing they are regulated by the natural laws of physics),
they are difficult to predict. For example, when looking
for a red silicone spatula in a utensil drawer, how this
spatula appears depends on color of light (e.g. natural
light versus warm yellow light from a lightbulb), its ori-
entation (flat or side-up), its spatial relations with other
items in the drawer (occlusion), the spatial relations be-
tween it and the observer (e.g. the viewing distance and
eye height of the observer affect viewing angle), and so
on. Some of these factors (e.g. lighting condition) may
be known to the observer before searching; some (e.g.
the spatula’s orientation inside the drawer) may not.
Some factors (e.g. viewing angle) may change during the
search; and some (e.g. occlusion among search items)
may not. Either way, in real life situations, forming an a
priorimentalmodel of the search target is complex and it
is questionable whether this is necessary or sufficient for
successful visual search in natural environments. There-
fore, is visual search resistant to changes of the objects’
images?

Recent empirical studies on real world searches have
raised that image-based information alone might be
limited in predicting natural search activities (Kingstone,
Smilek, Ristic, Kelland, Friesen, & Eastwood, 2003).
For example, when participants walked to pick up
targets and avoid obstacles in virtual reality (VR), the
presence of salient distracters, which were objects with
bright colors and high luminance, did not alter the
participants’ performance. Gaze duration on salient
distractors accounted for only 0.2% of total trial time;
in other words, participants did not attend to the
task-irrelevant objects, despite their image saliency
(Rothkopf, Ballard, & Hayhoe, 2007). In another
real-world search experiment (Foulsham, Chapman,
Nasiopoulos, & Kingstone, 2014), participants were
to walk from the laboratory through the building to
the faculty mailroom, locate a target mailbox among
120 boxes fixed on a wall, and pick up an envelope
from it. In half of the trials, the target mailboxes were
outlined with bright pink borders. This manipulation
should make the search faster because of the high
image saliency as predicted by classic visual search
theories (Treisman & Gelade, 1980; Wolfe & Gancarz,
1997; Zhao & Koch, 2011). However, the response time
was not shortened with the saliently outlined targets.
Convergingly, in a series of experiments (Hayes &
Henderson, 2019), when participants searched for the
letter “L” embedded in real-life scene photographs, they
tended to look at the semantically meaningful regions
than the salient regions of the scene. The authors carved
the search scenes into small patches and rated the
patches’ semantic richness to create meaning maps. The
authors also generated saliency maps according to the

distinctiveness of local features. They found that when
looking for an “L” in real-life scenes, 30% of gazes fell
in the meaningful regions, and only 8% fell in the salient
regions. Thus, it is crucial to look beyond image-based
information to investigate real-world goal-directed
search tasks.

Traditionally, a visual search has been widely used
as a method to study attention and results from
visual search experiments have provided invaluable
theoretical explanations for the processes of attention
capture, guidance, and allocation. Understandably,
perceptual information in these tasks is simplified to
contain only highly distinguishable static image from
an exemplar view, for example, looking for a martini
glass, which is symbolized by , from trophies, which
are symbolized by . Nonetheless, implicit in visual
search is the perceptual task of object recognition
and both visual search and object recognition involve
recognizing and classifying visual patterns. For object
recognition, observers integrate many dimensions or
features to classify one object. For a visual search, the
observers use a few dimensions or features to classify
many objects. According to Nakayama and Martini
(2011), object recognition and visual search are on
the “two extremes of plausible trade-offs between
dimensions versus objects” (page 8). Hence, a visual
search and object recognition may share common
issues, and it may be worthwhile to seek solutions
for issues of a visual search from object recognition
literatures.

As part of the natural viewing process, appearances
of objects vary. So, does visual search remain robust
and functional given the constant image change?
This is similar to the problem of invariance in object
recognition, which is concerned with how objects are
recognized with various lighting, viewing perspectives,
exemplars, etc. Central to both, the problem is whether
and how accurate and stable perception is achieved
despite changes of object appearance.

In natural viewing, progressive transformation of
retinal images is yielded by the continuous relative
motions between the observer and objects. The
progressive transformation is regular and lawful and
contains information that specifies the spatial relations
and motions of the observers and objects. Images and
the lawful transformation of them, known as optic
flow, are two sources of information in the optics that
specify spatial layout and 3D structures in the world.
In other words, the change of images does not create
a problem but solves it, at least when an observer is
allowed to view the continuous changing process. The
act of perception is spatiotemporal.

Integrating static image structure and dynamic
optic flow information, accurate and stable perception
of the objects’ spatial relations and recognition of
visual events were achieved in a robust fashion,
despite perturbations of image information caused
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by visual blur (Pan, Bingham, & Bingham, 2013),
occlusion (Pan, et al., 2013), or orientation change
(Pan, Bingham, Chen, & Bingham, 2017). This is
because the co-existing optic flow and image structure
information form a synergetic relationship. On the one
hand, optic flow is strong in specifying 3D structures.
For example, when multiple randomly textured surfaces
that were separated in depth, without motion, their
depth relations were not perceptible and they all
appeared to be one surface. But when they rotated and
precessed rigidly, the spatial relations or depth orders
between them were readily perceptible and observers
unmistakenly identified their locations in 3D (Pan, Li,
Chen, Mangiaracina, Connell, Wu, Wang, Bingham,
& Hassan, 2017). However, optic flow is temporally
unstable and disappears when the motion stops. On
the other hand, image structure information, such as
hue and contrast, is projected by the opaque surfaces
in the world. Although it does not immediately specify
depth structure, it is available as long as the objects
are visible and thus is temporally stable. When image
structure and optic flow interact, optic flow specifies
spatial structures and calibrates image structures (that
is, assigns spatial meanings to the image information) at
the same time. The spatial relations perceived with optic
flow is hence preserved in the stable image structure
information and the interaction between optic flow
and image structure allow the observers to continue
perceiving spatial structures with ongoing motion
and after the motion stops. This accurate and stable
perception is a result of an embodied process that
spans over the observer and the surfaces/objects in the
world.

In the current study, we treat visual search as an
embodied process and focus on two perception-related
aspects to learn how effective the search of objects
leverages on the interaction between the observer and
the external structures in the world. First, we explore
whether visual search withstands image transformations
as a result of either discrete or continuous perspective
change. In everyday viewing, often we are looking
at objects from directions that are not along the line
of sight, yielding non-parallel projection of visual
targets, whose images are different from the 2D
exemplar views typically used in classic visual search
studies. Hence, we introduce a discrete perspective
change by simulating viewing with a 35-degree angle
of declination, as if someone is sitting at a desk and
looking down at the items on the desk surface, and
test visual search performance with the corresponding
image transformations. Additionally, characteristic
of everyday viewing, the observer and/or the objects
may be moving, yielding continuous perspective
changes and progressive transformation of the search
items’ projected images. Accordingly, we introduce
a continuous perspective change where the entire
search array rotates and test its effects on visual search

performance. Overall, the perspective change, be it
discrete or continuous, gives rise to distorted images
of objects projected on the retina and relates to the
issue of invariance. We compare search performances
in these conditions to search based on static 2D
exemplar views of objects to study whether and how
systematic variation of image information affects visual
search.

Second, an embodied process entails active
exchange of information between an observer and the
environment, including picking up information from
the surroundings in real time. Everyday activities, such
as scanning the room to find a spot to fit some new
furniture, counting fingers to do math, and listing
work deadlines on Google Calendar, are all cases
of parasitizing the local environment and acquiring
just-in-time information to alleviate internal cognitive
load and boost cognitive performance (Clark &
Chalmers, 1998). In an experiment, when participants
selected and assembled colored blocks to replicate a
model, their eye movements suggested that participants
did not memorize the whole model before selecting the
individual pieces; instead, they looked back and forth
at a part of the model and copied it piecewise (Pelz,
Hayhoe, & Loeber, 2001). Similarly, in a brick sorting
experiment (Droll, & Hayhoe, 2007), observers were
to pick up or put down one of five bricks according
to features, such as color, width, height, and texture.
Instead of memorizing the features and mentally
comparing features of the brick to be sorted with
features that indicated picking up or putting down,
participants re-fixated on the bricks each time before
picking them up or putting them down. In both
experiments, the participants’ behaviors demonstrated
a tendency to acquire information in real time to
reduce memory load and avoid memory-related errors.
Similarly, when searching for an object or a person,
one could memorize their appearance and then look
through the search array for the target; or one could
hold a picture of the search target in hand and look
and compare the target and search array items in real
time. The questions are when the external reference
is available, whether searchers use the just-in-time
information and whether the reference affects visual
search performance. To answer these questions, we
manipulate the presence of the target during the
search and compare search performance and eye
movements with or without the visible reference
object.

Visual search is a conscious cognitive activity that
relies on perception (Treisman, 1982; Theeuwes,
Kramer, & Belopolsky, 2004) and is modulated by
attention (Wolfe & Horowitz, 2017). Ultimately,
the purpose of a visual search is to guide actions
or facilitate decision making. For this purpose,
metacognitive sensitivity, defined as being able to
judge one’s own performance outcome as correct or
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incorrect, is critical (Fleming, Weil, Nagy, Dolan, &
Rees, 2010). A reliable visual search should not only be
accurate and fast, but also require a searcher to have
veridical judgment of their own search performance.
However, in many perceptual tasks, behavioral response
and metacognitive judgment are incongruent, such as
feeling confident about an incorrect response or vice
versa (Kunimoto, Miller, & Pashler, 2001; Washburn,
Smith, & Taglialatela, 2005; Lau & Passingham, 2006;
Lau & Passingham, 2007; Szczepanowski, & Pessoa,
2007; Fleming & Dolan, 2010). For example, when
discriminating grating bars’ orientations, the observers’
felt that confidence was independent of their task
performance and furthermore it biased the subsequent
perceptual decisions (Samaha, Switzky, & Postle, 2019).
It has been proposed that this dissociation between
perceptual performance and metacognition was because
performance depends on weighing and comparing
multiple stimuli but subjectively felt confidence depends
on signal strength of the chosen stimulus (Samaha,
Lemi, & Postle, 2017). Given that perceiving stimuli is
the first step after which visual search can only take
place, it is possible that, in a visual search, individuals’
metacognitive sensitivity is also dissociated from their
task performance. To verify this, we collect participants’
self-rated confidence after each search trial and compare
it with their search performance. Furthermore, we also
test whether metacognitive sensitivity may be improved
when introducing factors such as motion and reference
targets.

In sum, there are two goals of this study. First, we
investigate whether a visual search in 3D environments,
which typically contain perspective change of the
search items and hence image distortions, follows
the same behavioral trends as revealed by classic
laboratory-based experiments using static exemplar 2D
views of stimuli. Specifically, we compare searching for
3D objects when they were presented with a slanted
view (35 degrees angle of declination) versus with a
frontal view (objects’ silhouettes; Experiment 1) and
study the search performances when the observers
look down at stationary 3D search objects (discrete
perspective change) or when they look down at rotating
3D search objects (continuous perspective change;
Experiment 2). Second, we examine the effect of having
external references that allow acquiring information in
real time on the visual search performance. To do so, we
manipulate the presence of search targets during search
and compare search performances when an observer
must remember the targets (as in classic visual search
experiments) versus when they can make reference to
the targets during the search (as an embodied process).
The former taxes one’s cognitive resources and the latter
utilizes real-time perceptual information. Overall, we
manipulate search stimuli and their motions to create
closer approximations of a visual search in everyday
life and study search behaviors and the metacognition

of them when an embodied visual search is or is not
attainable.

Experiment 1

In this experiment, we introduced two key
manipulations to a classic visual search task to simulate
a more representative search process in the real world.
First, we manipulated the viewing angle or projection
of search items onscreen and created two types of
stimuli. In classic visual search experiments, typically
the search items were either 2D search items (e.g.
contours or letters) or frontal displays of 3D objects,
which were placed at eye height and hence showed their
exemplar views (e.g. silhouettes). In this experiment,
we continued to display frontal views of search items
in one condition, but we also added a slanted view
condition, where pictures of 3D search items were shot
by a camera pointing down with a 35 degree angle of
declination. The slanted view condition represented
a more general case of search in real life, because
often when observers look out to find something,
the line of sight is not orthogonal to the target. It
is thus meaningful to test whether search is resistant
to image distortions yielded by a change of viewing
angle.

The second key manipulation was the availability
of the target throughout the search. In one condition,
similar to traditional search tasks, observers first
learned and remembered the target and then looked
for it from an array of various items. In the other
condition, observers also learned the search target first,
but when they were searching, the target appeared
on the screen along with the search array items. The
first kind of search taxed memory (memory search).
The second kind of search allowed observers to refer
to the target during the search (reference search),
offload a memorized target to structures in the
world, and acquire real time information during the
search.

With manipulations of stimulus type (frontal views
versus slanted views of objects) and search type
(memory search versus reference search), we created
one condition that closely resembled a classic visual
search experiment – searching with frontal views of
objects and memorizing a target before search (the
frontal-memory search condition), and one condition
that was representative of search in real life – looking
down at objects from a perspective and being able
to look back and forth between the target and the
search array (the slanted-reference search condition).
Comparing performances across these manipulations,
we aim to uncover whether behavioral trends found
in classic visual search experiments were similar to
behaviors in more complex and more natural searches.
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Methods

Participants
To determine the appropriate sample size, we used

G*Power (Faul, Erdfelder, Lang, & Buchner, 2007)
with four within-subject factors and set the effect
size at Cohen’s d = 0.25 and the alpha value at 0.05.
Results indicated that a sample size of 10 would
produce a power of 0.95. Accordingly, we recruited 13
adults (18—25 years old, 8 women) with normal or
corrected-to-normal vision and each was reimbursed
at ¥30/hour for their time and effort. All of them had
normal or corrected-to-normal vision. This study was
approved by the Institutional Review Board of Sun
Yat-sen University. Informed consent was obtained
from all participants.

Stimuli and apparatus
Composite LEGO blocks were used as search items.

Four types of LEGO pieces were put together to create
24 uniquely shaped LEGO blocks. The four types of
LEGO pieces (0.8 H × 0.8 D × 0.8 L cm3 pieces with 2
studs, 0.8 H × 0.8 D × 1.6 L cm3 pieces with 4 studs,
0.8 H × 0.8 D × 2.4 L cm3 pieces with 6 studs, and 0.8
H × 0.8 D × 3.2 L cm3 pieces with 8 studs) had the
same height and depth, but varied in length. The 24
composite LEGO blocks differed on two dimensions

(all had the same depth of 0.8 cm) and none of them
was symmetrical. All LEGO blocks were spray-painted
to be gray. See Figure 1.

Images of the LEGO blocks were randomly selected
to be the search targets or distracters. In one condition,
silhouettes of the LEGO blocks were used. These were
the exemplar views or frontal views of the LEGO blocks
with viewing angle being 0 degrees, as if one is looking
at the LEGO blocks that were placed on the line of
sight and perpendicular to it. In the other condition,
LEGO blocks were placed on a flat table and pictures
(resolution = 1000 × 685 pixels) of them were taken
with a Canon camera (E470) that was held at 40 cm
above the table surface with a tripod and pointed down
with a 35 degree angle between the camera lens and
the table surface. We took professional photographic
measures (e.g. using a reflector and adjusting the shutter
speed), to control for light reflection and shadows.
These were the slanted views of the LEGO blocks.
Note that although the LEGO blocks were 3D, the
distinguishing features existed only in two dimensions
and the distinguishing features were detectable in both
the frontal views and the slanted views of the LEGO
blocks. The two viewing perspectives were tested in
separate experimental sessions with counterbalanced
orders between subjects.

Experimental stimuli were rendered using MATLAB
Psychophysics Toolbox (Brainard & Vision, 1997;

Figure 1. Stimuli and display in Experiment 1. Examples of search array in the frontal view reference search trial (top left), the frontal
view memory search trial (top right), the slanted view reference search trial (bottom left), and the slanted view memory search trial
(bottom right).



Journal of Vision (2022) 22(10):13, 1–23 Zhang & Pan 6

Kleiner et al., 2007) and displayed on a 27-inch ASUS
PG279Q monitor with resolution of 2560 × 1440
pixels, refresh rate of 144 Hz and brightness set at 165
cd/m2. The eye-to-screen viewing distance was 60 cm.
Each trial had a learning phase and a search phase.
A red circle (diameter = 3 degrees) was visible in the
center of the screen throughout all trials. During the
learning phase of all trials, the search target (the display
size was 2 degrees × 2 degrees) was presented inside
the red circle; during the search phase of half of the
trials, the search target (the display size was 2 degrees
× 2 degrees) was presented inside the red circle (the
reference search trials) and in the other trials, there
was nothing inside the red circle (the memory search
trials). There were 16 possible locations for search items
to appear during the search phase and these possible
locations were evenly distributed on two concentric
rings (with radii of 7.8 degrees and 10.4 degrees) around
the center red circle (see Figure 1). The probability of a
target appearing in any of the possible target locations
was equal. There was no occlusion between objects. In
half of the trials, there was a target in the search array
(target present trials) and, in the other half, there was
no target in the search array (target absent trials). Note
that for the slanted view condition, the target appeared
slightly different in the learning phase and in the search
phase, because the target was always at the center of
the turntable in the learning phase, but in the search
phase it could be anywhere amid other items occupying
a non-centered location on the turntable.

Eye movement during the search was tracked using
an EyeLink 1000 Plus Desktop Mount eye tracker
(SR Research Inc., Mississauga, Canada), which was
controlled by a native EyeLink host PC. Monocular
eye position was collected from the eye with higher
uncorrected visual acuity at a sampling frequency of
1000 Hz.

Procedures
Participants came to the laboratory and were

explained about the purpose and procedures of the
experiment. After signing the consent forms, they were
seated in front of the testing computer and placed
their heads on a forehead-and-chin rest. A nine-point
calibration was first done to validate the eye tracker.
During the experiment, when there was a ≥0.5 degrees
deviation, the eye tracker was recalibrated. Drift
correction was done before stimulus onset for each trial.
Participants received verbal instructions that they were
going to see one target LEGO block and subsequently
report the presence or absence of it from many LEGO
blocks.

A trial started with a target displayed for 3 seconds,
followed by the onset of the search array containing 3,
6, 9, or 12 items (set size). The search array items were
randomly scattered around the center red circle, inside

Figure 2 . Procedures of a typical slanted view memory search
trial in Experiment 1.

which the target might be visible in half of the trials
(the reference search trials). The search array remained
onscreen until a response was given. Participants used
a standard QWERTY keyboard to make responses.
They pressed the “F” key to report the presence and
pressed the “J” key to report the absence of a target
in the search array. Afterward, participants rated the
confidence level of their previous search on a 4-point
scale by pressing the “R,” “T.” “Y,” or “U” key (R
for least confident and U for most confident). After
confidence rating, the fixation cross reappeared, and the
next search trial began. See Figure 2.

There were altogether four experimental blocks
for the two factors of stimulus type (frontal versus
slanted views) and search type (memory versus
reference search) and the order of the blocks were
counterbalanced between subjects. In each block, we
tested four set sizes crossed with target presence/absence
(the probability of each was 50%), yielding eight unique
conditions and each condition was repeated four times.
It took approximately 15 minutes to complete one
block. Altogether, each participant spent about 1 hour
to complete 128 trials in four experimental blocks.

Sixteen practice trials were given to each participant
before the actual experiment. With the presence of the
experimenter, participants in the practice trials searched
for LEGO blocks from a small search array (3 items).
Procedures in the practice trials were identical to those
in the actual experiment. Stimuli used in the practice
trials never appeared again in the actual experiment.

Data analysis
This experiment used a 2 (stimulus type, blocked)

× 2 (search type, blocked) × 2 (target present/
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absent) × 4 (set size) within-subject factorial design.
We collected data on search accuracy (defined as
percentage of correct trials over total trials, with 50%
being chance-level performance), response time (RT),
search efficiency (defined as the slope of the fitted
least-squared line between RT and set size; Duncan &
Humphreys, 1989), subjective confidence ratings, and
eye movement patterns.

In this and the second experiment, to compare
behaviors in different search conditions, we conducted
Bayesian analyses (Kruschke, 2010) using the JASP
software (JASP Team, 2020 [https://jasp-stats.org/];
Wagenmakers et al., 2018). Statistical evidence for
ANOVA was reported using BFincl, the value of which
indicated strength of evidence for including a specific
variable in the ANOVA/regression model and the larger
the BFincl value, the stronger the evidence (van den
Bergh, Van Doorn, Marsman, Draws, Van Kesteren, &
Derks, 2020). As a general rule, BFincl > 1 suggested to
include a particular factor; BFincl < 1 suggested not to
include a particular factor (van Doorn, et al., 2019).
Statistical evidence for post hoc pairwise comparisons
was reported using BF10, which indicated the strength
of evidence for H1 and the larger the BF10 value,
the stronger the evidence. As a general rule, BF10
> 1 suggested strong evidence for H1, and BF10<1
suggested weak evidence for H1 but strong evidence for
H0 (van Doorn, et al., 2019). Other data treatments,
such as fitting regression lines and computing means
and 95% confidence intervals (CIs), were computed in
R (R version 4.0.5, RStudio Team, 2021). Statistically
significant main and interactive effects were reported.
Occasionally, informative nonsignificant effects were
mentioned and discussed because they suggested
lack of difference between the conditions being
contrasted.

Eye movement data were parsed into saccades
and fixations using the Eyelink Data Viewer
(Data Viewer 3.2.48, SR Research, 2018). Eye
movements that had an acceleration threshold of 8000
degrees/second2, a velocity threshold of 30
degrees/second, and deflections>0.1 degrees were
classified as saccades. All fixation points that were
within 0.6 degrees of each other and within a 120 ms
temporal window of each other were counted as a single
fixation. Oculomotor variables, including the number
of fixations, the mean fixation duration, and the mean
saccadic amplitude were analyzed to study the search
behavior (Zelinsky & Sheinberg, 1997). Blinks were
removed.

The regions of interest (ROI) were entailed with
each LEGO block on the screen and an area of 2
degrees diameter around it (Spotorno, Malcolm,
& Tatler, 2014). In the reference search blocks, we
outlined a reference item’s ROI and then calculated
the total duration of fixations that fell within this ROI
as the dwell time on the reference item. Similarly, in

target-present trials, we outlined a target’s ROI and the
target was considered to be fixated when at least one
fixation fell within its ROI. Two ROI-related measures
were used, including the proportion of trials where
participants’ fixations landed on the target over all
target-present trials (p), the proportion of trials where
targets were identified over trials where targets were
fixated upon (pid). In the literatures, p was treated as
measures of selection; pid was measures of identification
(Godwin, Menneer, Liversedge, Cave, Hollimane, &
Donnelly, 2020).

Results

We individually compared search accuracy, RT,
self-rated confidence, and eye movement patterns
between the two stimulus types and two search types
with various set sizes and target presence/absence and
found participants’ performance was generally similar
when search from frontal versus slanted views, with
differences in eye movement patterns. Comparing
between the search types, participants completed
the reference search with longer search time, higher
accuracy, and higher level of confidence than the
memory search. Next, we examined each aspect of the
search behaviors in details.

Accuracy
In all conditions, participants were able to search

with an overall accuracy rate between 84% and 96%.
We performed a Bayesian repeated measures ANOVA
analysis, with stimulus type, search type, targets’
presence, and set size as the within-subject variables.
First, accuracy was not affected by stimulus type
(BFincl = 0.084). When search items were objects’
frontal views, the mean accuracy was 93.0% (95%
within-subject CI = 90.4%, 95.5%, calculated using
Morey’s 2008 method); when the search items were 2D
projections of objects from 35 degrees viewing angles,
the mean accuracy was 90.4% (95% within-subject CI =
87.8%, 93.0%). Second, search accuracy was affected by
search type (BFincl = 36.82). When the target was visible
throughout search, the mean accuracy was 94.6% (95%
within-subject CI = 92.4%, 96.8%); in trials with no
target displayed in the middle of the search array, the
mean accuracy was 88.8% (95% within-subject CI =
85.3%, 92.3%). Third, target presence/absence did not
affect search accuracy (BFincl = 0.083; target presence:
mean = 90.7%, 95% within-subject CI = 88.6%, 92.8%;
target absence: mean = 92.8%, 95% within-subject CI
= 90.7%, 94.9%). Finally, set size affected accuracy
(BFincl = 1553.21), and as the set size increased, the
accuracy dropped. Post hoc planned comparisons with
Bonferroni correction showed that the accuracy was

https://jasp-stats.org/
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higher when looking for a target from three items
(95.8%) or six items (95.8%) than from nine or 12 items
(87.4% and 87.9%, respectively; BF10 ranged from 8.03
to 225.63).

Response time and search efficiency
Analyzing response time in the correct trials with

Bayesian repeated measures ANOVA, we found that
search RT was affected by search type (BFincl =
6300.42), target presence/absence (BFincl = infinite), set
size (BFincl = infinite), and the interaction between set
size and target presence/absence (BFincl = 3.80 × e11); it
was not affected by stimulus type (BFincl = 0.027).

Looking at the individual effects, first, search RT
was longer in reference search trials (mean = 3.82
seconds, 95% within-subject CI = 3.44, 4.21) than
in the memory search trials (mean = 3.37 seconds,
95% within-subject CI = 2.85, 3.89). Second, the
search RT increased with set size (set size 3: mean =
1.79 seconds, 95% within-subject CI = 1.51, 2.07; set
size 6: mean = 3.04 seconds, 95% within-subject CI
= 2.68, 3.40; set size 9: mean = 4.16 seconds, 95%
within-subject CI = 3.66, 4.67; and set size 12: mean =
5.39 seconds, 95% within-subject CI = 4.65, 6.14). Post
hoc analysis showed that all the pairwise comparisons
reached significance (all BF10>100). Third, consistent
with findings in the classic visual search literature,
search RT was longer in target absent trials (mean
= 4.30 seconds, 95% within-subject CI = 3.73, 4.87)
than in the target present trials (mean = 2.90 seconds,
95% within-subject CI = 2.53, 3.27). Finally, RT was
affected by the interaction between set size and target
presence/absence (Figure 3). As the set size became
larger, the RT became increasingly longer in the target
absent search than in the target present search. In the
target present trials, the search RT increased at the rate
of 0.29 second/item. The RT – set size relation was
linear (RT = 0.29 × set size + 0.74, r2 = 0.64, F (1, 50)
= 88.96, p<0.001) and monotonically increasing, with
slope significantly different from 0 (BF10 = 56,721.50).
In the target absent trials, the search RT increased at the
rate of 0.51 second/item. The RT – set size relation was
linear (RT = 0.51 × set size + 0.50, r2 = 0.72, F (1, 50)
= 131.5, p<0.001) and monotonically increasing, with
slope significantly different from 0 (BF10 = 467,518.16).

In the classic visual search literature, it has been
repeatedly suggested that efficiency, which was defined
as the search time increment per additional search array
item, of the target present search was twice as high
as that of the target absent search or the increment
was half in target present search (Treisman & Gelade,
1980; Wolfe, 1998). In each of the eight conditions in
this experiment (target present/absent, stimulus type,
and search type) and for every participant, we fit a
linear trend between the search RT and set size and
analyzed the slopes (which reflected search efficiency)

Figure 3. Behavioral results of Experiment 1. RT was affected by
target presence/absence and set size. Filled circle = target
absent; and open square= target present. Error bars (some
were small and occluded by the markers) represent 1 SE.

with Bayesian repeated-measures ANOVA. Results
showed that search efficiency was only affected by target
presence/absence (BFincl = 2.08 × e10). As expected,
the mean slope in the target absent trials (mean =
0.53 second/item, 95% within-subject CI = 0.45, 0.60)
was equivalent to two times the mean slope of the
target present trials (mean = 0.28 second/item, 95%
within-subject CI = 0.46, 0.70, BF10 = 0.62); or the
search efficiency was half in the target absent trials.
Whether the search items were shown as frontal view or
slanted view did not affect the search efficiency (BFincl =
0.21; meanfrontal = 0.38 second/item, 95% within-subject
CI = 0.32, 0.45; meanslanted = 0.41 second/item, 95%
within-subject CI = 0.35, 0.47). The presence of the
reference targets did not affect the search efficiency as
well (BFincl = 0.44; meanmemory = 0.38 second/item,
95% within-subject CI = 0.31, 0.44; meanreference = 0.42
second/item, 95% within-subject CI = 0.35, 0.48).

Confidence
We conducted Bayesian repeated-measures ANOVA

on confidence rating with stimulus type, search type,
targets’ presence, and set size as the within-subject
factors. Confidence rating was affected by search type
(BFincl = 4.46 × e8) and set size (BFincl = 4.66). Whether
the search items were shown as the frontal view or
the slanted view did not affect subjective confidence
(BFincl = 0.034). Participants were more confident in
the reference search trials (mean rating = 3.94, 95%
within-subject CI = 3.90, 3.98), than in the memory
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Figure 4. Behavioral results of Experiment 1. Confidence rating
decreased with increasing set size. Error bars (some were small
and occluded by the markers) represent 1 SE.

search trials (mean rating = 3.72, 95% within-subject
CI = 3.67, 3.76). Furthermore, as the number of search
items increased, the confidence rating scores dropped.
The differences between set size 3 (3.92) and 9 (3.77),
and 3 and 12 (3.78) reached significance (BF10 =
12.31,>100, respectively; Figure 4).

Comparing the subjective confidence to the search
response, although in the correct search trials, the
confidence scores had higher mean and lower variance
than in the incorrect trials (meancorrect = 3.87, SDcorrect
= 0.41; meanincorrect = 3.32, SDincorrect = 0.97), the
mean confidence score in the incorrect trials was still
significantly higher than 2.5, the mid-point of the
4-point scale (BF10 = 85.70). The participants were
overly confident.

A binary logistic regression was performed to assess
how confidence, stimulus type, search type, targets’
presence, and set size predicted search outcomes
(correct or incorrect). The results showed that the
full logistic regression model containing all the five
predictors was statistically significant, χ2 = 133.12,
df = 10, N = 1599, p<0.001, in other words, all five
input factors were significant in predicting the search
correctness (Table 1). The predictor confidence had an
odds ratio of 71.19, which meant that everything else
being equal, an individual who reported the highest
confidence (confidence = 4) on a particular trial was
71.19 times more likely to be correct in their search
than someone who rated the lowest confidence level
(confidence = 1). The odds ratio for stimulus type was
1.45 or search with the frontal views was 1.45 times
more likely to be correct than search with the slanted
views of object. The odds ratio for search type was 1.62

Odds
Predictor B SE Wald Sig. ratio

Stimulus type (frontal) 0.375 0.197 3.632 0.057 1.454
Search type (reference) 0.482 0.215 5.039 0.025 1.620
Target pre/abs (absent) 0.480 0.199 5.799 0.016 1.617
Set size 25.817 0.000
Set size 3 1.092 0.321 11.551 0.001 2.979
Set size 6 1.068 0.306 12.214 0.000 2.910
Set size 9 −0.084 0.227 0.136 0.712 0.920

Confidence 65.811 0.000
Confidence 2 2.531 0.757 11.184 0.001 12.565
Confidence 3 3.199 0.714 20.067 0.000 24.517
Confidence 4 4.265 0.679 39.491 0.000 71.189

Table 1. Results of logistic regression predicting accuracy from
stimulus type, search type, target presence/absence, set size,
and confidence rating.

or reference search was 1.62 times more likely to be
correct than memory search. The odds ratio for target
presence/absence was 1.62 or search in the target absent
trials was 1.62 times more likely to be correct than
search in the target present trials. Last, when searching
from three or six items, the likelihood of being correct
was approximately three times higher than searching
from nine or 12 items.

Overall, the analyses of search performance indicated
that participants searched faster but made more errors
in conditions when they relied on memory, as compared
to when they were able to use external reference. Their
search performance (accuracy, RT, and confidence)
was largely equivalent regardless of whether search
items were presented with a frontal view or a slanted
view. In particular, we compared performances between
searches with the frontal views and no reference
objects (frontal-memory condition), which was a
typical laboratory-based visual search task setup
and search with slanted views and reference objects
(slanted-reference condition), which was designed
to be representative of real-world search. First, the
accuracy was equivalent between these conditions
(BF10 = 0.46; the frontal-memory condition: mean
= 91.1%, 95% within-subject CI = 87.8%, 94.3%;
the slanted-reference condition: mean = 93.8%, 95%
within-subject CI = 90.1%, 97.5%). However, the
slanted-reference condition had longer search RT
(BF10 = 7.67; meanfrontal-memory = 3.41 seconds, 95%
within-subject CI = 2.92, 3.90; meanslanted-reference
= 3.80 seconds, 95% within-subject CI = 3.31,
4.29) and higher confidence rating (BF10 = 103.89;
meanfrontal-memory = 3.74, 95% within-subject CI = 3.62,
3.86; meanslanted-reference = 3.92, 95% within-subject CI
= 3.86, 3.97). Because the search performance, in terms
of search RT, search efficiency, and confidence rating,
was equivalent between the frontal-reference condition
and the slanted-reference condition (search RT: BF10
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= 0.33; search efficiency: BF10 = 0.28; and confidence
rating: BF10 = 0.36), we can infer the longer RT and
higher reported confidence level in the slanted-reference
condition was due to the presence of reference items,
not the perspective projection. In other words, in
a more natural visual search task with perspective
change, observers used the external reference to achieve
accuracy as high as in a classic visual search task with
exemplar 2D views.

Next, we examined the effects of search type,
stimulus type, set size, and target presence/absence
on eye movement patterns, including the number
of fixations, the fixation duration, and the saccade
amplitude.

Fixations and saccades
To compare the number of fixations between the

memory and reference searches and between the frontal
and slanted views, we conducted a Bayesian 2-way
repeated-measures ANOVA and the results showed that
there were more fixations in the frontal view than in the
slanted view condition (BFincl = 24.73; meanfrontal =
14.82, 95% within-subject CI = 13.98, 15.66; meanslanted
= 14.05, 95% within-subject CI = 13.16, 14.94). There
were more fixations in reference search than in memory
search (BFincl = 1191.85; meanreference = 15.82, 95%
within-subject CI = 14.91, 16.73; meanmemory = 12.96,
95% within-subject CI = 12.17, 13.75). It is reasonable
to attribute that the extra fixations in the reference
search was due to repeatedly checking the reference
item. To verify this speculation, we subtracted fixations
on the reference item from the total number of fixations
and then performed a Bayesian paired sample t-test
comparing the number of fixations in the memory
search with that in the subtracted reference search.
The results showed that the remaining fixation counts
(Figure 5) in the reference search (mean = 13.07, 95%
within-subject CI = 12.32, 13.82) and in the memory
search (mean = 12.87, 95% within-subject CI = 12.12,
13.62) were equivalent (BF10 = 0.33), which confirmed
that participants repeatedly checked the reference
item while searching. Furthermore, we ran a Bayesian
1-way repeated-measures ANOVA with the number

Figure 5. The fixation counts make-up in the reference and
memory search conditions of Experiment 1.

of fixations on the reference target as the dependent
variable and set size as the independent variable.
Results showed that when the number of search items
increased, the number of fixations on the reference
target increased (BFincl = 16,241.69; set size 3: mean
= 1.91, 95% within-subject CI = 1.39, 2.42; set size 6:
mean = 2.46, 95% within-subject CI = 1.84, 3.07; set
size 9: mean = 2.78, 95% within-subject CI = 1.99,
3.56; set size 12: mean = 3.64, 95% within-subject CI =
2.60, 4.69). The differences between set sizes 3 and 6
(BF10 = 5.95), 3 and 9 (BF10 = 47.71), 3 and 12 (BF10
= 214.47), 6 and 12 (BF10 = 21.54), and 9 and 12 (BF10
= 4.41) all reached significance. This suggested that as
the task became more demanding, the observers were
more willing to seek aid from the reference target in the
environment.

Next, we examined the effects of stimulus type
and search type on fixation durations and saccade
amplitude. Bayesian repeated-measures ANOVA
analysis revealed shorter fixation durations in the
frontal view condition than in the slanted view
condition (BFincl = 23300.59; meanfrontal = 0.23
seconds, 95% within-subject CI = 0.22, 0.24; meanslanted
= 0.26 seconds, 95% within-subject CI = 0.25, 0.27)
and shorter fixation durations in reference search than
in memory search (BFincl = 1,096.89; meanreference =
0.24 seconds, 95% within-subject CI = 0.23, 0.25;
meanmemory = 0.26 seconds, 95% within-subject CI
= 0.25, 0.27). Taking out fixations on the reference
targets, we compared the remaining fixation durations
on the memory and the reference search trials with
a Bayesian paired samples t-test. Results showed
that fixation durations on the search array items in
the memory search and the reference search were
equivalent (BF10 = 0.47; meanmemory = 0.26 seconds,
95% within-subject CI = 0.23, 0.28; meanreference_remain
= 0.25 seconds, 95% within-subject CI = 0.22, 0.28).
Therefore, the existence of the reference targets did not
speed up the object identification process. Furthermore,
Bayesian repeated measures ANOVA showed that
the mean saccade amplitude was larger in the frontal
view condition than in the slanted view condition
(BFincl = 1.90 × e9; meanfrontal = 3.82 degrees, 95%
within-subject CI = 3.71, 3.93; meanslanted = 3.06
degrees, 95% within-subject CI = 2.95, 3.17). Mean
saccade amplitudes were marginally different between
the search types (BFincl = 1.93; meanreference = 3.52
degrees, 95% within-subject CI = 3.19, 3.84; meanmemory
= 3.37 degrees, 95% within-subject CI = 3.07, 3.68).

The results of fixations and saccades implied that
although the total search RTs were similar between
the frontal and the slanted view conditions, the search
subprocesses differed between them. Namely, in the
frontal view condition, observers made a greater
number of quick fixations that covered the entire
display; in the slanted view condition, observers made
fewer fixations with smaller amplitudes (less “jumping
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around”). This could be because of the objects in
the slanted view condition were compressed along
the vertical dimension, making the search array more
compact than that of the frontal view condition. It
could be inferred that observers were more scrupulous
when searching in the slanted view condition but hastier
when searching in the frontal view condition. When
searching with references, observers checked back
and forth between the reference item and the search
array items, which reflected their strategy of leveraging
on external landmarks and minimizing the use of
internal memory. In other words, observers picked
up information from the environment in real-time to
accomplish the search task.

Perceptual selection and perceptual identification
The process of the visual search can be divided into

two phases – the selection phase and the identification
phases (Cain, Adamo, & Mitroff, 2013; Godwin, et
al., 2020). The selection phase was defined as the
process where target-like objects were selected for
further determination. The relevant indicator for search
accuracy was the proportion of trials where the target
was ever fixated on over the total number of trials
(p). In the identification phase, observers fixated on
features of the target-like objects to determine whether
they were indeed the target. The relevant measure for
search accuracy was the proportion of trials where the
targets were identified over the trials where targets were
fixated upon (pid). We tested how these two measures
were affected by stimulus type and search type using
separate Bayesian repeated-measures ANOVAs. First,
the proportion of target fixation (p) was not affected by
stimulus type (BFincl = 0.33; meanfrontal = 3.82, 95%
within-subject CI = 3.71, 3.93; meanslanted = 3.06, 95%
within-subject CI = 2.95, 3.17), search type (BFincl
= 0.25; meanreference = 0.80, 95% within-subject CI =
0.75, 0.85; and meanmemory = 0.82, 95% within-subject
CI = 0.76, 0.87), or their interaction (BFincl = 0.15).
Second, the proportion of identification, pid, was
marginally affected by search type (BFincl = 1.03) and
pid was higher in the reference search (mean = 95.0%,
95% within-subject CI = 90.8%, 99.3%) than in the
memory search (mean = 90.0%, 95% within-subject
CI = 84.6%, 95.4%). Neither the stimulus type (BFincl
= 0.28; meanfrontal = 0.93, 95% within-subject CI =
0.88, 0.98; meanslanted = 0.92, 95% within-subject CI =
0.87, 0.96) nor the stimulus type times the search type
interaction (BFincl = 0.27) affected pid.

RT segmentation
The total search RT in a search trial was divided

into four segments – looking at the target, looking
at the distracters, looking at the reference item, and
looking elsewhere on the display. The proportion of
each segment over the total looking time was computed.

Figure 6. The proportions of looking time at the target, at the
distracters, at the reference item, and at elsewhere on screen in
the frontal/slanted view conditions.

Although the total search RT was not different between
stimulus types, we further examined the proportion
of each looking segment in the frontal/slanted view
conditions. With the frontal or slanted views, the
proportions of looking at the distracters (BF10 = 0.28),
at the reference item (BF10 = 0.52), or at elsewhere (BF10
= 0.82) were equivalent (Figure 6). However, searchers
took longer to verify the target in the slanted view
condition (mean = 0.82 seconds, 95% within-subject CI
= 0.57, 1.07) than in the frontal view condition (mean
= 0.70 seconds, 95% within-subject CI = 0.49, 0.91),
BF10 = 4.08.

Taken together, these results suggested that (1)
although the total search time was similar between the
frontal view and the slanted view conditions, it took
observers more time to verify that a target-like object
was the target in the slanted view condition, and (2) the
proportion of identifying a target after spotting it was
higher and the identification took less time in reference
search.

Discussion

In Experiment 1, we primarily studied the effects of
stimulus type, search type, target presence/absence, and
set size on search accuracy, search RT and efficiency,
subjective confidence about search performance, and
eye movements during the search. We manipulated
the viewing perspectives to simulate a more general
circumstance where observers were looking with a
non-zero angle of declination and searching from
non-exemplar views of objects. We were particularly
interested in the degree to which their search
performance was affected by image distortions resulting
from the perspective change. Visual search outcomes,
such as accuracy, search RT, efficiency, and self-reported
confidence level, were not affected by perspective
manipulation. However, the process of searching was
different with the slanted view versus with the frontal
view, in that observers made fewer but longer fixations
and smaller saccades when searching, and spent more
time verifying a target after spotting it in the slanted
view condition.
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We introduced a reference item that remained
visible throughout the search in some trials to create
an embodied situation of the reference search and
to contrast with the traditional memory search. The
reference search allowed observers to exploit the stable
environment and acquire task-relevant information
in real-time. The memory search required observers
to remember the target and use their memory in the
traditional sense to search. Results showed that in the
reference search, participants were more accurate but
slower in the reference search because they looked back
and forth between the reference item and the search
array items before making a response. Perhaps because
of that, they were more confident about their search
responses. This was reflected in the eye movement
patterns that in the reference search, participants
made more fixations with shorter durations. With the
reference item, participants also had a higher chance
of correctly identifying the target after spotting it and
needed less time to do so.

Experiment 2

In this experiment, we introduced motion to a visual
search task and generated a dynamic search in VR. In
classic visual search experiments, the search items were
typically static. In this experiment, we continued to
display the static condition. We also added a dynamic
condition, where all search items were placed on a
turntable, and the turntable rotated in depth around the
vertical axis. The dynamic search simulated a realistic
search scenario where an observer was moving around
the search items and looking for a particular one. If the
visual search was based on comparisons of projected
images of targets and search array items, then motion
was a perturbation and the motion-introduced image
transformation would undermine search accuracy
and/or efficiency. If the visual search was based on
recognizing 3D objects, then the vast literatures on
“structure from motion” (Norman & Todd, 1993; Tittle
& Braunstein, 1993; Bingham & Lind, 2008; Lee, Lind,
Bingham, & Bingham, 2012; Lind, Lee, Mazanowski,
Kountouriotis, & Bingham, 2014); suggested that
continuous motion would not hinder recognition
and therefore not affect search performance. In this
experiment, we compared visual search performance
when the search array items rotated (dynamic search)
versus when they remained still (static search) and
studied whether the benefit of having external reference
items extended to aiding the dynamic search.

Methods

Participants
To determine the appropriate sample size, we used

G∗Power (Faul, Erdfelder, Lang, & Buchner, 2007)

Figure 7. Stimuli and apparatus in experiment 2. (A) A
participant performed visual search in VR wearing an HMD and
holding a controller to make response. (B) Experimental display
in the static and frontal-dynamic conditions. In the
frontal-dynamic condition, rotation of the turntable always
began with the frontal view of the search items facing an
observer. (C) Experimental display in the sideview-dynamic
condition (the control condition), where rotation always began
with the side view of the search items facing an observer.

with four within-subject factors and set the effect size at
0.25 and the alpha value at 0.05. Results indicated that
a sample size of 10 would produce a power of 0.95. We
recruited 20 adults (aged between 18 and 35 years, 11
women) in this experiment. All participants had normal
or corrected-to-normal vision and received ¥30/hour to
compensate for their time and effort. Five participant’s
data were removed from analysis due to technical errors
in eye movement recording. The henceforth analysis
was based on 15 participants’ data. This study was
approved by the Institutional Review Board of the
Department of Psychology, Sun Yat-sen University.
Informed consent was obtained from all participants.

Stimuli and apparatus
Participants wore an HTC Vive head-mounted

display (HMD; New Taipei City, Taiwan) equipped
with a Qingtech eye tracker (version V1S; Shanghai
Qingyan Technology Co., Ltd., Shanghai, China) and
held an HTC Vive controller in their dominant hand
(Figure 7A). The two 1080 × 1200 px OLED screens
had a refresh rate of 90 Hz and a combined field of
view of approximately 100 degrees (horizontal) × 110
degrees (vertical). The integrated Qingtech eye tracker
(version V1S; Shanghai Qingyan Technology Co.,
Ltd.) recorded the eye movements binocularly with a
refresh rate of 100 Hz and a spatial resolution around
0.5 degrees within a 20 degrees window centered in
the viewports. The experiment was implemented in
C# in the Unity 3D game engine (version 2018.4.14;
Unity Technologies, San Francisco, CA, USA)
using SteamVR (version 1.16.10; Valve Corporation,
Bellevue, WA, USA), and Qingtech eye-tracking
software libraries (version 2.1.82; Shanghai Qingyan
Technology Co., Ltd.) on a computer operated with
Windows 10.
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The search items were similar those in Experiment 1
but instead of actual LEGO blocks, they were modeled
using SketchUp Pro (version 18.0.16976; Trimble Inc.,
Sunnyvale, CA, USA). The display size for each LEGO
block was 2 degrees × 2 degrees, which was the same
as that in Experiment 1 (Figures 7B, 7C). Created in
VR, all search items were placed on a round turntable
and they did not occlude one another. In the center
of the turntable, there was a red ring (diameter = 4
degrees), inside which there was the reference item
on some but not all trials. The graphics simulated a
35 degrees viewing angle, as if a seated observer was
looking down at the search items on a table. In the static
display condition, the turntable and the search items
were stationary; in the dynamic display condition, the
turntable, with the search items it supported, rotated in
depth. The turntable began rotating with the frontal
views search items directly facing the observer and it
rotated with the speed of 12 degrees/seconds and the
maximum displacement of 45 degrees to the left and to
the right of the starting position (see Figure 7B).

Procedures
Participants came to the laboratory and were

explained about the purpose and procedures of the
experiment. They then signed the consent forms, sat
down, and put on the HMD. Head movements were
not restricted. A five-point calibration was performed
to validate the eye tracker. Participants received verbal
instructions that they were going to see one LEGO
block first, and then report the presence or absence
of the LEGO target from many LEGO blocks. The
procedures were similar to those in Experiment 1
with exceptions of how responses were made. In this
experiment, participants reported the presence of a
target by pulling the trigger on the controller with the
index finger and reported the absence of a target by
pressing the trackpad on the controller with the thumb.
Participants selected a confidence level by pressing the
left and right button on the controller.

There were altogether four experimental blocks for
the two factors of display type (static and dynamic) and
search type (memory search and reference search) and
the order of experimental blocks was counterbalanced
between subjects. Within each block, there were
eight conditions (4 set sizes × target-present/absent)
and each condition was repeated four times. It took
approximately 15 minutes to complete the 32 trials in
one block. Altogether, each participant completed four
blocks of 128 trials.

The control condition
In the dynamic display condition, the starting view

might affect search performance because distinguishing
features of the LEGO blocks were only found in two

dimensions and rotation began with the frontal view
of the LEGO blocks directly facing the observer. In
other words, the distinguishing features of search items
were utterly presented when rotation was about to
start. We add a control condition in which rotation
began when the sideview of the LEGO blocks were
facing the observer (see Figure 7C). In this case, no
distinguishing features of search items was presented
when rotation began but distinguishing features
gradually came to view as the rotation went on. In
the control condition, rotation speed was also 12
degrees/second but the turntable only rotated to one
direction for 120 degrees and then turned back. The 120
degrees rotation allowed both sides of the objects to
be seen by the observers. We hence referred the control
condition as the “sideview-dynamic condition,” in
contrast to the “frontal-dynamic condition.” Another
group of 16 participants (aged between 18 and 33
years, 8 women) did the sideview-dynamic condition,
which consisted of one memory search block and one
reference search block (block order counterbalanced).
Within each block, there were eight conditions (4 set
sizes × target-present/absent) and each condition was
repeated four times.

Data analysis
The main experiment consisted of a 2 (display

type, blocked) × 2 (search type, blocked) × 2 (targets’
presence) × 4 (set size) within-subject factorial design.
We analyzed the outcome measures of search accuracy,
response time, search efficiency, confidence rating,
and eye movement patterns. Same as in Experiment
1, the means were compared using Bayesian methods
conducted in the JASP software and regressions and
other analysis were conducted in R software. Raw eye
tracking data were preprocesses in an in-house program
developed by Qingtech to generate object-based
outcome. The eye tracker mounted in the helmet
tracked the observer’s gaze patterns in real-time, and the
VR processor mapped the gazes to the VR scene. The
duration of gazes dwelled on an object was the target
identification time. The eye tracking program recorded
the identification time on each object throughout the
search trials.

Results

Three lines of analyses were conducted for three
goals – comparing search performance between the
slanted condition in Experiment 1 and the static
condition in Experiment 2 to validate the VR setup;
comparing the search performance between the static
and the frontal-dynamic conditions to test for the effect
of motion and continuous perspective change on visual
search; and examining the eye movement patterns in
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the static and the frontal-dynamic conditions to explore
how motion affected participants’ search process in the
selection and identification phases.

Validating the VR setup
To validate the experimental setup in VR, we

first compared performance of the static condition
in Experiment 2 with that of the slanted condition
of Experiment 1. The only differences between the
two experiments were the participants and whether
the display was in VR with free head movement or
onscreen with their head on a chinrest. All other
settings were identical. Bayesian repeated-measures
ANOVA with experiment (screen versus VR) as the
between-subject factor and search type (memory
search and reference search) as the within-subject
factor were conducted to individually assess search
accuracy, search RT, and self-reported confidence.
Accuracy was not different between the screen and the
VR display conditions (BFincl = 0.56; screen: mean
= 90.4%, 95% within-subject CI = 87.1%, 93.6%;
VR: mean = 93.0%, 95% within-subject CI = 91.3%,
95.7%). Search RT was not different between screen
and VR conditions (BFincl = 0.24; screen: mean = 3.54
seconds, 95% within-subject CI = 2.93, 4.14); VR:
mean = 4.24 seconds; 95% within-subject CI = 3.68,
4.81). The mean confidence rating was not different
between the screen and VR conditions (BFincl = 0.43;
screen: mean = 3.81; 95% within-subject CI = 3.73,
3.88; VR: mean = 3.87, 95% within-subject CI = 3.80,
3.94). Accuracy, search RT, and confidence rating were
not affected by any interactive effects. Furthermore,
Bayesian repeated-measures ANOVA with experiment
(screen versus VR) as the between-subject factor and
the search type (memory versus reference search) and
target presence/absence as the within-subject factors
were conducted to individually assess search efficiency.
Results showed that search efficiency was not different
between screen and VR conditions (BFincl = 0.24;
screen: mean = 0.41 seconds/item, 95% within-subject
CI = 0.34, 0.48); VR: mean = 0.40 seconds/item;
95% within-subject CI = 0.34, 0.47). Search efficiency
was not affected by any interactive effects. Thus, with
the current setup, the experiment conducted in VR
produced congruous results with the screen-based
experiment.

Comparing visual search performance with and without
motion

After validating the VR setup, we introduced
the search array rotations and examined the search
accuracy, RT, efficiency, self-rated confidence, and eye
movement patterns in the static/dynamic search and
in the memory/reference search with various set sizes
when targets were present or absent. Results of these

analyses directly answered the questions of whether
continuous perspective change during visual search
affects the performance and whether having references
facilitated visual search with motion.

First, we examined search accuracy using a Bayesian
repeated-measures ANOVA with display type, search
type, target presence/absence, and set size as the
within-subject factors. First, the search accuracy was
not affected by display type (BFincl = 0.14). Mean
accuracy when the search array was static (mean =
93.4%, 95% within-subject CI = 91.5%, 95.4%), was
similar to that when the search array was rotating
(mean = 90.9%, 95% within-subject CI = 88.4%,
93.3%). Consistent with the results in Experiment 1,
when the target was visible in the middle of the search
array throughout search, the accuracy was higher than
otherwise (BFincl = 676.89; reference search: mean =
95.1%, 95% within-subject CI = 93.1%, 97.1%; memory
search: mean = 89.2%, 95% within-subject CI = 86.3%,
92.2%). Finally, as expected, accuracy declined as the
set size increased (BFincl = 12.18) and the declination
was linear at the rate of 0.81% per additional item
(F (1, 58) = 11.25, p = 0.001, slope>0 with BF10 =
1.63). Post hoc planned comparisons with Bonferroni
correction showed that the accuracy was higher when
looking for a target from three (95.5%, BF10 = 93.65)
or six (93.4%, BF10 = 232.97) items than from 12
items (87.9%). Accuracy was not affected by the target
presence/absence (BFincl = 0.79; target presence: mean
= 90.4%, 95% within-subject CI = 86.4%, 95.4%; target
absence: mean = 94.0%, 95% within-subject CI =
91.3%, 96.2%), neither were there significant interactive
effects.

Next, the effects of display type, search type, target
presence/absence, and set size on the search RT in the
correct trials were analyzed using Bayesian repeated
measures ANOVA. The search RT was affected by
target presence, set size, and the interaction between
target presence and set size, and all three BF10 were
greater than 100. The search RT was shorter in target
present trials than in target absent trials (meanpresent =
3.69 s, 95% within-subject CI = 3.03, 4.35; meanabsent
= 5.06 seconds, 95% within-subject CI = 4.34, 5.79).
The search RT increased with set size (set size 3: mean
= 2.46 seconds, 95% within-subject CI = 2.31, 2.61;
set size 6: mean = 3.73 seconds, 95% within-subject
CI = 3.52, 3.94; set size 9: mean = 5.05 seconds, 95%
within-subject CI = 4.76, 5.34; set size 12: mean =
6.28 seconds, 95% within-subject CI = 5.87, 6.69). Post
hoc analysis showed that all the pairwise comparisons
reached significance (all BF10>100). Finally, as shown
in Figure 8, the slope in target absent trials was larger
than that in the target present trials. Specifically, in the
target present trials, the search RT increased at the rate
of 0.30 seconds/item. The RT – set size relation was
linear (RT = 0.30 × set size + 1.48, r2 = 0.39, F (1,
58) = 36.79, p < 0.001) and monotonically increasing,
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Figure 8. Behavioral results of Experiment 2. Search RT
increased with set size, but at a different rate for the target
present and target absent searches. Filled circle = target absent
trials, and open square = the target present trials. Error bars
represent 1 SE (some were too small to show).

with the slope significantly different from 0 (BF10 =
834,062.74). In the target absent trials, the search RT
increased at the rate of 0.54 seconds/item. The RT
– set size relation was linear (RT = 0.54 × set size
+ 0.90, r2 = 0.65, F (1, 50) = 107.3, p < 0.001) and
monotonically increasing, with the slope significantly
different from 0 (BF10 = 2.01 × e7). The search RT was
not affected by display type (BFincl = 0.33) and the
mean search RT when the search array was rotating
was 4.50 seconds (95% within-subject CI = 4.18, 4.82)
and the mean search RT when the search array was
stationary was 4.26 seconds (95% within-subject CI =
3.97, 4.55). Furthermore, the search RT was equivalent
for the memory search and the reference search (BFincl
= 0.05; meanmemory = 4.32 seconds, 95% within-subject
CI = 3.96, 4.68; meanreference = 4.44 seconds; 95%
within-subject CI = 4.10, 4.78).

Next, we fit a linear trend between the search
RT and the set size in each of the eight conditions
(static/dynamic, memory/reference, and target
present/absent) and for every participant and the
slopes indicated search efficiency. A Bayesian repeated
measure ANOVA with display type, search type,
and targets’ presence as within-subjects factors was
conducted. Search efficiency was different between the
target-present and the target-absent trials (BFincl = 2.98
× e12; target-present: mean = 0.89 seconds/item; 95%

within-subject CI = 0.72, 1.05; target-absent: mean
= 1.68 seconds/item, 95% within-subject CI = 1.44,
1.92). A follow-up Bayesian paired t-test indicated
that slopes in target absent trials was equal to twice
the slopes in target present trials (BF10 = 0.36). There
was an interaction effect of display type × search type
(BFincl = 3.00) on search efficiency. Post hoc pairwise
comparison showed that in memory search blocks,
dynamic search had a lower search efficiency (mean
slope = 0.50 seconds/item; 95% within-subject CI =
0.41, 0.60) than the static search (mean slope = 0.38
seconds/item; 95% within-subject CI = 0.28, 0.48),
BF10 = 2.30. But, in the reference search, efficiency
did not differ between the static and dynamic display
conditions (BF10 = 0.29; meanstatic = 0.42 seconds/item,
95% within-subject CI = 0.34, 0.51; meandynamic = 0.40
seconds/item, 95% within-subject CI = 0.32, 0.49).

A four-way Bayesian repeated-measures analysis
on subjectively reported confidence revealed that the
confidence rating was affected by the search type (BFincl
= 7.21 × e11), set size (BFincl = 17,478.31), and their
interaction (BFincl = 38.88). Participants were more
confident in the reference search (mean = 3.95, 95%
within-subject CI = 3.91, 3.98) than in the memory
search (mean = 3.77, 95% within-subject CI = 3.71,
3.82). Confidence dropped as the set size increased
and the drop between three and 12 (BF10 = 132.69; set
size 3: mean = 3.93, 95% within-subject CI = 3.89,
3.97; set size 12: mean = 3.77, 95% within-subject CI
= 3.70, 3.84), and between six and 12 search items
reached statistical significance (BF10 = 30.29; set
size 6: mean = 3.90, 95% within-subject CI = 3.85,
3.95).When searching from larger arrays (6 items or
more), the confidence rating was higher in the reference
search than in the memory search (set size = 6: BF10
= 21.24, set size = 9: BF10 = 28.00, set size = 12:
BF10 = 31.02); when searching among three items, the
confidence rating did not differ between search types
(BF10 = 0.32; Figure 9). Importantly, confidence did
not differ between the dynamic search and the static
search (BFincl = 0.42; dynamic search: mean = 3.84,
95% within-subject CI = 3.80, 3.89; static search: mean
= 3.87, 95% within-subject CI = 3.83, 3.91).

Comparing the subjective confidence to the search
response, although the confidence rating was higher
and less variable in the correct trials (meancorrect =
3.90, SDcorrect = 0.39; meanincorrect = 3.37, SDincorrect =
0.95), mean confidence score in the incorrect trials was
still higher than 2.5, the mid-point of the 4-point scale
(BF10 = 743.49). This reflected that participants were
overly confident about their performance. Finally, the
confidence rating was correlated with the search RT in
the correct trials (Pearson correlation r = - 0.23, BF10
= 3.27 × e18), and the more confident the participants
felt, the less time it took for them to search.

A binary logistic regression was performed to
assess how confidence, display type, search type, target
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Figure 9. Behavioral results of Experiment 2. Confidence rating
across the varied levels of search type and set size. Open
diamond = memory search trials, and filled triangle =
reference search trials. Error bars represent 1 SE (some were
too small to show).

presence/absence, and set size predicted the likelihood
of making a correct search response. The full logistic
regression model was significant (χ2 = 149.28, df = 9,
N = 2431, p < 0.001), which indicated that all these
factors were involved in predicting search accuracy
(Table 2). Confidence strongly predicted the search
accuracy and the odds ratio of 19.21 indicated that
all other predictors being equal, an individual who
reported a level 4 confidence was 19.21 times more
likely to be correct than someone who reported level 1
confidence on a particular trial. Furthermore, as shown

in Table 2, the smaller the set size, the more likely that
the search was correct; a static display condition was
1.38 times more likely to be correct than a dynamic
display trial; a reference search trial was 1.69 times
more likely to be correct than a memory search trial;
and, surprisingly, a target absent trial was 1.83 times
more likely to be correct than a target present trial.

Control condition performance
We designed the control condition to contrast the

effects of initial viewing perspectives on the search
performance. Separate Bayesian repeated-measures
ANOVAs with initial view condition (frontal-dynamic
or sideview-dynamic) as the between-subject factor
and search type (memory-search or reference-search)
as the within-subject factor were conducted on
outcome measures of accuracy, search RT, and
self-reported confidence. First, accuracy was equivalent
in the frontal-dynamic condition (mean = 91.1%,
95% within-subject CI = 88.3%, 93.9%) and the
sideview-dynamic condition (mean = 90.7%, 95%
within-subject CI = 87.2%, 94.3%), BF10 = 0.57.
Second, there was strong evidence for longer search
RT in the sideview-dynamic condition (mean = 7.10
seconds, 95% within-subject CI = 6.67, 7.54) than in
the frontal-dynamic condition (mean = 4.43 seconds,
95% within-subject CI = 3.94, 4.91). This was predicted
because the search items were differentiated by features
in two dimensions and could not be distinguished solely
based on the side views (see Figure 7C). So, in the
sideview condition, participants had to wait for the
search items to rotate before they could possibly search.
Finally, the confidence rating was equivalent in the two
view conditions (BF10 = 0.39; meanfrontal-dynamic = 3.85,
95% within-subject CI = 3.79, 3.90; meansideview-dynamic
= 3.81, 95% within-subject CI = 3.71, 3.90). Hence,
the initial orientation of the rotating search array,
with search item’s canonical view perpendicular (as in
the frontal-dynamic condition) or parallel (as in the

Predictor B SE Wald p value Odds ratio

Display type (static) 0.322 0.186 3.000 0.083 1.379
Search type (reference) 0.527 0.208 6.440 0.011 1.694
Targets’ presence (absent) 0.604 0.190 10.076 0.002 1.829
Set size 10.801 0.013
Set size 3 0.866 0.282 9.471 0.002 2.378
Set size 6 0.476 0.249 3.650 0.056 1.609
Set size 9 0.482 0.240 4.040 0.044 1.620

Confidence 81.414 0.000
Confidence 2 0.694 0.585 1.408 0.235 2.001
Confidence 3 1.934 0.559 11.973 0.001 6.917
Confidence 4 2.956 0.499 35.092 0.000 19.214

Table 2. Logistic regression predicting accuracy from display type, search type, targets’ presence, set size, and confidence rating.
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sideview-dynamic condition) to the observer’s line of
sight, did not impact the search performance for the
dynamic search condition.

Heretofore, the search performance in the
experimental and control conditions suggested that
rotation of the search array did not affect search
accuracy, search RT, search efficiency, and subjective
confidence. Having references throughout the search
led to higher search accuracy and better metacognitive
judgment of one’s own performances.

Eye movement with static and dynamic displays
The analyses of behavioral measures suggested that

being able to refer to the target during the reference
search improved the accuracy and searching from the
rigidly rotating arrays did not change the accuracy or
search RT. In addition to search outcomes, we further
analyzed eye movements during the search to uncover
similarities and discrepancies in the search process
when looking at a stationary or a rotating array with
or without a reference item. Specifically, we examined
the proportion of trials where the target was ever
fixated on over total number of trials (p) to study the
process of target detection, and the proportion of trials
where targets were identified over trials where targets
were fixated upon (pid) to study the process of target
identification. We ran Bayesian repeated measures
ANOVAs with p and pid as the dependent measures and
display type and search type as the factors to answer the
questions that how the rotation of the search array or
having the reference items affected the target detection
and target identification.

First, target detection p was not affected by display
type (BFincl = 0.20), search type (BFincl = 0.23), or
their interaction (BFincl = 0.13). Observers were equally
likely to fixate on the target in the dynamic display
condition (mean = 73.7%, 95% within-subject CI =
66.6%, 80.8%) and in the static display condition (mean
= 73.5%, 95% within-subject CI = 65.7%, 81.4%);
observers were equally likely to fixate on the target in
the reference search condition (mean = 75.1%, 95%
within-subject CI = 67.2%, 83.0%) and in the memory
search condition (mean = 72.1%, 95% within-subject
CI = 62.9%, 81.4%), regardless of whether the search
array was stationary or rotating.

Second, target identification pid was higher in
reference search than in memory search (meanreference
= 92%, meanmemory = 85%, BFincl = 3.73). Target
identification was not different between the static
display condition (mean = 91.0%, 95% within-subject
CI = 86.5%, 95.6%) and the dynamic display condition
(mean = 86.5%, 95% within-subject CI = 82.4%, 90.6%,
BFincl = 0.81). The interaction of the display type and
the search type did not affect the pid.

The total search RT in a search trial was divided
into four segments – looking at the target, looking

Figure 10. The proportions of looking time at the target, at the
distracters, at the reference item and at elsewhere on screen in
the static/dynamic display conditions.

at the distracters, looking at the reference item, and
looking elsewhere on the display. The proportion
of each segment over total looking time was
computed. Although the total search RT was not
different between display types (meanstatic = 4.26
seconds, meandynamic = 4.50 s, BFincl = 0.33) and
between search types (meanmemory = 4.32 seconds,
meanreference = 4.44 seconds, BFincl = 0.05), we further
examined the proportion of each looking segment
in the static/dynamic display conditions and in the
memory/reference search conditions. First, with static
or dynamic displays, the proportions of looking at the
target (BF10 = 0.30), at the distracters (BF10 = 0.31), at
the reference item (BF10 = 0.46), or at elsewhere (BF10
= 0.26) were equivalent (Figure 10). Second, with the
memory or the reference search, the proportions of
looking at the target (BF10 = 0.37) or at the distracters
(BF10 = 0.63) were equivalent.

Discussion

In Experiment 2, we introduced rotation and hence
continuous perspective change of the search array, but
this did not affect the search performance in terms of
accuracy, search RT, search efficiency, and subjective
confidence rating. Furthermore, our eye movement
analysis suggested that the rotation of the display did
not affect any of the subprocesses of the search either.
More oculomotor measures, such as fixation-based
and saccade-based measures, will be collected in the
upcoming experiments to further explore the effects of
continuous perspective change on search performance
and the more detailed search behaviors.

Consistent with the findings of Experiment 1,
having reference items during the search resulted in
higher search accuracy and higher confidence rating.
Eye movement patterns revealed that in the reference
search participants were better at identifying the
target after detecting it, which might contribute to
the overall higher accuracy. Unlike in Experiment 1,
the search RT did not differ between memory search
and reference search in Experiment 2. The memory
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search in Experiment 2 was no longer faster than the
reference search, probably because the memory search
in the dynamic display condition involved complex
internal processes like mental rotation that were more
challenging to the observers than the memory search in
Experiment 1. Furthermore, the presence of reference
items in Experiment 2 did not speed up the target
identification process like in Experiment 1, possibly
because when participants looked back and forth
between the reference item and the target object, the
rotation of the search array in the dynamic display
condition caused image disparities between these two,
thus complicating the process of reference-making.

General discussion

In this study, we investigated visual search
performance when there were image transformations
of the search array items due to viewing perspective
change (Experiment 1) and motion of the search array
(Experiment 2), when observers must memorize the
targets or when they could resort to external references
in real time. In short, we found that perspective change
and image distortions that followed did not change
trends of search behaviors and that having external
references made search slower but more accurate. More
details are discussed below.

First, participants were able to find the targets despite
image distortions. Search was equally accurate with
2D exemplar views, with 2D slanted views, and with
continuous image transformations whether starting
from the frontal view or the side view (BF10 = 0.16).
Therefore, as far as accuracy was concerned, the visual
search was not view-point dependent.

Second, in accurate search trials, the RTs were
equivalent when searching from the frontal or slanted
views of objects; neither did it increase when searching
from rotating arrays as compared to from the static
arrays. This implies that participants could efficiently
search for objects despite image transformations and, in
some cases, with changing retinal locations. The RT was
longer when rotation began with the sideview of the
search items than when rotation began with the frontal
views as a result of the experimental setup, because in
the sideview-dynamic condition, objects’ distinguishing
features gradually came to view. Gauging by the RTs,
the current experimental task was harder than classic
laboratory-based search tasks (such as searching for a
“T” among “L”s) that typically lasted for approximately
10−1 seconds, and easier than complex search tasks
(such as finding an abnormal cell from a mammogram
image) that typically lasted for approximately 102
seconds (Wolfe & Van Wert, 2010).

Consistent with the findings of traditional visual
search tasks, search RTs in this study increased linearly

with set size and the rate of increment, which reflects
search efficiency, was equivalent when searching with
the frontal or slanted views, from rotating or stationary
arrays. The increment of approximately 300 ms/item
in the target-present trials of current study was higher
than the typical rate of increment approximately
50 ms/item) when searching for semantically meaningful
symbols, such as numbers or letters, which indicated
that searching for irregularly shaped objects was likely
more difficult. Furthermore, in this study, search
efficiency was lower by half in target-absent trials than
in target-present trials. This implied that when searching
for a target or confirming its absence, an observer
examined each displayed item until the target was
found or went through all items before claiming target
absence. Implied by the target-present/absent slope
relation, with N items in the search array, averaging
over a large number of trials, observers looked at all N
items on target-absent trials but at (N + 1)/2 items on
target-present trials, which yielded the 2:1 slope ratio
when plotting search RT over set size for target-absent
and target-present searches. Hence, search in this study
was serial and self-terminating (Wolfe, 2021).

We also examined the self-rated confidence level
to see if the observers’ metacognitive sensitivity
was congruent with their search behavior. The
confidence ratings were equivalent regardless of viewing
perspectives, the presence of motion, or whether
rotation began with objects’ frontal or side views facing
the observers. This echoed with the search accuracy and
RT. Furthermore, in both experiments, the confidence
rating was able to predict the search correctness and the
higher the confidence, the more likely that the search
was accurate. Interestingly, in the incorrect trials of
both experiments, participants’ mean felt confidence
was still higher than the mid-point of the 4-point scale.
Thus, observers’ metacognition was not accurate, and
they tended to be overly confident.

The difference of object appearances as a result of
perspective projections in the various experimental
conditions allowed us to uncover whether visual
search was based on pixel-level image matching or
object identification. The frontal view condition of
Experiment 1 was similar to a classic visual search task,
where objects in the search array were exemplar views
of LEGO blocks and the target in the learning phase
and in searching phase were identical. In the slanted
view condition, with the non-parallel viewing, the target
appeared slightly different in the learning phase and
in the search phase. This was because when shooting
pictures to create the search task stimuli, the camera
was fixed and pointed down at the turntable; in the
learning phase, the target was always in the center of the
turntable, but in the search phase it could be anywhere
amid other items occupying a non-centered location
on the turntable. So, in the pictures, which were later
loaded into MATLAB and used as test displays, the
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projected images (sizes and shapes) of the target object
varied depending on its physical location. The slanted
view condition was, in fact, a better representation of
real-world searches, where searchers typically would
not know a target’s location a priori to predict its
projected image. Given that with or without an exact
match of a target’s appearance, participants’ search
performance, in terms of accuracy, RT, and efficiency,
were equivalent, the visual search process was likely
not based on matching of retinal images. Instead,
recognizing objects based on their defining features and
differentiating objects based on their distinguishing
features seem to be prerequisites of finding randomly
shaped objects.

Similarly, in Experiment 2, participants searched
for LEGO blocks in an immersive VR environment
where they looked down at an array of search items
which were either stationary (static display condition)
or rotating as a group (dynamic display condition).
In the rotation condition, the target was stationary
in the learning phase but it went through continuous
image transformation in the search phase. In other
words, images of the target were never identical, but
this did not affect search performance either in terms of
outcomes such as accuracy and search RT or in terms
of the searching process such as time spent to reject
distracters, identify targets, or check reference items,
as revealed by eye movement analyses. These strongly
suggest that humans do not apply pixel-level image
matching to find targets in visual search tasks.

In real-life practices, airport security officers could
benefit from seeing multiple views of items when
searching for suspicious articles. In a study involving
5717 airport security screeners from more than 70
airports, when training them with multiple views of
target objects, their detection sensitivity of the target
item increased tremendously (Halbherr, Schwaninger,
Budgell, & Wales, 2013). Furthermore, professional
searchers who worked with 3D rotatable images of
items exhibited better detection performance than those
who worked with 2D images (Hättenschwiler, Mendes,
& Schwaninger, 2019). As compared with these results,
the lack of improvement when searching from dynamic
displays in the current study was possibly because
participants in this study were not trained and only
professional searchers notably benefited from moving
3D objects.

We attempted to unveil the search process by
investigating eye movement patterns, paired with search
outcomes. The eye movement data allowed us to parse
a search trial’s total RT into looking time at the target,
looking time at the distracters, looking time at the
reference object (when present), and looking time at
elsewhere on the screen. In Experiment 2, when the
participant performed the memory search, their search
RT increased more with each additional item in the
dynamic display condition than in the static display

condition; but this difference was not found in the
reference search. Parsing the total search RT into each
segment, we found that when there was no reference
object, the looking time at the target was equivalent
when searching in the static and dynamic display
conditions (BF10 = 0.32); looking time at the distracters
was also equivalent between these conditions (BF10 =
0.26); but the time that the participants spent looking
elsewhere on the screen was longer in the dynamic
display condition than the static display condition
(BF10 = 1.85). These implied that when the search array
items were rotating, the participants spent more time
locating a moving target but once they had located it,
they spent a similar amount of time verifying it. So, the
drop of search efficiency in the memory search with the
dynamic displays was possibly due to the difficulty in
locating a target from a moving array than recognizing
it. This was not found in the reference search with the
dynamic displays, in which case, the looking times at
the target, at the distracters, at the reference item, and
at elsewhere on the screen were all similar whether the
search was from static or dynamic displays (BF10 < 0.90
in all contrasts). It is possible that the observers used
the reference target object as a landmark, and used it
to anchor locations of specific search array items (for
example, potential targets) in the rotational display for
further processing.

Results from the current study showed that
perspective change, either being discrete (as a result
of viewing angle change) or continuous (as a result
of rotation), did not affect the search performance as
a whole. But what about the subprocesses of target
selection and target identification? Were they equally
(un) affected? With a discrete perspective change in
Experiment 1, the target identification process became
slower when searching in the slanted view condition
than in the frontal view condition (BF10 = 3.59). This
was consistent with the findings of baggage screener
studies that objects were more difficult to detect when
viewed from an unusual, noncanonical viewpoint
(Koller, Hardmeier, Michel, & Schwaninger, 2008;
Biggs, & Mitroff, 2015). Moreover, the perspective
effect on target identification time was consistent with
finding in the classic object recognition literature that it
was more difficult to identify objects from novel views
as compared to from familiar or learned views, and
yielding slower responses and more errors (Friedman,
Vuong & Spetch, 2009; Friedman, Vuong, & Spetch,
2010).

However, when searching from a moving array
(Experiment 2, dynamic display condition), the target
identification subprocess was as fast (BF10 = 0.46)
as in the static frontal view condition (Experiment 1,
frontal view condition) and both were better than in
the static slanted view condition. Continuous rotation
did not impede the visual search possibly because the
continuous image transformation in the 3D enabled
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structure-from-motion (SFM) and therefore the
immediate specification of object shapes that led to fast
and accurate object identification. It has been shown
that 3D objects that oscillated in depth with amplitudes
≥45 degrees generated sufficient information to specify
their shapes and allow observers to distinguish them
(Lee & Bingham, 2010; Lee et al., 2012; Lind et al.,
2014). Thus, instead of being a source of perturbation,
motion and the resultant continuous perspective change
might provide extra information for discriminating
objects and fostering visual search. This, again,
suggested that the visual search was based on object
identification instead of image-matching. Convergingly,
previous object identification studies had reported
facilitative effects of motion on object identification
and recognition. For example, Papenmeier and Schwan
(2016) showed that when observers first learned objects
from videos of them rotating and then attempted to
recognize them from static images, they performed
better than when they first learned objects from static
images and then recognized them from static images.
Rotation brought continuous views of the objects,
which, according to Tjan and Legge (1998), led to
accurate recognition even when there were Gaussian
noises in the images.

Finally, in both experiments, participants were
more accurate in and more confident about their
search when the target remained visible throughout
search. Eye movement analyses revealed that 18.0%
of search RT was spent on looking at the reference
items in the reference search of Experiment 1, and
16.9% in Experiment 2. In the reference trials of both
experiments, the average number of items on the screen
was 8.5 and the looking time percentage at the reference
target (18.0% or 16.9%) was significantly longer than
the average of 11.8% (BF10 = 5.95, and BF10 = 1.24,
respectively). This showed that participants actively
used the external reference and sought just-in-time
information. Visual search was not the only task that
could benefit from an active interaction between an
observer’s internal cognitive resources and structures in
the world. For example, Pan, Bingham, and Bingham
(2013; Pan, Bingham & Bingham, 2017) showed
that landmarks were extremely helpful in preserving
spatiotemporal relations and aiding participants to
locate and identify previous-seen-but-currently-hidden
objects. Hayhoe and colleagues (Pelz, Hayhoe, &
Loeber, 2001; Droll & Hayhoe, 2007) showed that
in various tasks, such as sorting objects or copying
colorful patterns, participants did not memorize
the locations or patterns in their head; instead,
they looked at the target locations or objects and
acquired just-in-time information to lessen burdens on
internal cognitive resources. In their words, there were
“trade-offs between gaze and working memory use.”
This “trade-off” entailed making references to external
structures and was an embodied process that led to

more accurate and efficient performances in visual
search and other cognitive tasks than when observers
had to rely entirely on their internal cognitive resources
for memorizing and processing visual targets.

Conclusion

In this work, we studied the visual search with
image transformations due to discrete or continuous
perspective change when the target was or was not
visible during the search. The introduction of image
transformation and reference objects was to create
closer approximations to a real-world visual search.
Search performance was generally unaffected by image
transformations but improved with the presence of
reference objects. This suggests that visual search does
not require pixel-level image matching but requires
object identification and it could benefit from an
embodied process, in which the observers acquire
real-time information from the environment to improve
their performance.

Keywords: visual search, perspective change,
metacognitive sensitivity, just-in-time information,
virtual reality
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