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Purpose: To perform segmentation of specular microscopy (SM) images of the corneal
endothelium for comparing average perimeter length (APL) between Fuchs endothelial
corneal dystrophy (FECD) patients and healthy subjects.

Methods: A retrospective review of clinical records of FECD patients and those with
healthy endothelium was carried out to collect images of the endothelium. The images
were segmented by modified U-Net, a deep learning architecture, followed by the
Watershed algorithm to resolve merged cell borders (<5%). The segmented images
were analyzed for endothelial cell density (ECDUW) and APL.

Results: The combination of the U-Net andWatershed algorithm, referred to as the UW
approach, enabled a complete segmentation of the endothelium. In healthy, ECDUW was
close to estimates by SM and manual segmentation (31 subjects; P > 0.1). However,
in FECD, ECDUW was closer to estimates by manual segmentation but not by SM (27
patients; P < 0.001). ECDUW in FECD (2547 ± 499 cells/mm2; 60 patients) was smaller
compared to that in the healthy (2713 ± 401 cells/mm2; 70 subjects) (P < 0.001). APL
in the healthy was 66.87 ± 7.68 μm/cell (70 subjects), but it increased with %Guttae in
FECD (56.60–195.30 μm/cell; 60 patients) (P < 0.0001).

Conclusions: The UW approach is precise for the segmentation of SM images from the
healthy and FECD. Our analysis has revealed that APL increases with %Guttae.

Translational Relevance: The average perimeter length of the corneal endothelium,
which represents the length of the paracellular pathway for fluid flux into the stroma, is
increased in Fuchs dystrophy.

Introduction

The corneal endothelium, which forms the poste-
rior monolayer of the cornea, is the guardian of
corneal transparency. A state of dehydration of the
corneal stroma (i.e., stromal deturgescence), a prereq-
uisite for corneal transparency, is maintained by the
endothelium through its barrier and pump functions.1,2
The barrier function restrains the rate of fluid influx
into the stroma from the aqueous humor. The influx
arises because of the imbibition pressure induced by
the hydrophilic glycosaminoglycans dispersed around
the collagen fibrils. The fluid leaking into the stroma,

despite the barrier function, is countered by the pump
function of the endothelium.3 Mechanistically, the
tight junctions of the endothelium confer the barrier
function, and, hence, the junctional length is a deter-
minant of endothelial barrier function. Although the
regulation of tight junctions has been investigated,1,2
variation in its length is not fully understood. In this
study, we have determined whether the average perime-
ter length (APL; i.e., junctional length per cell) of the
endothelium is altered in Fuchs endothelial corneal
dystrophy (FECD).

Potential for changes in APL during health and
FECD exists because of known differences in endothe-
lial cell density (ECD).4–7 The rate of decline in ECD,
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however, is significantly accelerated during FECD.5,7
The decrease is also rapid following transplantation
and intraocular surgeries.6,7 Since the endothelium in
humans is non-regenerative, the denuded Descemet’s
membrane is re-surfaced by the spreading of neigh-
boring cells. In this process, endothelial cells lose
their native hexagonal shape and size.8,9 Thus unlike
in the young and healthy, the endothelial cells show
polymegathism (i.e., variable cell size) and pleomor-
phism (i.e., irregular cell shape) in the elderly. These
morphological adjustments inevitably affect the APL.
Rannou et al.10 reported an increase in APL with age.
Because the fluid influx through the paracellular space
is directly proportional to APL, an increase in the latter
has the potential to induce stromal edema if not duly
compensated by an intrinsic activation of the fluid
pump activity.

For investigating APL, automatic segmentation of
the endothelium is an essential first step. In addition,
segmentation is also critical for evaluating the donor
endothelium before transplantation. Transplantation
of donor endothelium with ECD > 2000 cells/mm2 is
the norm for endothelial keratoplasty, which in and of
itself leads to significant cell loss because of mechan-
ical trauma.11 Therefore assessing the ECD of the
donor endothelium by specular microscopy (SM) is
standard practice. Manual segmentation of the SM
images, however, is laborious and prone to errors. Thus
automated segmentation techniques have been devel-
oped to evaluate ECD.12–19

Several approaches have been tested for segment-
ing the endothelium, including machine learning18
and deep learning algorithms.14–16,20 The conven-
tional methods, which involve a combination of image
processing such as thresholding, Gaussian filtering,
skeletonization, and Watershed algorithm,12,21,22 are
sufficient when the images are of high quality. However,
images from patients with FECD could be of poor
quality due to epithelial defects, stromal scarring, and
edema. Therefore machine learning and deep learn-
ing techniques have been adopted for accurate and
automated endothelial segmentation.14–16,19,20

In this study, we have adapted the U-Net model of
convolutional neural network to segment SM images
of the endothelium. In particular, we have modified the
original U-Net model23 by downsizing the network to
reduce the training time. As an additional step, the U-
Net output has been processed further using theWater-
shed algorithm24 to achieve a complete cell segmen-
tation. Subsequently, the fully segmented images have
been used to compute ECD,19 coefficient of varia-
tion of cell area (CV),19 %Guttae, APL, and equiva-
lent diameter of cells. With healthy and FECD images,
our findings show that APL increases with an increase

in %Guttae in FECD. Thus, despite the limited data
set, we offer a new window to further understand the
pathophysiology of FECD.

Materials and Methods

Data Collection

We performed a retrospective study of patients at
the Cornea Clinic of Sankara Nethralaya (Chennai,
India). We focused on patients with a record of
endothelial images acquired by SM (Tomey EM-3000;
Nagoya, Japan). The study protocol adhered to the
tenets of theDeclaration of Helsinki andwas approved
by the institutional review board at our eye hospital
(Medical Research Foundation, Chennai, India). The
FECD cohort consisted of 60 patients (121 images)
diagnosed with FECD; they showed guttae in their SM
images. We also collected 70 SM images (125 images)
without guttae or other anomalies as the healthy
cohort. We deidentified the subject/patient informa-
tion for both cohorts and collected endothelial images,
patient demographics, diagnosis, treatment strategies,
and other corneal health remarks. The SM images
were in bitmap image file (BMP) format with dimen-
sions 266 × 480 and a grey level resolution of eight
bits. The images showed variable levels of noise, blur,
and contrast, making the segmentation challenging.
However, the built-in software of EM-3000 carried out
segmentation and provided estimates of ECD and CV.

The primary dataset contained ∼300 SM images
inclusive of the healthy and FECD images. It was
divided into training and testing datasets. A total of
40 images of the healthy and FECD were assigned
exclusively as the initial training dataset, which was
increased to 2000 images by augmentation (described
below). The testing dataset contained 125 healthy
images (70 subjects) and 121 FECD images (60
patients). Thus none of the images belonging to the
training dataset were used as part of the testing dataset.

Data Augmentation

Because a large number of images and ground
truths are required for training the modified U-Net, a
data augmentation25 step on both images and corre-
sponding ground truths has been included. The ground
truths, corresponding to the SM images, were gener-
ated by drawing with a digital pen. They contained
three classes: class 0 for the cell body, class 1 for
guttae, and class 2 for cell borders.We usedAlbumenta-
tions, an open-source Python library, for generating the
augmented images. In particular, our training dataset
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initially contained 40 images and corresponding masks
from the healthy and FECD cohorts. The images and
related masks were expanded using the Albumentation
pipeline, which consisted of horizontal flip, vertical flip,
random cropping, random brightness contrast, blur,
CLAHE (contrast limited adaptive histogram equal-
ization), and grid distortion.25 Thus 2000 augmented
images and masks were developed and used in turn as
the training set.

Network Architecture and Training

We have used the U-Net architecture as described
by Ronneberger et al.23 with a few modifications to
reduce the time for training. As shown in Figure 1, U-
Net is an encoder-decoder type architecture with the
encoder gradually downsizing the spatial dimension of
the input data whereas the decoder retrieves the dimen-
sions gradually. The modifications are as follows: we
have downscaled the number of layers by eliminating
one level of max-pooling/upsampling functions and
corresponding convolutional layers. In addition, the

convolutional layers in the first level now consist of 16
feature maps (instead of 64) and were doubled at each
max-pooling step, that is, 16, 32, 64, and 128 feature
maps along the encoder path. Hence, feature maps
varied from 16 to 128 along the encoder path instead
of 64 to 1024. Similarly, the feature maps were halved
in every upsampling step of the decoder path (i.e., 128,
64, 32, and 16, respectively). Thus there is a notable
reduction in featuremaps at every step compared to the
original U-Net, significantly reducing the time required
to train the model.

To summarize, the original U-Net possessed
1941.10 × 103 trainable parameters, whereas the
modified U-Net uses only 482.03 × 103. Hence, much
less time was required for training our modified U-Net.
Finally, we have introduced dropouts at the third and
fourth levels of the modified U-Net to reduce overfit-
ting. The modified U-Net is illustrated in Figure 1,
highlighting the contraction and expansion paths.
Each step along the contraction path consisted of
two 3 × 3 padded convolutions followed by Rectified
Linear Activation function.26 This is accompanied by
a 2 × 2 max-pooling operation with a stride of 2 pixels

Figure1. ModifiedU-Net architecture formulticlass image segmentation. The contractionpath (i.e., encoder path) is shownon the left side,
where regular convolutions andmax-pooling layers are applied. Down the encoder, the size of the image reduces, but featuremaps increase
gradually. The expansion path (i.e., decoder path) is shownon the right-hand side, where transposed convolutions alongwith regular convo-
lutions are applied. Up the decoder, the image size gradually increases, but the feature maps decrease. At every step of the decoder, we use
skip connections by concatenating the output of the transposed convolution layers with the feature maps from the encoder at the same
level: i.e., U5 = U5+ C3, U6 = U6 + C2, and U7 = U7 + C1. Two consecutive regular convolutions are applied after every concatenation. The
number of features is denoted on top of the blue box. Gray boxes represent copied featuremaps. C1–C7 are the output tensors of the convo-
lutional layers. P1–P3 represent the output tensors of the max-pooling layers; U5–U7 are the output tensors of the up-sampling (transposed
convolutional) layers.



Perimeter Length of the Corneal Endothelium TVST | November 2021 | Vol. 10 | No. 13 | Article 27 | 4

for downscaling. The feature maps are doubled at
every downsampling step. As a result, the input image
size reduces from 128 × 256 to 16 × 32 in the encoder
path. The operations performed at the expansion path
are similar to that of the contraction path, except for
the upsampling operation with a factor of 2 instead
of max pooling. Upsampling was performed using
3 × 3 transposed convolutions with a stride of 2 pixels.
As a result, the input image size increases from 16 ×
32 to 128 × 256 in the expansion path. The numbers
of convolutional layers, feature maps, and dropouts of
the network were selected via experimentation with the
clinical data. The Adam optimizer and the categorical
cross-entropy loss function (with Softmax activation
function) were used in the last convolutional layer,
generating three probability maps, one for cell body,
one for guttae, and the other for cell border.

The modified U-Net was trained for 60 epochs with
a batch size of 8 using 2000 augmented images and
corresponding masks/ground truths of dimension 128
× 256. The Adam optimizer employed in training the
model minimized the loss function. The model was
built with Python 3.7 using the Keras library and
Tensorflow backend. We trained the modified U-Net
on a GeForce GTX-1080 TI GPU with 32 GB of
RAM.

Watershed Algorithm

In the initial trials, the segmentation by the modified
U-Net was incomplete for poor-quality images. Specif-
ically, for some cells, the boundaries were merged
(∼5%). Therefore we post-processed such merged
boundaries by applying the Watershed algorithm’s
marker-based classic image segmentation technique.24
The entire postprocessing step was automated using
OpenCV in Python.

Traditional image processing methods, such as
thresholding and contour detection, fail to extract
overlapping objects in images. As a classic algorithm,
the Watershed algorithm is beneficial for extract-
ing merged and overlapping objects in images. To
obtain an accurate segmentation, the markers were
placed on individual cells. First, a distance map was
obtained by applying Euclidean distance transform,
and local maxima were computed. Then markers
were placed automatically using connected component
analysis. Thus our process of endothelial segmentation
is fully automated.

Performance Metrics

To underscore the performance of the modified
U-Net algorithm, we calculated the F1 score, mean

IoU, and pixel accuracy.27 The F1 score (also known
as Dice Coefficient) is calculated as twice the area
of overlap between ground truth (G) and segmenta-
tion output (predicted; P) divided by the total area
of predicted and the ground truth (Equation 1). IoU
(also known as Jaccard Index) is similar to the F1
score and quantifies the %overlap between ground
truth (G) and segmentation output (P). In addition,
it is calculated by the intersection of the predicted
segmentation and the ground truth divided by the
union between the predicted segmentation and the
ground truth (Equation 2). Finally, pixel accuracy is
the % of pixels in the image that is segmented correctly
(Equation 3).

F1 score = D (P ∩ G) = 2 |P ∩ G|
|P| + |G| (1)

IoU = |P ∩ G|
|P ∪ G| (2)

Pixel accuracy = TP + TN
TP + TN + FP + FN

(3)

where P is the predicted image and G is the ground
truth, TP is true positive, TN is true negative, FP is false
positive, and FN is false negative.

Morphometric Analysis

The output of the UW algorithm was further
implemented in python using the OpenCV library to
carry out a morphometric analysis. In particular, we
computed ECD, CV, %Guttae, APL, and equivalent
diameter of cells as follows:

ECD = n∑n
i=1Ci

(4)

CV = 1
C̄

√
1
n

∑n

i=1

(
Ci − C̄

)2 (5)

%Guttae =
∑k

j=1 Gj∑n
i=1Ci +

∑k
j=1 Gj

(6)

APL =
∑n

i=1 Pi

n
(7)

EDCell = 2
√
Ci

π
(8)

where Ci is the area of the ith cell, Gj indicates the
area of the jth guttae, Pi represents perimeter length
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of the ith cell, n represents the number of endothe-
lial cells, k stands for the number of guttae, and C̄
denotes average cell size.We note that ECD (cells/mm2)
and APL (μm/cell) are based on the number of cells
and cell area (i.e., guttae area are excluded). Therefore
%Guttae can be taken as an approximate measure of
severity of FECD. In general, an increase in guttae and
their coalescence are noticed in advancing FECD.4–7
However, we note that our calculations are based on
limited endothelial images from the affected cornea.

Results

Our retrospective review of medical records led
to a collection of data on 60 FECD patients (age
48.76 ± 20.12 years, interquartile range [IQR]: 27–
65 years; 17 males and 43 females) and 70 healthy
subjects (Age: 49.55 ± 18.71 years, IQR: 34–64 years;
33 males and 37 females). There was no difference
between the mean ages in the two cohorts (P= 0.8009).
In general, the images were of variable quality, and the
number of images was not sufficient for training the
model. Therefore we carried out the data augmentation

step. Figure 2 shows the augmentation pipeline applied
to create a new collection of images and their corre-
sponding ground truths. Overall, our data augmenta-
tion step led to 2000 images and corresponding masks,
which constituted the dataset for training the modified
U-Net.

Automated Segmentation

The modified U-Net model implemented in this
study has fewer trainable parameters and, hence, could
be trained rapidly (∼2 hours). Following training with
augmented images and corresponding masks with and
without FECD, we performed segmentation of the
SM images and computed the performance metrics
using Equations 1 to 3. We found an F1 score of
82.27% and a mean IoU of 77.27%, highlighting
the effectiveness of segmentation despite poor-quality
images. Accuracy provides the percentage of pixels
correctly in the segmented image. Thus it is an alter-
native metric to evaluate segmentation. We found the
accuracy to be 87.9%. Furthermore, themodel’s perfor-
mance in recognizing the cell borders is also shown
by the receiver operating characteristic (ROC) curve

Figure 2. Augmentation of clinical images to generate the training set for modified U-Net. (A) The original image of an FECD patient
obtained using the noncontact SM. The image in Panel J was generated by manual drawing as the ground truth for Image A. This ground
truth image has class 0 for cell body, class 1 for guttae, and class 2 for cell borders. (B–H) Intermediate images obtained by performing
horizontal flip, vertical flip, randomcropping, randombrightness contrast, blur, CLAHE, andgrid distortion, respectively, ofA. ImagesB–H are
then pipelined to produce Image I, which then forms a member of the training set. Masks K–Q represent the ground truths corresponding
to Images B–H, generated by the augmentation algorithm. The augmentation procedure was repeated to generate multiple images and
corresponding masks equivalent to I and R from every clinical sample, such as A and J, respectively. Overall, the augmentation procedure
enabled a generation of an extensive training set from a limited number of images as required by the modified U-Net.
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Figure 3. Performance of modified U-Net. The receiver operat-
ing characteristics (ROC) curve indicating the performance of U-
Net in segmenting the cell body, cell borders, and guttae. The area
under the curve (AUC) extracted from the ROC curve is 96.7%, which
indicates excellent model performance.

in Figure 3. The area under the ROC curve is 96.7%,
indicating a high segmentation quality.

Figure 4 shows typical cell segmentation results of
the UWapproach for healthy (Panels A–D) and FECD
corneas (Panels E–J). In particular, Panel B is the
output of the modified U-Net for the SM image in
Panel A. Panel C is similar to Panel B, except that
cells touching the image borders have been removed
automatically. Moreover, arrows in Panel C highlight
the cells that U-Net did not resolve. Therefore we
processed the modified U-Net output with the Water-
shed algorithm to segment merged cells, typically <

5% in an image. This combination, referred to as the
UW approach, led to complete segmentation (Panel
D). A similar workflow for segmentation of an FECD
image is depicted in Panels E to J. Figure 5 shows
the segmentation of SM images (Panels A–C) by the
fully automated UW approach (Panels D–F) and their
comparison with images obtained by manual segmen-
tation (Panels G–I).

Morphometric Analysis

Using the output of the UW workflow, we
computed ECD (Equation 4), CV (Equation 5),
%Guttae (Equation 6), APL (Equation 7), and equiva-
lent diameter of the endothelial cells (Equation 8). The
computed ECD and CV values agree with estimates
provided by SM and manual segmentation. Figures 6
and 7 provide a Bland-Altman analysis for compari-
son of ECD estimates by different methods. In healthy
subjects, ECD by Tomey’s SM software ranged from
1700 to 3400 cells/mm2 with an IQR of 2627–2932
cells/mm2 (n = 31 patients, 60 images). As shown

in Figures 6A to 6C, there is an excellent agreement
between different ECD estimates. This is confirmed by
one-way ANOVA, as shown in Figure 6D (P > 0.38 for
the different comparisons). Similar to healthy subjects,
we report different ECD estimates fromFECDpatients
in Figure 7. ECD varied relatively widely with 600 to
3000 cells/mm2 with an IQR of 2058 to 2818 cells/mm2

(n = 27 patients, 52 images), unlike in the healthy
subjects. Nonetheless, the ECD estimates of the UW
approach, Tomey’s SM software, and manual segmen-
tation are not significantly different from each other
(Fig. 7D; P > 0.14).

The size distributions (based on equivalent diame-
ter) were Gaussian in both the healthy and FECD.
The distribution was relatively narrow in the healthy
(29.66 ± 6.83 μm; IQR: 25.07–33.55 μm) compared
to that in the FECD (29.95 μm ± 9.53 μm; IQR:
23.67–34.81 μm) as shown in Figure 8A. Because
ECD declines more rapidly with FECD, polymegath-
ism and pleomorphism would be pronounced during
the disease. More importantly, from the perspective of
the barrier function of the endothelium,APL increased
by∼300% in the FECD (compared to themeanAPL in
the healthy). It was 66.87 ± 7.68 μm/cell with an IQR:
61.87–70.79 μm/cell in the healthy (n = 70 patients,
125 images) but it was much higher in the FECD
(87.87 ± 26.06 μm/cell; IQR: 69.21–101.1 μm/cell, n
= 60 patients, 121 images) as shown in Figure 8B
(P < 0.0001). Figure 9 shows variations in ECD and
APL with the severity of FECD. In particular, APL
in the FECD increased with %Guttae (Fig. 9A), but
the increase is not apparent until %Guttae reaches
∼5%. On the other hand, ECD in the FECD appears
to decline with %Guttae from early stages (i.e., even
before 5% guttae; Fig. 9B).

Discussion

We have modified the original U-Net architec-
ture described by Ronneberger et al.23 for automated
segmentation of corneal endothelial mosaics. We have
also added the Watershed algorithm as a postpro-
cessing step to resolve merged cells in the output of
the U-Net. The UW approach provided a complete
segmentation in both the normal and FECD endothe-
lial mosaics. Following segmentation, we have found
that ECD and APL are altered with an increase in
%Guttae. The increase in APL, in addition to declining
ECD, suggests a potential for an increased burden on
the barrier function of the endothelium during FECD.

Despite a significant success with modified U-Net,
we observed an incomplete segmentation. Typically
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Figure 4. Automated cell segmentation by the UW approach for a healthy subject (A–D) and an FECD patient (E–J). (A) SM image of a
subject with unclear borders. (B and C)Output of modified U-Net, where the cells touching the borders are automatically removed in C. The
red and bluearrowsofC showmerged cells. (D) The output of UWapproach,where theWatershed algorithmwas applied to the output of the
modified U-Net (i.e., the image in C). The postprocessing has resolved the borders of all the merged cells. (E) SM image of an FECD patient,
where guttae can be seen at the bottom of the image. (F and G) Output of modified U-Net, which contains only cells (guttae are excluded).
Cells touching the borders are automatically removed in G. The yellow and green arrows of G show merged cells. (H) Output of modified
U-Net, with guttae extracted. (I) The output of the UW approach, where theWatershed algorithmwas applied to the output of themodified
U-Net (i.e., the image in G). The post-processing has resolved the borders of all the merged cells. (J) The output of the UW approach, which
was applied to the output of the modified U-Net (i.e., the image in H).

Figure 5. Cell segmentation by the UW approach versusmanual segmentation.A–C are typical SM images. While B and C are images from
healthy subjects, C is an image from an FECD subject. D–F are segmented images produced by the UW approach, and they correspond to
raw images in A–C, respectively. Cells touching the image borders were deselected automatically by the UW approach, and these cells were
not considered for the analysis of the morphometric parameters. G–I are the ground truth images corresponding to raw images in A–C,
respectively. ECD and CV computed using segmented images of the UW approach are close to those provided by SM and computed by
manual segmentation.
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Figure 6. Comparison of ECD estimates for healthy subjects: ECD estimates of 60 images from healthy subjects were compared by the UW
approach with that provided by SM and ground truths which were segmented manually. The middle line represents the mean difference,
and the dashed lines show the 95% LoAs. ECD ranged from 1700 to 3500 cells/mm2 in all the methods. (A) Bland-Altman analysis between
the SM and manual segmentation. (B) Bland-Altman analysis between UW approach and manual segmentation. (C) Bland-Altman analysis
between UW approach and SM software. (D) Comparison of ECD estimates in all the methods: There is no significant difference between
ECD estimates of the three methods (P > 0.38).

∼5% of cells remained unresolved with merged bound-
aries in many SM images. To overcome this problem,
we processed the U-Net output with the Watershed
algorithm, which has been used before as a stand-alone
technique for segmenting endothelial images.24 Thus,
unlike other reports on endothelial segmentation,14,15
the inclusion of the Watershed algorithm for postpro-
cessing was critical to secure an improved accuracy of
the segmentation. As a result, the UW approach could
be applied successfully even to FECD images, which
are corrupted secondary to corneal edema.

To assess the performance of the modified U-Net,
we computed different metrics. Thus we found an F1
score of 82.27%, a mean IoU of 77.27%, and an
accuracy of 87.9%. In addition, the area under the
ROC curve is 96.70%. In agreement with our obser-
vations in the healthy subjects, Fabijańska28 obtained
an average F1 score of 83% from images of Alizarine-

red stained endothelium from 30 healthy subjects. In
another study, Fabijańska15 reported an area under the
ROC curve as 92% and an F1 score of 86% based on
30 healthy images. Kolluru et al.29 achieved a mean
F1 score of 86% and a mean IoU of 75% with the
U-Net approach for a dataset containing 130 images
of post-endothelial keratoplasty in a Cornea Preserva-
tion Time Study. Using the U-Net, Vigueras-Guillén
showed an F1 score of 98% with 50 images from
the central cornea of 50 glaucomatous eyes imaged
with a Topcon’s SM (SP-1P, Topcon Co, Japan).19
Thus the metrics obtained by our workflow with
the modified U-Net and FECD images are relatively
close to values reported previously with healthy
images.

Apart from the metrics of segmentation, we
compared estimates of ECD by the three methods.
The differences in ECD estimates between Tomey’s
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Figure 7. Comparison of ECD estimates for FECD: ECD estimates of 27 subjects (52 images) with FECD by UW approach were compared
with that provided by the SM and ground truths, which were segmentedmanually. Themiddle line represents themean difference, and the
dashed lines show the 95% LoAs. ECD ranged from 450 to 3000 cells/mm2 in all themethods. (A) Bland-Altman analysis between the SM and
manual segmentation. (B) Bland-Altman analysis between UWapproach andmanual segmentation. (C) Bland-Altman analysis between UW
approach and SM. (D) Comparison of ECD estimates of all the methods: There is no significant difference between ECD estimates from the
three methods (P > 0.14).

Figure 8. Morphological analysis of the segmented endothelial cells: Histogram of equivalent diameter and APL in the healthy and FECD
after segmentation. (A) Equivalent diameter: This parameter was calculated based on cell areas assuming a spherical geometry. The distri-
bution of equivalent diameter is Gaussian in the healthy (gray bars), with the diameter showing a narrow distribution size (29.66± 6.83 μm).
The distribution is also Gaussian in FECD (black bars) but shows a broader distribution (29.95 μm ± 9.53 μm). (B) APL: The distribution is
more skewed in FECD compared to healthy. The range of APL in healthy is 53.09 to 94.11 μm/cell compared to 56.6 to 195.3 μm/cell.
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Figure 9. Effect of severity of FECD on the APL and ECD: APL and ECD for healthy subjects and FECDpatients computed following segmen-
tation are plotted against %Guttae. (A) APL versus %Guttae: APL increased with an increase in severity of guttae (i.e., with an increase in
%Guttae). (B) ECD versus %Guttae: ECD decreases with an increase in severity of guttae (i.e., with an increase in %Guttae).

Figure 10. Impact of elongation in APL: The main hallmarks of FECD include a decline in ECD concomitant with increased secretion of
extracellularmatrix (ECM;which results in guttae), oxidative stress, and endoplasmic reticulum (ER) stress. In this study, we report an increase
in APL during FECD. The decline in ECD, which reduces the net fluid transport, is frequently attributed to stromal edema in FECD. In addition,
loss of barrier function is reported in FECD, which can be attributed to intracellular stresses and the abnormal ECM. We hypothesize that
elongation of APL, which increases the junctional length, also contributes to stromal edema via a reduction in barrier function. Thus studies
pertaining to mechanisms that impact the barrier function assume importance in the development of therapeutics of corneal edema in
FECD.

SM software versus manual segmentation are minor
in healthy (without guttae) compared to FECD. This
is indicated by the smaller distance between upper
and lower limits of agreement (LoAs) in the healthy
compared to FECD (Fig. 6A vs. 7A; 769 cells/mm2 vs.
1853 cells/mm2). The trend for the differences in ECD
estimates between the UW and SM software remains

the same (Fig. 6C vs. 7C; 697 cells/mm2 vs. 1986
cells/mm2). In contrast, we note that the differences in
ECD estimates between UW and manual are minimal
(Fig. 6B vs. 7B; 415 cells/mm2 vs. 455 cells/mm2). These
observations, however, are not apparent in one-way
ANOVA analyses (Figs. 6D and 7D), which indicate a
lack of any difference between ECD estimates between
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the different methods (P > 0.37 for healthy; Fig. 6D
and P = 0.14 for FECD; Fig. 7D). Overall, assum-
ing the manual segmentation as the gold standard,
Bland-Altman’s analyses in Figures 6 and 7 suggest that
the UW approach agrees very well with the manual
segmentation, as highlighted by a small distance
between LoAs.

Our morphometric analysis focused on ECD, CV,
%Guttae, APL, and equivalent diameter of cells in
the healthy vs. FECD endothelium. The induction of
polymegathism during FECD is evidenced by a large
SD in the equivalent diameter (9.53 μm for the FECD
vs. 6.83 μm for the healthy). This is also confirmed by
the skewed distribution of the histogram of equiva-
lent diameter (Fig. 8A). The APL distribution is also
significantly skewed in the case of the FECD (Fig. 9B).
Although ∼58% in both the healthy and FECD cells
possess an APL of 75 μm, there are >30% of FECD
cells with an APL of >100 μm while >20% of healthy
cells possess anAPLof 50 μm (Fig. 8B). These dichoto-
mous observations suggest that the overall APL in the
FECD is significantly larger than in the healthy. The
increase in APL implies an elongation of the paracel-
lular pathway for the inward flux of water from the
anterior chamber into the stroma. In other words, there
is a propensity for enhanced water leak into the stroma
during FECD, potentially leading to stromal edema
in the absence of a parallel stimulation in oppositely
directed fluid movement. Figure 9A shows that APL
elongates as %Guttae increases.

As it is well known from recent studies on FECD,4–7
the significant hallmarks of the disease include (a)
accumulation of abnormal extracellular matrix as
guttae, (b) increasing intracellular oxidative stress, and
(c) endoplasmic reticulum stress (Fig. 10). Although
thesemechanisms are implicated in endothelial apopto-
sis, leading to a decline in ECD, these conditions may
also induce intracellular stresses leading to a break-
down of the barrier function.1,2 Thus the increase in
APL during FECD indirectly results in an elongation
of the junctional length (Fig. 10). These considerations
suggest the importance of rescuing the barrier function
in the treatment of stromal edema during FECD.

In conclusion, we have developed theUWalgorithm
for automatic segmentation of the corneal endothe-
lium. The modified U-Net is versatile because it can
be trained rapidly with a smaller training set and
produces accurate segmentation. The latter is aided
partly by the inclusion of the Watershed algorithm as
a postprocessing step to handle unresolved borders in
the output of the modified U-Net. Our morphometric
analysis has revealed that APL is escalated in FECD,
and the increase occurs concomitantly with a decline
in ECD.
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