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Abstract 

Rational: LDCT screening can identify early-stage lung cancers yet introduces excessive false positives 
and it remains a great challenge to differentiate malignant tumors from benign solitary pulmonary 
nodules, which calls for better non-invasive diagnostic tools.  
Methods: We performed DNA methylation profiling by high throughput DNA bisulfite sequencing in 
tissue samples (nodule size < 3 cm in diameter) to learn methylation patterns that differentiate cancerous 
tumors from benign lesions. Then we filtered out methylation patterns exhibiting high background in 
circulating tumor DNA (ctDNA) and built an assay for plasma sample classification. 
Results: We first performed methylation profiling of 230 tissue samples to learn cancer-specific 
methylation patterns which achieved a sensitivity of 92.7% (88.3% - 97.1%) and a specificity of 92.8% 
(89.3% - 96.3%). These tissue-derived DNA methylation markers were further filtered using a training set 
of 66 plasma samples and 9 markers were selected to build a diagnostic prediction model. From an 
independent validation set of additional 66 plasma samples, this model obtained a sensitivity of 79.5% 
(63.5% - 90.7%) and a specificity of 85.2% (66.3% - 95.8%) for differentiating patients with malignant tumor 
(n = 39) from patients with benign lesions (n = 27). Additionally, when tested on gender and age matched 
asymptomatic normal individuals (n = 118), our model achieved a specificity of 93.2% (89.0% - 98.3%). 
Specifically, our assay is highly sensitive towards early‐stage lung cancer, with a sensitivity of 75.0% 
(55.0%-90.0%) in 20 stage Ia lung cancer patients and 85.7% (57.1%-100.0%) in 7 stage Ib lung cancer 
patients. 
Conclusions: We have developed a novel sensitive blood based non‐invasive diagnostic assay for 
detecting early stage lung cancer as well as differentiating lung cancers from benign pulmonary nodules. 

Key words: Early-stage lung cancer, circulating tumor DNA, high-throughput targeted DNA methylation 
sequencing 

Introduction 
Lung cancer, now ranking as the leading cause of 

death among malignant tumors, is a severe global 
public health problem [1]. Although the combined use 
of surgery, chemotherapy, radiotherapy, and targeted 
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therapy has significantly improved the survival of 
patients with lung cancer, the prognosis remains 
poor. One important reason is the difficulty of 
detection of early-stage lung cancer, and most 
patients have already developed into advanced stage 
upon diagnosis. Low-dose CT (LDCT) screening is 
currently the most effective approach for early 
diagnosis of lung cancer. The US National Lung 
Cancer Screening Test (NLST) reported a sensitivity of 
93.7% for LDCT screening for high-risk people (55-75 
years old, smoking over 30 pack-years) [2]. Compared 
with chest radiography, LDCT reduced lung cancer 
mortality by 20%. Among lung cancers detected by 
LDCT screening, 63% are stage I, which usually 
present as solitary pulmonary nodules (SPNs).  

However, due to the high sensitivity of LDCT 
screening, a lot of non-tumorous SPNs are also 
detected. These people are usually subjected to 
long-term follow-up by repeated CT examination, and 
even some invasive procedures such as aspiration 
biopsy or surgery to confirm their pathological 
results. In NLST study, the false positive rate in the 
LDCT screening group is as high as 96.4% [3], which 
is likely to cause excessive medical care and 
unnecessary psychological burden for those who 
undertook the screening. Incorporating image 
features can help rule out some benign SPNs; 
however, there are still 30-50% of patients who 
undergo surgeries but turn out to have benign 
nodules. For the past decades, investigators have tried 
to combine LDCT with PET-CT, tumor biomarkers, 
circulating tumor cells (CTC), or some tests to reduce 
the false positive rate [4-6]. However, none of such 
techniques succeeded in balancing sensitivity and 
specificity. 

DNA methylation is one of the best studied 
epigenetic modifications that adds a methyl group to 
the carbon-5 position of a cytosine, which 
predominantly happens in CpG dinucleotides. This is 
a tightly regulated dynamic process in normal 
physiological conditions, balanced by DNA 
methyltransferases and DNA demethylases, which 
plays a critical role in the maintenance of 
heterochromatin structure and regulation of gene 
expression during development [7]. A large number 
of studies have shown that abnormal DNA 
methylation contributes to tumorigenesis, mainly 
through global hypomethylation, focal 
hypermethylation at multiple genomic regions 
(mostly CpG islands), and direct mutagenesis at 
methylated cytosines [8-12]. Moreover, it has been 
found that, during the development of lung 
adenocarcinoma, DNA methylation alterations occur 
even before the formation of atypical adenomatoid 
hyperplasia (AAH) [13]. All this emerging evidence 

suggests that DNA methylation can serve as a 
biomarker for early detection of lung cancers. 

Circulating tumor DNA (ctDNA), shed by 
apoptotic or necrotic tumor cells, has gained more 
attention as liquid biopsy by examining cell free DNA 
(cfDNA) isolated from the bloodstream for tumor 
early detection and tumor genome assessment. 
Compared to traditional tissue biopsy, the use of 
cfDNA is non-invasive causing no complications 
usually associated with surgeries, limits sampling bias 
or information missing due to tumor heterogeneity, 
can be applied to patients who are not physically 
eligible for tissue biopsy, and allows multiple 
sampling for longitudinal monitoring. However, the 
portion of ctDNA within cfDNA is usually very 
limited, and can sometimes be lower than 0.01%, 
which calls for a highly sensitive approach for ctDNA 
detection [14-16].  

In this study, we reported an ultra-sensitive 
high-throughput targeted DNA methylation 
sequencing method for ctDNA identification. We 
learned DNA methylation features from tissues by 
comparing lung malignant tumors to benign 
pulmonary lesions, and finally established a 
diagnostic model for distinguishing malignant from 
benign nodules. We further applied this model to 
identify tumor-specific ctDNA from plasma of 
patients with pulmonary nodules, and demonstrated 
satisfactory sensitivity and specificity towards 
early-stage lung cancer. This approach holds great 
promise for a revolutionary screening or diagnostic 
test to non-invasively identify lung cancer at its early 
and curable stage, in complement with LDCT 
screening. 

Methods 
Patients and sample collection 

This is a study including cancer-free individuals 
and formalin-fixed paraffin embedded (FFPE) tissue 
samples and plasma samples from patients screened 
positive for pulmonary nodules (PNs, < 3 cm in 
diameter) by CT/LDCT scan and subsequently 
underwent surgical resections. Since the study is 
aimed for non-invasive diagnosis of early-stage lung 
cancer, enrolled patients were required to be free of 
previous cancer history and diagnosed with only 1 or 
2 PNs. Both genders were included and smoking 
history was recorded. Pathological information of all 
samples was determined based on surgically resected 
tissue sections according to 2015 WHO Histological 
Classification of Lung Cancer. The collection of all 
samples was approved by Ethical Committees at each 
site, and all participants provided written informed 
consent.  
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309 malignant and benign lung tissue samples 
(nodule size < 3 cm in diameter) were collected in 
FFPE format; 320 plasma samples from patients with 
nodules less than 3 cm in diameter or healthy controls 
were collected. 79 samples were excluded due to 
insufficient extracted DNA amount, low library yield, 
or poor sequencing quality. In total, 288 malignant 
and benign lung tissue samples and 250 plasma 
samples were enrolled in the current study, including 
132 samples from individuals diagnosed with positive 
PNs and 118 samples from asymptomatic normal 
individuals (Figure S4 and Table S4). Enrolled 
samples include 33 paired tissue-plasma samples that 
were used to evaluate methylation concordance 
between tissue and plasma within the same 
individual. 8 mL of blood was drawn 1-3 days prior to 
surgery and stored in Cell-Free DNA BCT® blood 
collection tubes (Streck, Inc. Cat# 218962) at room 
temperature. Plasma was separated from blood (no 
apparent hemolysis) within 48 h after blood draw, 
and stored at -80 ° C until DNA isolation. For 
asymptomatic normal participants, 8 mL of blood was 
drawn using BD Vacutainer® EDTA Tubes (Becton, 
Dickinson and Company, Cat# 367525) and plasma 
was immediately separated within 2 h after blood 
draw and stored at -80 °C. 

The isolation of tissue genomic DNA and 
plasma cell-free DNA (cfDNA) 

Tissue genomic DNA (gDNA) was isolated from 
FFPE tissue samples using the Qiagen QIAamp DNA 
FFPE Tissue Kit (Qiagen, Cat# 56404) according to the 
manufacture’s protocol. gDNA was fragmented to 200 
bp using the M220 Focused-ultrasonicator™ (Covaris, 
Inc.) following the manufacturer’s protocol and 100 
ng of fragmented DNA was used for library 
construction.  

For plasma collected using Streck BCT, cfDNA 
was isolated using the Qiagen QIAamp Circulating 
Nucleic Acid Kit (Qiagen, Cat# 55114) according to 
the manufacturer’s protocol, while cfDNA was 
isolated using the Bioo NextPrep-Mag™ cfDNA 
Isolation Kit (Bioo Scientific, Cat# NOVA-3825-01/3) 
for plasma collected using EDTA-K2 tubes. Repeated 
freezing and thawing of plasma was avoided to 
prevent cfDNA degradation and gDNA 
contamination from white blood cells (WBC). The 
concentration of cfDNA was measured using the 
Qubit™ dsDNA HS Assay Kit (Thermo Fisher 
Scientific, Cat# Q32854) and quality was examined 
using the Agilent High Sensitivity DNA Kit (Cat# 
5067-4626). cfDNA with yield greater than 3 ng 
without overly genomic DNA contamination was 
proceeded to library construction. 

Bisulfite conversion and the AnchorIRISTM 
targeted methylation sequencing 

Bisulfite conversion 
Bisulfite conversion was performed using the 

Zymo Lightning Conversion Reagent (Cat# D5031, 
Zymo Research) according to the manufacturer’s 
protocol. Briefly, 130 µL of Lightning Conversion 
Reagent was added to 20 µL DNA sample, which was 
incubated in a thermocycler with the following 
program: 98 °C for 8 min, 54 °C for 60 min, and 4 °
C for up to 20 h. Then bisulfite-converted DNA was 
mixed with M-Binding buffer, run through a 
Zymo-SpinTM IC Column, desulphonated, washed, 
and eluted in 17 µL M-Elution buffer.  

AnchorIRISTM pre-library construction 
AnchorIRISTM pre-library construction was 

performed using AnchorDx EpiVisioTM Methylation 
Library Prep Kit (AnchorDx, Cat# A0UX00019) and 
AnchorDx EpiVisioTM Indexing PCR Kit (AnchorDx, 
Cat# A2DX00025). End repair of bisulfite-converted 
DNA was performed using the MEE1 enzyme at 37 °
C for 30 min. DNA was then denatured at 95 °C for 5 
min and snap cooled on ice. 3’ end adaptor was 
ligated using the MLE1 and MLE5 enzymes at 37 °C 
for 30 min. First amplification was immediately 
performed to generate reverse complemented DNA 
molecules using the MAE3 enzyme with the following 
PCR program: 1 cycle of 95 °C for 3min, 4 cycles of 95 
°C for 30 s + 60 °C for 30 s + 68 °C for 1 min, and 1 
cycle of 68 °C for 5 min. Amplified DNA was 
purified using the AMB1 Magnetic Beads and eluted 
in a 20 µL volume. 3’ end adaptor ligation of reverse 
complemented DNAs was next performed using the 
MSE1 and MSE5 enzymes at 37 °C for 30 min. 
Indexing PCR (i5 and i7) was immediately performed 
using the MIB1 PCR master mix with the following 
PCR program: 1 cycle of 98 °C for 45 s, 14 cycles of 98 
°C for 15 s + 60 °C for 30 s + 72 °C for 30 s, and 1 
cycle of 72 °C for 5 min. The amplified pre-libraries 
were subsequently purified using the IPB1 Magnetic 
Beads and the concentration was determined using 
the Qubit™ dsDNA HS Assay Kit. Pre-libraries 
containing more than 400 ng DNA were considered 
qualified for target enrichment. 

AnchorIRISTM target enrichment 
Target Enrichment was performed using 

AnchorDx EpiVisioTM Target Enrichment Kit 
(AnchorDx, Cat# A0UX00031). A total of 1,000 ng 
DNA containing up to 4 pre-libraries was pooled for 
target enrichment using our custom made 10K 
methylation panel, which includes 9921 pre-selected 
regions enriched for cancer-specific methylation. 
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Briefly, HE, HBA and HBB blocking reagents were 
added to the 1,000 ng pooled pre-libraries and 
completely dried using a heated vacuum, which was 
subsequently reconstituted in 7.5 µL MHB1 
hybridization buffer plus 3 µL MHE1 hybridization 
enhancer. Reconstituted pre-library pools were next 
denatured at 95 °C for 10 min and immediately 
transferred to a 47 °C hybridization oven. Then 
probes were added to each pre-library pool, which 
was quickly transferred to a thermocycler for 
hybridization incubation following the 
manufacturer’s protocol.  

After hybridization, DNA pre-libraries bound 
with biotinylated probes were pulled down using the 
Dynabeads M270 streptavidin beads (Thermo Fisher 
Scientific, Cat# 65306). Briefly, 30 µL streptavidin 
beads were used for each pre-library pool, washed 
twice with 1X Binding Wash Buffer, and re-suspended 
in 60 µL Binding Wash Buffer. Pre-library pools were 
added and mixed well with beads by repeated 
pipetting, and the mixture was incubated on a rotator 
at 47 °C for 45 min. After beads binding, 100 µL 
pre-warmed 1X Transfer Buffer was added to the 
mixture. The supernatant was quickly removed as 
soon as it turned clear and beads were washed twice 
using pre-warmed 1X Stringent Wash Buffer. Next, 
beads were re-suspended with 200 µL room 
temperature 1X Wash Buffer I and mixed thoroughly. 
Supernatant was then removed and beads were 
subsequently washed with 1X Wash Buffer II and 1X 
Wash Buffer III following the same steps, and finally 
eluted in 23 µL H2O. 

These enriched libraries were further amplified 
with P5 and P7 primers using the KAPA HiFi HotStart 
Ready Mix (KAPA Biosystems, Cat# KK2602) with 
the following PCR program: 1 cycle of 98 °C for 45 s, 
12 cycles of 98 °C for 15 s + 60 °C for 30 s + 72 °C 
for 30 s, and 1 cycle of 72 °C for 1 min. PCR product 
was then purified with Agencourt AMPure XP 
Magnetic Beads (Beckman Coulter, Cat# A63882) and 
eluted in 40 µL EB buffer. The concentration of this 
final library was determined using Qubit dsDNA HS 
Assay. 

Evaluation of Library Preparation on 
methylation detection 

Bake-off experiments with comparison to the SWIFT® 
Accel-NGS Methyl-SeqTM Assay 

Analytical performance of the AnchorIRISTM 
assay was tested by using a series of cfDNA input 
ranging from 1 ng to 10 ng. cfDNA was isolated from 
the plasma collected from 3 patients with ovarian 
cancer. DNA concentration was measured using 
Qubit HS DNA Assay and then cfDNA was pooled. 

The concentration of the pooled cfDNA was 
calculated based on the total DNA amount and total 
volume. Next, bisulfite conversion was performed 
according to the manufacturer’s protocol and DNA 
was eluted at the final concentration of 0.667 ng/µL. 

Bisulfite-converted cfDNA was then aliquoted 
for different input titrations in duplicate, including 10 
ng, 5 ng, 3 ng, and 1 ng. By doing this, assay variation 
between samples introduced at the step of bisulfite 
conversion was avoided.  

IRIS libraries were constructed according to the 
methods described above, while SWIFT libraries were 
constructed according to the manufacturer’s protocol 
(Cat# DL-ILMMS-12/48). Briefly, bisulfite converted 
DNA was denatured at 95 °C for 2 min and snap 
cooled on ice. 3’ end adaptor-1 ligation was 
immediately performed using the Adaptase Reaction 
Mix with the incubation program: 37 °C for 1 min, 62 
°C for 2 min, and 65 °C for 5 min. Next, reverse 
complemented sequence of each ssDNA was 
synthesized using the Extension Reaction with the 
enzyme Y2 with the incubation program: 98 °C for 1 
min, 62 °C for 2 min, and 65 °C for 5 min, resulting 
in dsDNA molecules. Next, dsDNA was purified 
using the SPRIselect beads and eluted in 15 µL low 
EDTA TE. The ligation of adaptor-2 was performed 
using the Enzyme B3 at 25 °C for 15 min. Ligation 
products were purified with SPRIselect beads and 
carried to subsequent Indexing PCR for amplification 
with the PCR program: 1 cycle of 98 °C for 30 s and 
repeated cycles of 98 °C for 10 s + 60 °C for 30 s + 68 
°C for 1 min. PCR cycle numbers were adjusted 
according to input DNA amount for both IRIS and 
SWIFT assays. PCR products were bead purified, 
eluted in 40 µL EB buffer, and quantified using Qubit. 

Target enrichment was performed using the 
same 10K panel for both assays according to the 
methods described above. 

Sensitivity assessment and detection limit of the 
AnchorIRISTM targeted methylation sequencing  

To assess assay sensitivity and detection limit of 
the IRIS assay, different amounts of lung cancer 
tumor tissue gDNA were spiked into WBC gDNA to 
create serial dilutions of tumor fraction, including 
1:10, 1:30, 1:100, 1:300, and 1:1,000. Undiluted and 
WBC samples were also included. A total amount of 
900 ng gDNA per 50 µL volume for each dilution was 
sheared to 200 bp, successful shearing was confirmed 
by running 1% agarose gel. Concentrations of sheared 
DNA were measured using Qubit and bisulfite 
conversion was performed using 250 ng DNA. Next, 
100 ng of bisulfite-converted DNA was aliquoted 
from each dilution in duplicate for library 
construction and target enrichment according to the 
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methods described above.  

Targeted methylation sequencing data analysis 
pipeline development 

Read mapping  
Sequencing adapters and 3’-low quality bases 

were trimmed from raw sequencing reads using Trim 
Galore version 0.4.1 (https://github.com/ 
FelixKrueger/TrimGalore), and then aligned to C->T 
converted hg19 genome, as well as G->A converted 
hg19 genome using Bismark version 0.15.0 (Bowtie2 is 
the default aligner behind Bismark) [17]. Reads 
having at least 3 methylated CpGs within a sliding 
window of 3-5 CpGs were designated as 
co-methylated reads and used for subsequent analysis 
of methylation patterns and predictive modeling of 
malignant/benign states of patient samples. 

Assay performance evaluation 
Aligned reads were evaluated by Picard version 

2.5.0 for metrics that measures the performance of 
target-capture based bisulfide sequencing assays 
(http://broadinstitute.github.io/picard). Specifically, 
the library conversion efficiency is calculated as the 
ratio of estimated molecule number incorporated in a 
library divided by the theoretical molecule number 
equivalent to the input DNA amount. The estimated 
molecule number is derived from sequencing depth 
(pre-deduplication mean bait coverage) and observed 
sequencing diversity (observed molecule number, 
post-deduplication mean bait coverage) based on the 
Poisson distribution. Detailed method is provided in 
Figure S5. 

Differential methylation signature identification 
Differential methylation (DM) analysis was 

performed on the training cohort of lung cancer 
patients using R package DSS version 2.14.0 [18]. 
Differentially methylated CpGs were identified 
comparing invasive adenocarcinoma (IA) to benign 
samples (p < 0.2, delta > 0.01), and further assembled 
into differentially methylated regions (DMRs). 
Targeted regions of our capture panel covered by 
DMRs (requires > 50% bases of a target region to be 
covered) were selected as candidate features for 
building classification models of malignant/benign 
state. The differential signal was visually confirmed 
by heatmap using Gitools version 2.3.0 [19]. 

Predictive modeling of malignant/benign state 
To validate the collective prediction power of 

candidate features, we built a random forest model 
for tissue samples in the training cohort of lung cancer 
patients. We repeated 2-fold cross-validation 10 times 
and selected top 1,000 markers by their importance 

scores in the random forest model. We evaluated the 
performance of this model on an independent test set 
using receiving operation curve (ROC) method. For a 
chosen threshold, the sensitivity and specificity were 
calculated as follows, 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
# 𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑔𝑔𝑆𝑆𝑚𝑚𝑆𝑆𝑆𝑆 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆𝑠𝑠𝑆𝑆𝑆𝑆 𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑆𝑆𝑠𝑠𝑆𝑆𝑚𝑚𝑆𝑆 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑐𝑐
# 𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑔𝑔𝑆𝑆𝑚𝑚𝑆𝑆𝑆𝑆 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆𝑠𝑠𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆ℎ𝑆𝑆 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆𝑆𝑆 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆 =
# 𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑔𝑔𝑆𝑆 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆𝑠𝑠𝑆𝑆𝑆𝑆 𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑆𝑆𝑠𝑠𝑆𝑆𝑚𝑚𝑆𝑆 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑐𝑐
# 𝑐𝑐𝑆𝑆 𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑔𝑔𝑆𝑆 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆𝑠𝑠𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆ℎ𝑆𝑆 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆𝑆𝑆

 

After confirming the collective prediction power 
in tissue samples, we further examined the signal 
distribution of these candidate markers in plasma 
samples, and identified a total of 71 markers that 
preferentially discriminated malignant samples from 
benign samples in the training set. Next, we applied 
the Least Absolute Shringkage and Selection Operator 
(Lasso) [20] method to select top 9 markers that 
appeared most frequently among 500 subsampling of 
the original dataset at 75% sampling rate without 
replacement. The Lasso model was determined 
according to the expected generalization error 
estimated from 10-fold cross-validation. Finally, we 
trained a logistic regression model with these 9 
markers to discriminate the same malignant samples 
from benign samples in the training set. The 
performance of this classification model was 
evaluated in an independent test set using the ROC 
method. 

We evaluated the performance of the most 
extensively used prediction model for malignancy in 
our pulmonary nodule positive plasma samples. The 
Mayo Clinic model for malignancy in pulmonary 
nodules expresses the malignancy probability as a 
function of 3 clinical and 3 radiographic variables: 

(1) Probability of malignancy = ex/(1+ex) 

(2) x = -6.8272 + (0.0391 × age) + (0.7917 × smoking) 
+ (1.3388 × cancer) + (0.1274 × Nodule diameter) + 

(1.0407 × spiculation) + (0.7838 × upper lobe) 

Before applying Mayo model to pulmonary 
nodule samples, we eliminated those samples with 
one or more model-building variables not available. 

Limit of detection based on serial dilution 
experiment 

Two replicates of serial dilutions were created by 
mixing lung cancer tissue gDNA and WBC gDNA 
according to dilutions of 1:10, 1:30, 1:100, 1:300, 1:1000, 
and 1:3,000. To achieve optimum quantitation, a set of 
887 informative co-methylated CpG regions were 
selected from our 10K methylation panel, meeting the 
following criteria, (1) the percentage of co-methylated 
reads (co-methylated reads / all mapped reads with 
at least 3 CpGs) is required to be greater than 7.5% 
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from the undiluted tumor gDNA sample; (2) the 
percentage of co-methylated reads at dilution 1:100 is 
required to be greater than the percentage of 
co-methylation at background using WBC gDNA; (3) 
the ranking of the percentage of co-methylation for 
undiluted, 1:10, 1:30, and 1:100 dilution samples fully 
agrees with the titration order in at least one dilution 
replicate. For a given dilution, whether significantly 
more regions with informative co-methylation signals 
can be detected above background is determined by 
Z-test to assign a p-value. p-value < 0.05 is considered 
statistically significant. 

Results 
The AnchorIRISTM assay and performance 
assessment 

The AnchorIRISTM (IRIS) assay employs a 
technology that directly ligates adaptors to the 3’ end 
of single stranded DNA molecules after bisulfite 
conversion (Figure 1A). This significantly reduces 
DNA loss due to bisulfite conversion of constructed 
libraries. Another improvement included in the IRIS 
assay is the linear amplification after the first adaptor 
ligation. This increases the availability of molecules 
for the second adaptor ligation rendering a much 
higher chance for the original molecule to be 
incorporated into a sequencing library. These two 
improvements are particularly important for ctDNA 
recovery for subsequent sequencing considering the 
limited amount of ctDNA. ctDNA usually comprises 
0.1% ~ 50% of total cfDNA, which can be even down 
to 0.01% or lower at early stages of tumorigenesis 
[14-16, 21]. In the end, we introduced a final target 
enrichment step, and thus sequencing cost can be 
significantly reduced by pre-selecting a set of targets 
of interest.  

Given the limited amount of ctDNA recovered 
from one typical blood draw, the detection limit and 
data quality of the IRIS assay highly rely on multiple 
factors, including bisulfite conversion efficiency, 
conversion efficiency of cfDNA molecules into 
sequencing libraries, sequencing coverage, and 
sequencing uniformity. To address these fundamental 
challenges, we first performed a bake-off study 
comparing our IRIS assay to a commercially available 
DNA methylation library construction kit SWIFT® 
Accel-NGS Methyl-SeqTM (SWIFT) using variable 
amounts of input cfDNA (1 ng to 10 ng), representing 
the typical range of cfDNA yield that we could isolate 
from a typical blood draw. We sequenced all tested 
libraries to achieve similar amounts of uniquely 
mapped total reads (> 10 million) with about 65% ~ 
70% mapping rate. Overall performance improves 
with higher cfDNA input for both techniques as 

shown by proportionally increased 
post-deduplication mean bait coverages (Figure 1B). 
However, at each cfDNA input level, our IRIS 
libraries produced 4-8 times higher 
post-deduplication mean target coverage than SWIFT 
libraries, with uniformity (percentage of target bases 
with greater than 0.2X mean target coverage) at all 
conditions greater than 90% (Table S1). Even the 
libraries with 1 ng cfDNA input using the IRIS assay 
displayed greater performance metrics than the 
libraries constructed with 10 ng input cfDNA using 
the SWIFT assay.  

We next estimated library conversion efficiencies 
as described in the Methods section, and compared 
them between IRIS and SWIFT (Figure 1C, Table 1 
and Table S1). The IRIS assay conferred at least 20% 
conversion rate with at least 5-fold greater efficiency 
than SWIFT. We also observed an unexpected high 
library conversion efficiency with 1 ng cfDNA input, 
which was likely due to the higher efficiency of 
library construction with much abundant enzymes 
and reagents at each step relative to the limited 
starting material. 

To assess assay sensitivity and limit of detection 
(LoD) of the IRIS assay, a serial dilution experiment 
was performed with different amounts of sheared 
lung cancer tumor genomic DNA (gDNA) spiked into 
sheared WBC gDNA to create serial dilutions of 
tumor fractions. All dilution samples displayed very 
similar library construction and sequencing 
performance (Table S2). The overall sequencing 
performance of tissue gDNA is generally better than 
cfDNA with higher diversity and uniformity at the 
same sequencing depth due to the substantially 
higher DNA input amount (Table S1 and S2). 
Technical replicates of each dilution were highly 
correlated across all target regions (Figure S1). All 
these suggest that the IRIS assay is highly stable and 
reproducible. 

DNA methylation is more biologically 
meaningful when multiple neighboring CpGs are 
co-methylated; therefore, we only considered 
co-methylated reads defined as reads having at least 3 
methylated CpGs within a sliding window containing 
3 to 5 CpGs. In order to assess assay sensitivity, we 
first selected informative CpG regions based on the 
following criteria: (1) the percentage of co-methylated 
reads (co-methylated reads / all mapped reads with 
at least 3 CpGs) is required to be greater than 7.5% 
from the undiluted tumor gDNA sample; (2) the 
percentage of co-methylated reads at dilution 1% is 
required to be greater than the percentage of 
co-methylation at background using WBC gDNA; (3) 
at least one replicate of dilutions from 1% to 100% 
conform to an increasing trend. By doing this, we 
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selected 887 informative CpG regions for subsequent 
calculations.  

 DNA methylation alteration has been shown as 
an early event during tumorigenesis, and multiple 
genomic regions are affected simultaneously [13, 22, 
23]. While whether it plays a causal role still needs to 
be determined, it renders a great advantage for DNA 
methylation being used as biomarkers for cancer early 
detection, by which much more genomic markers can 
be acquired in parallel from a tiny amount of starting 
material, especially in the case of ctDNA. Due to this 
special feature of DNA methylation, two factors need 
to be considered for evaluating the LoD: (1) whether a 
set of regions with informative co-methylation signals 
can be detected above background at a given dilution; 
(2) define a linear quantitative range for input 
dilutions. As shown in Figure 1D and 1E, at higher 
dilutions (> 10%) when tumor DNA was still 

adequate, almost all pre-selected informative CpG 
regions could be detected (Figure 1D), and only at this 
range, the percentage of co-methylation presents a 
linear relationship according to dilution factors (gray 
box, Figure 1E). This is because the percentage of 
co-methylation varies among different genomic 
regions, and the average percentage is subjected to 
change when the detected region set becomes smaller 
as tumor DNA is more diluted. Moreover, we could 
still detect a number of informative CpG regions even 
at the dilution of 0.033%, which was significantly 
greater than the number of regions detected at 
background using WBC gDNA. Considering that the 
cancer cell content of the starting material was 
estimated to be approximately 30% of the perspective 
FFPE tissue block, our assay can achieve a detection 
limit of 0.0033%. 

 

 
Figure 1. The AnchorIRISTM assay and performance assessment. (A) Workflow of the ultra-sensitive AnchorIRISTM library preparation method. (B-C) A 

bake-off experiment comparing assay performance between the AnchorIRISTM assay and the SWIFT® accel-NGS Methyl-seqTM assay. The IRIS assay presents superior 

molecule conversion efficiency (C) with much higher average unique coverage for each input amount tested (B). (D and E) The sensitivity of the AnchorIRISTM assay 
was evaluated by diluting tumor gDNA into WBC gDNA, showing that significantly more informative co-methylated CpG regions above WBC background can be 
detected at dilutions ≥ 0.033% by Z-test (D). Dilutions higher than 10% (gray box) preserve a linear response of average co-methylation signal to the tumor fractions 
of input DNA (E). 
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Table 1. Comparison of molecule conversion efficiency between the AnchorIRISTM assay and the SWIFT®accel-NGS Methyl-seqTM assay. 

Input DNA AnchorDx IRIS SWIFT-Accel-NGS Methyl-Seq 
Input 
DNA 

Input molecule 
number 

Observed 
molecule number 

Estimated molecule 
number in library 

Estimated library 
conversion rate 

Observed 
molecule number 

Estimated molecule 
number in library 

Estimated library 
conversion rate 

1 ng 300 153 156 52% 21 21 7% 
3 ng 900 278 314 35% 44 44 5% 
5 ng 1500 334 420 28% 64 64 4% 
10 ng 3000 464 636 21% 110 110 4% 

 

 
Figure 2. Characterization of tissue level hypermethylation signatures of lung cancer. (A) Heatmap showing randomly selected 1000 hypermethylation 
regions for representative lung cancer and benign tissue samples. Methylation level of each region was calculated as co-methylated reads fraction. Samples are ordered 
from left to right by malignant/benign status (top color bar) and corresponding subtypes (second color bar). Subtypes from left to right are IA (n=33), MIA (n=19), AIS 
(n=8), FUN (n=11), INF (n=9), GRAN (n=4), TB (n=25), and HAM (n=21). Signal is shown in linear scale of color, with red indicating high methylation signal and green 
indicating low methylation signal. (B) A representative receiver operating curve (ROC) displays the tissue classification performance for distinguishing IA samples 
(n=65) against benign lesions (n=101) based on 10 bootstraps of 2-fold cross-validation of a regularized logistic regression. 95% confidence interval (CI) is shown in 
blue shade. 

 

Characterization of hypermethylation 
signatures specific to lung cancer 

To characterize methylation signatures specific 
to early-stage lung cancer, we enrolled 230 FFPE 
tissue samples for training comprising 129 malignant 
tumor samples of invasive adenocarcinoma (IA), 
minimally invasive adenocarcinoma (MIA), 

adenocarcinoma in situ (AIS), squamous cell (SC), 
large cell (LC), small cell (SCLC), and other rare case 
lung cancers, and 101 benign lesion samples of 
hamartoma (HAM), tuberculosis (TB), inflammatory 
granuloma (GRAN), fungal infection (FUN), 
inflammation (INF), sclerosing hemangioma (SH), 
and other rare cases (Table 2). Considering that 
adenocarcinoma is the major subtype of lung cancer 
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in this cohort, among which IA is considered a later 
stage during cancer development beginning from AIS 
and MIA and should have accumulated more 
methylation markers, we started with the 
identification of hypermethylated CpG sites by 
comparing 33 IA samples to 78 benign samples 
(Figure S2) [24]. By doing so, differentially methylated 
CpG loci (DML) were first identified, and neighboring 
associated CpG loci were further grouped into 
differentially methylated regions (DMR). 3886 DMRs 
were selected by this approach. While these regions 
were hypermethylated in almost all IA samples, this 
pattern of hypermethylation was only detected in half 
MIA samples and the other half MIA samples 
presented no difference compared to the benign 
samples (Figure 2A). Similarly, AIS samples also 
revealed lack of hypermethylation signals. This 
gradual gain of hypermethylation (from right to left in 
the heatmap in Figure 2A) is consistent with the 
sequential events of adenocarcinoma development 
progressing from AIS, MIA, to IA. These 
hypermethylated CpG sites were further confirmed 
using the TCGA methylation microarray data 
generated from lung adenocarcinoma and normal 
lung tissues (Figure S3). 

 

Table 2. Patient characteristics for the tissue cohort. 

    Benign 
(101) 

Malignant 
(129) 

Total 
(230) 

Age         
 ≤40 27 (27%) 11 (9%) 38 (17%) 
 41-55 37 (37%) 48 (37%) 85 (37%) 
 56-70 32 (32%) 50 (39%) 82 (36%) 
 ≥71 5 (5%) 20 (16%) 25 (11%) 
Gender         
 Male 49 (49%) 66 (51%) 115 

(50%) 
 Female 52 (52%) 63 (49%) 115 

(50%) 
Smoking 
history 

        

 Smokers 25 (25%) 34 (26%) 59 (26%) 
 Non-smokers 67 (66%) 77 (60%) 144 

(63%) 
 unknown 9 (9%) 18 (14%) 27 (12%) 
Pathology         
 Invasive adenocarcinoma (IA)  65 (50%)  
 Minimal invasive 

adenocarcinoma (MIA) 
 35 (27%)  

 Adenocarcinoma in situ (AIS)  14 (11%)  
 Squamous cell (SC)  7 (5%)  
 Large cell (LC)  2 (2%)  
 Small cell lung cancer (SCLC)  1 (1%)  
 Others  5 (4%)  
 Tuberculosis (TB) 34 (34%)   
 Hamartoma (HAM) 21 (21%)   
 Fungal infection (FUN) 19 (19%)   
 Inflammation (INF) 11 (11%)   
 Granuloma (GRAN) 8 (8%)   
 Sclerosing hemangiomas (SH) 6 (6%)   
 Others 2 (2%)   

 

Tissue level classification was tested by 10 
bootstraps of 2-fold cross-validation each time 
randomizing all IA and benign samples into training 
and test groups and classifier was modeled based on 
these hypermethylated CpG markers using 
regularized logistic regression (Figure 2B, upper 
panel). The prediction performance achieved an 
overall sensitivity of 92.7% ± 4.4% and an overall 
specificity of 92.8% ± 3.5% for separating IA (n = 65) 
from benign lesions (n = 101), giving rise to an overall 
AUC of 97.4% ± 1.0% (Figure 2B, low panel). When 
this model was applied to other malignant subtypes, 
sensitivities for MIA and AIS significantly dropped 
compared to IA, which was very likely due to an 
intrinsic lack of signal in the tissue specimens (Table 
S3). The sensitivity for SC lung cancers (n = 7) could 
achieve 100%, but was also lower in other rare 
subtypes (n = 8) than IA, which was due to the lack of 
subtype-specific markers in the classifier, suggesting 
that our marker set is more selective for IA compared 
to other subtypes.  

Moreover, we enrolled an independent cohort of 
additional 58 patients from an independent cancer 
center, and achieved a sensitivity of 89.2% 
(74.6%-97.0%) and a specificity of 81.0% 
(58.1%-94.6%). As expected, our model yielded the 
highest sensitivity towards IA specimens (100%), 
while sensitivities towards other lung cancer subtypes 
are slightly lower (Table 3). 

 

Table 3. Independent validation of the malignancy classifier 
performance for tissue samples using a separate cohort (Cohort 2) 
of patients. NLCTL, lung normal control tissue; EM, emphysema. 

Tissue Samples Negative Positive Total Sensitivity Specificity 
Malignant IA  12 12 100.0%  

SC 1 7 8 87.5%  
SCLC 3 10 13 76.9%  
others  4 4 100.0%  

 Sum of 
Malignant 

4 33 37 89.2%  

Benign GRAN 8 2 10   
INF 3  3   
TB 3  3   
SH  1 1   
EM 1  1   
NLCTL 2 1 3   

 Sum of Benign 17 4 21  81.0% 
 

Cancer classification using plasma DNA 
The release of gDNA from apoptotic/necrotic 

tumor cells into blood provides an opportunity to use 
ctDNA for the detection of cancer. To confirm that we 
were able to identify tumor tissue-derived DNA in the 
cfDNA pool using DNA hypermethylation patterns, 
we studied 33 pairs of tissue and plasma samples, 
each pair of which was derived from the same patient. 
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As described in the Methods section, we only focused 
on co-methylated reads, and each co-methylation 
pattern was recorded. These pre-defined 
co-methylation patterns were next used to evaluate 
concordance between paired tissue and plasma 
samples, revealing an enrichment of tumor 
tissue-derived co-methylation patterns in the 
respective paired cfDNA pool (Figure 3). 

To explore the clinical application of using DNA 
methylation signatures carried in ctDNA for 
early-stage lung cancer detection, we enrolled 192 
patients and 10 ml of plasma was collected from each 
patient before surgery. 13 samples were excluded due 
to hemolysis, insufficient cfDNA yield (< 3 ng), or 
leukocyte DNA contamination; 9 samples were 
excluded due to low pre-library yield (< 400 ng); 18 
samples were excluded due to failed sequencing 
quality control (QC); and another 20 samples were 
excluded due to the lack of pathological results; all of 
which resulted in a total of 132 samples qualifying for 
subsequent analyses. We also included 118 
asymptomatic normal participants who have never 
been diagnosed with any tumor type. 

We first randomly chose 50% of plasma samples 
(40 malignant, 26 benign) for training (Figure 4A and 
Table S4). The methylation status of the 3886 
tissue-derived hypermethylated regions were 
compared between malignant and benign plasma 
samples using the Wilcoxon rank sum test and 71 
regions were found hypermethylated in plasma. 
These 71 hypermethylated regions were next 
analyzed by the Least Absolute Shrinkage and 
Selection Operator (LASSO) and 9 hypermethylated 
markers were selected by modeling the 40 malignant 
and26 benign training samples. We further built a 
diagnostic prediction model based on these 9 markers 
using logistic regression, which generated an AUC of 
83.9% (74.5%-93.4%) in separating malignant from 
benign plasma samples in the training set (Figure 4B 
and 4C). 

As an independent test, we applied this 
9-marker model to the rest 50% of our enrolled plasma 
samples (39 malignant, 27 benign) (Figure 4A and 
Table S4), and achieved a sensitivity of 79.5% 
(63.5%-90.7%) and a specificity of 85.2% (66.3%-95.8%) 
with an AUC of 81.6% (70.3%-92.9%) in separating 

 

 
Figure 3. Lung cancer tissue co-methylation patterns can be captured in the cfDNA pool. Concordance of co-methylation between paired tissue (row) 
and plasma (column) samples is calculated using the percentage of reads sharing pre-defined co-methylation patterns and displayed in the heatmap. The highest 
similarity of a tissue sample to its matched plasma is shown in the diagonal of the heatmap, with ranking and Wilcoxon test p-values of each self-pair compared to 
the rest tissue-plasma pairs shown on the right. The smaller the rank (and p-value), the better the match of self-pair. 
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malignant from benign samples (Figure 4D and Table 
4). Our assay is highly sensitive against early-stage 
lung cancers showing sensitivities of 75.0% and 85.7% 
for stage Ia and Ib lung cancers (Table 4). Consistent 
with a recent report that adenocarcinoma lung cancers 
shed less amount of ctDNA into the blood, sensitivity 
is 73.9% for IA. However, our assay achieved a 
sensitivity of 100% for squamous cell lung cancers and 
other types of lung cancers that are associated with 
higher cell growth turnover rate [25]. We are 
surprised at the higher sensitivity (77.8%) in MIA 

samples and reasoned that to a low sample size (n = 
9). Next, we asked whether our model could assess 
the risk of cancer in general population. When applied 
to the 118 age and gender matched normal plasma 
samples, our model obtained a specificity of 93.2% 
(89.0%-98.3%). Though our model shows promise 
results distinguishing early stage lung cancers from 
benign nodules and normal controls, additional 
clinical studies with larger sample size are needed to 
establish the robustness of our models. 

 
 

 
Figure 4. Cancer classification using plasma DNA. (A) Workflow chart of building a plasma level diagnostic prediction model. (B) Heatmap of the 9 
hypermethylated markers used for the diagnostic prediction model in the training and independent test data sets. Methylation level of each marker was calculated as 
co-methylated reads fraction. (C and D) ROC curves plot the performance of plasma level classification with the 95% confidence interval (CI) of sensitivity in the 
training (C) and test (D) data sets. (E) Performance of Mayo model in our plasma cohort. P, partial solid nodule; S, solid nodule; G, ground-glass nodule. 
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Table 4. Clinical information and performance of the malignancy 
classifier of plasma samples among various lung cancer subtypes 
and stages against benign and normal conditions in two 
independent validation groups.  

Clinical 
features 

Pulmonary nodule 
positive 

Pulmonary nodule 
negative 

P value 

Gender (male %) 78 (59%) 61 (52%) 0.25 
Age (years) 57 (12) 57 (10) 0.98 
Malignant 
subtypes 

Negative Positive Total Sensitivity Specificity 

IA 6 17 23 73.9%  
MIA 2 7 9 77.8%  
SC  6 6 100.0%  
others  1 1 100.0%  
Sum 8 31 39 79.5%  
Benign 
subtypes 

Negative Positive Total Sensitivity Specificity 

INF 1  1   
GRAN 2 1 3   
HAM 6 1 7   
TB 12 1 13   
FUN 2 1 3   
Sum 23 4 27  85.2% 
Non-malignant 
plasma 
subtypes 

Negative Positive Total Sensitivity Specificity 

pulmonary 
nodule positive 

23 4 27  85.2% 

pulmonary 
nodule negative 

110 8 118  93.2% 

Sum 133 12 145  91.7% 
Malignant 
stages 

Negative Positive Total Sensitivity Specificity 

Ia 5 15 20 75.0%  
Ib 1 6 7 85.7%  
IIa 1     
Later stages 1 9 10 90%  
Unknown  1 1   
Sum 8 31 39 79.5%  

 
 
Smoking history and age have been shown to 

affect DNA methylation status and have been 
reported as risk factors for lung cancer development 
[26-29]. We therefore performed univariate and 
multivariate analyses to determine which clinical risk 
factors may associate with pathological outcomes in 
the current setting and may provide better prediction 
power in combination with DNA methylation 
information. Univariate analyses showed that 
smoking history, and nodule size facilitated ctDNA 
detection, among which nodule size is the strongest 
risk factor other than DNA methylation in predicting 
malignancy (Table S5 and Table S6). However, 
multivariate analysis showed that only DNA 
methylation served as an independent predictor, 
while other risk factors provided little additional 
effect. It suggests that the utilization of methylation 
signatures carried by cfDNA may serve as a 
standalone diagnostic approach, independent of other 
clinical factors, distinguishing malignant lung cancers 
from benign nodules. Guidelines from the American 
College of Chest Physicians recommend that doctors 

use a validated prediction model, such as the Mayo 
Clinic to evaluate the probability that lung nodules 
detected on low-dose CT scans are malignant (30). 
Therefore, we evaluated the performance of Mayo 
Clinic model in our plasma cohort whose AUC is 
67.3% (56.4%-78.2%) (Figure 4E). Compared to Mayo 
Clinic model of our cohort, our methylation model 
has better performance in our independent validation 
set. Additionally, we didn’t gain additional prediction 
performance when combining our model with Mayo 
Clinic model (Figure S6). 

Discussion 
Cancer early detection is by far the most 

economical and effective mean to reduce 
cancer-specific mortality. As the largest cancer type in 
the world, lung cancer early screening has long been 
challenging due to the high false positive rate of 
LDCT screening and the difficulty to perform 
diagnostic biopsies. Therefore, a non-invasive yet 
sensitive diagnostic assay that can distinguish 
malignant pulmonary nodules from benign diseases 
will be particularly valuable for patients with positive 
LDCT results. Liquid biopsy of ctDNA has become 
one of the most attractive approaches for such clinical 
applications. However, a number of recent studies 
that attempted to detect ctDNA from early-stage lung 
cancer patients via PCR or NGS-based somatic 
mutation profiling all concluded with limited 
sensitivities [25, 31, 32].  

We reason that ctDNA detection via methylation 
profiling can achieve higher sensitivity and specificity 
compared to somatic mutation profiling in early-stage 
patients because, 1) a greater magnitude of markers 
can be simultaneously accessed to increase sensitivity, 
and 2) multiple CpG loci within each selected region 
can be interrogated together to derive “cancer-specific 
methylation patterns” for increased specificity. 
Furthermore, methylation profiling can be used to 
differentiate tissue-of-origin and cancer subtypes [33, 
34]. Several recent studies have demonstrated the 
feasibility of performing bisulfite sequencing on 
plasma DNA to identify patients with malignant 
diseases, but all focused on rather late-stage cancer 
patients except the one that reported on 
hepatocellular carcinoma [34-36].  

One recent study by Ooki et al. focusing on 
early-stage lung cancers, used methylation-specific 
PCR on bisulfite-treated serum DNA for 6 genes 
selected based on TCGA dataset, and reported a 
sensitivity of 72.1% in stage Ia adenocarcinoma, 60% 
in stage Ia squamous cell lung cancer, and a specificity 
of 71.4% in normal control subjects [37]. Another 
study by Hulbert et al. using PCR on another 6 genes 
identified from TCGA dataset reported a sensitivity of 
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65-76% and a specificity of 74-84% in plasma [38]. The 
above studies selected markers from TCGA database 
in which the control group were para-tumor normal 
tissues and data were generated using microarrays. 
Therefore, these panels might not be directly 
transformed to next-generation sequencing platforms 
or necessarily applicable to differentiating malignant 
from benign lesions. We generated the candidate 
markers by differentiating malignant lesions from 
benign lesions rather than para-tumor normal tissue. 
There were only four markers shared by both Ooki’s 
study and our test panel, but none of these markers 
was selected into our diagnostic model. We calculated 
the performance of each of these markers using our 
data set and found that they all presented 
significantly lower AUCs compared to the nine 
markers in our diagnostic model (Table S7 & S8). In 
the plasma validation test, we included both benign 
nodular lesions and healthy controls, while the two 
previous studies included only healthy controls. Our 
design could further reduce false positive probability, 
which is crucial in aiding diagnostic decision after 
nodule detection by CT scan.  

Here we present the first study with a lung 
nodule specific cohort, primarily focusing on 
early-stage lung adenocarcinomas, in combination 
with a novel targeted methylation profiling assay that 
exhibits superior library conversion efficiency and 
assay sensitivity (Figure 1 and Table 1). The two major 
technical hurdles for bisulfite sequencing are 1) the 
low library conversion efficiency, which limits the use 
of low input samples such as plasma DNA, and 2) 
limited means for targeted enrichment. The IRIS assay 
combines high library conversion efficiency with a 
streamlined targeted enrichment workflow, which 
enables deep sequencing of pre-selected highly 
informative regions from clinical samples. The 
average unique target coverage from our clinical 
cohort is >180X (Table S9), which greatly facilitates 
the power of detecting low frequency ctDNA 
compared to the shallow sequencing approach used 
in previous studies [34, 35].  

The abundance of ctDNA out of total cfDNA is 
largely associated with the tumor volume. A tumor 
with 1 cm3 volume is predicted to have a ctDNA 
fraction between 0.001-0.03%; therefore, the limit of 
detection of a diagnostic assay is critical for detection 
of early-stage lung cancer [25]. The IRIS assay 
demonstrates a limit of detection of 0.0033% by 
combining several hundreds of pre-selected markers, 
which allows sensitive detection of malignancy from 
patients with tumor as small as 0.5 cm in diameter 
(Table S6 and S8). Using the IRIS assay, we archived a 
sensitivity of 79.5% (63.5% - 90.7%) in detecting 
malignancy from plasma DNA of patients with 

pulmonary nodules. Particularly, the sensitivity for 
stage- Ia and Ib patients remain at 75.0% 
(55.0%-90.0%) and 85.7% (57.1%-100.0%), respectively, 
superior to other ctDNA-based liquid biopsy 
performance via somatic mutation or DNA 
methylation profiling (Table 4) [32, 34, 37]. 
Furthermore, in agreement with Abbosh et al., we also 
observed a drop in sensitivity in adenocarcinoma 
patients compared to other lung cancer subtypes (i.e. 
squamous, small cell, large cell), supports the 
argument that adenocarcinoma, especially at its early 
localized stage, undergoes less apoptosis and necrosis 
compared to other subtypes such as squamous cell 
carcinoma, and therefore shed less ctDNA into the 
bloodstream [25]. This observation poses further 
challenge for lung cancer early detection via ctDNA as 
>90% of sub-centimeter early-stage lung cancers 
identified by CT scan are adenocarcinomas [39].  

As a proof-of-principle study, we demonstrated 
the feasibility of using high-throughput targeted 
DNA methylation sequencing of ctDNA to detect 
sub-centimeter tumor non-invasively. All patients 
involved in this study should have primary lesions 
less than 3 cm in diameter, which restrict the 
differential markers and performance data to be 
specific to low-burden disease. This approach can be 
potentially applied to various aspects of cancer 
management including cancer early screening, LDCT 
confirmatory diagnosis, minimal residual disease 
surveillance, recurrence and treatment response 
monitoring. While the positive detection rate in 
early-stage lung cancers is quite promising, a fully 
independent validation study is still lacking. To 
confirm the performance of this model, we are 
conducting a nationwide multicenter validation study 
in China (NCT03181490,  https://www.clinicaltrials.
gov/) which has been launched since June 2017. 
Notably, only 9 methylation biomarkers were 
included in our current diagnostic prediction model, 
which poses a limitation on assay sensitivity and 
specificity. Further studies with more patient samples 
from a variety of disease subtypes and a more 
comprehensive panel design are needed to improve 
marker selection. The high-throughput methylation 
sequencing methods in this study provided room for 
further evolution of lung cancer specific epigenetic 
markers or diagnostic assays. We also observed a 
slight drop in test specificity in patients with benign 
pulmonary nodules compared to asymptomatic 
normal individuals (Table 4). We hypothesize that 
patients undergoing active inflammatory response 
(i.e. TB and infections) may share some common 
methylation changes in patients with malignant 
tumors, originated from activated lymphocytes. 
Therefore, methylation profiling of various 
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lymphocyte subtypes at various activation states may 
help further improve the specificity for patients with 
benign diseases. Last but not least, deep data mining 
of methylation profiles can be further extended to 
many other types of cancers for better diagnostic and 
prognostic outcomes.  
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impact the clinical application of ctDNA for cancer 
early detection. 

Competing Interests 
The authors JBF, XC, YG, MY, WX, YZ, JT, and 

ZC are employees of AnchorDx Medical Co., Ltd., a 
company that focuses on the development of next 
generation sequencing diagnostic products for early 
cancer detection using liquid biopsy. The author PWL 
is a member of AnchorDx's Scientific Advisory Board. 
All other authors declare no competing financial 
interest. 

References 
1. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics 

in China, 2015. CA Cancer J Clin. 2016; 66: 115-32. 
2. National Lung Screening Trial Research T, Aberle DR, Adams AM, Berg CD, 

Black WC, Clapp JD, et al. Reduced lung-cancer mortality with low-dose 
computed tomographic screening. N Engl J Med. 2011; 365: 395-409. 

3. de Koning HJ, Meza R, Plevritis SK, ten Haaf K, Munshi VN, Jeon J, et al. 
Benefits and harms of computed tomography lung cancer screening strategies: 
a comparative modeling study for the U.S. Preventive Services Task Force. 
Ann Intern Med. 2014; 160: 311-20. 

4. Plaks V, Koopman CD, Werb Z. Cancer. Circulating tumor cells. Science. 2013; 
341: 1186-8. 

5. Li S, Zhao B, Wang X, Yu J, Yan S, Lv C, et al. Overestimated value of 
(18)F-FDG PET/CT to diagnose pulmonary nodules: Analysis of 298 patients. 
Clin Radiol. 2014; 69: e352-7. 

6. Seemann MD, Beinert T, Furst H, Fink U. An evaluation of the tumour 
markers, carcinoembryonic antigen (CEA), cytokeratin marker (CYFRA 21-1) 
and neuron-specific enolase (NSE) in the differentiation of malignant from 
benign solitary pulmonary lesions. Lung Cancer. 1999; 26: 149-55. 

7. Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and 
beyond. Nat Rev Genet. 2012; 13: 484-92. 

8. Hansen KD, Timp W, Bravo HC, Sabunciyan S, Langmead B, McDonald OG, 
et al. Increased methylation variation in epigenetic domains across cancer 
types. Nat Genet. 2011; 43: 768-75. 

9. Berman BP, Weisenberger DJ, Aman JF, Hinoue T, Ramjan Z, Liu Y, et al. 
Regions of focal DNA hypermethylation and long-range hypomethylation in 
colorectal cancer coincide with nuclear lamina-associated domains. Nat Genet. 
2011; 44: 40-6. 

10. Bert SA, Robinson MD, Strbenac D, Statham AL, Song JZ, Hulf T, et al. 
Regional activation of the cancer genome by long-range epigenetic 
remodeling. Cancer Cell. 2013; 23: 9-22. 

11. Pfeifer GP, Tang M, Denissenko MF. Mutation hotspots and DNA 
methylation. Curr Top Microbiol Immunol. 2000; 249: 1-19. 

12. Greenblatt MS, Bennett WP, Hollstein M, Harris CC. Mutations in the p53 
tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. 
Cancer Res. 1994; 54: 4855-78. 

13. Kerr KM, Galler JS, Hagen JA, Laird PW, Laird-Offringa IA. The role of DNA 
methylation in the development and progression of lung adenocarcinoma. Dis 
Markers. 2007; 23: 5-30. 

14. Cai X, Janku F, Zhan Q, Fan JB. Accessing Genetic Information with Liquid 
Biopsies. Trends Genet. 2015; 31: 564-75. 

15. Diehl F, Li M, Dressman D, He Y, Shen D, Szabo S, et al. Detection and 
quantification of mutations in the plasma of patients with colorectal tumors. 
Proc Natl Acad Sci U S A. 2005; 102: 16368-73. 

16. Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, et al. Circulating 
mutant DNA to assess tumor dynamics. Nat Med. 2008; 14: 985-90. 

17. Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for 
Bisulfite-Seq applications. Bioinformatics. 2011; 27: 1571-2. 

18. Park Y, Wu H. Differential methylation analysis for BS-seq data under general 
experimental design. Bioinformatics. 2016; 32: 1446-53. 

19. Perez-Llamas C, Lopez-Bigas N. Gitools: analysis and visualisation of genomic 
data using interactive heat-maps. PLoS One. 2011; 6: e19541. 

20. Tibshirani R. The lasso method for variable selection in the Cox model. 
statistics in medicine. 1997; 16: 385-95. 

21. Diaz LA, Jr., Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J 
Clin Oncol. 2014; 32: 579-86. 

22. Lissa D, Robles AI. Methylation analyses in liquid biopsy. Transl Lung Cancer 
Res. 2016; 5: 492-504. 

23. Baylin SB, Jones PA. Epigenetic Determinants of Cancer. Cold Spring Harb 
Perspect Biol. 2016; 8: a019505. 



 Theranostics 2019, Vol. 9, Issue 7 
 

 
http://www.thno.org 

2070 

24. Friedman J, Hastie T, Tibshirani R. Regularization Paths for Generalized 
Linear Models via Coordinate Descent. J Stat Softw. 2010; 33: 1-22. 

25. Abbosh C, Birkbak NJ, Wilson GA, Jamal-Hanjani M, Constantin T, Salari R, et 
al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. 
Nature. 2017; 545: 446-51. 

26. Joehanes R, Just AC, Marioni RE, Pilling LC, Reynolds LM, Mandaviya PR, et 
al. Epigenetic Signatures of Cigarette Smoking. Circ Cardiovasc Genet. 2016; 9: 
436-47. 

27. Zeilinger S, Kuhnel B, Klopp N, Baurecht H, Kleinschmidt A, Gieger C, et al. 
Tobacco smoking leads to extensive genome-wide changes in DNA 
methylation. PLoS One. 2013; 8: e63812. 

28. Pal S, Tyler JK. Epigenetics and aging. Sci Adv. 2016; 2: e1600584. 
29. Gautrey HE, van Otterdijk SD, Cordell HJ, Newcastle 85+ Study Core T, 

Mathers JC, Strathdee G. DNA methylation abnormalities at gene promoters 
are extensive and variable in the elderly and phenocopy cancer cells. FASEB J. 
2014; 28: 3261-72. 

30. Swensen SJ, Silverstein MD, Ilstrup DM, Schleck CD, Edell ES. The Probability 
of Malignancy in Solitary Pulmonary Nodules. Arch Intern Med. 1997; 157: 
849-55. 

31. Newman AM, Bratman SV, To J, Wynne JF, Eclov NC, Modlin LA, et al. An 
ultrasensitive method for quantitating circulating tumor DNA with broad 
patient coverage. Nat Med. 2014; 20: 548-54. 

32. Phallen J, Sausen M, Adleff V, Leal A, Hruban C, White J, et al. Direct 
detection of early-stage cancers using circulating tumor DNA. Sci Transl Med. 
2017; 9: eaan2415. 

33. Moran S, Martinez-Cardus A, Sayols S, Musulen E, Balana C, Estival-Gonzalez 
A, et al. Epigenetic profiling to classify cancer of unknown primary: a 
multicentre, retrospective analysis. Lancet Oncol. 2016; 17: 1386-95. 

34. Guo S, Diep D, Plongthongkum N, Fung HL, Zhang K, Zhang K. Identification 
of methylation haplotype blocks aids in deconvolution of heterogeneous tissue 
samples and tumor tissue-of-origin mapping from plasma DNA. Nat Genet. 
2017; 49: 635-42. 

35. Sun K, Jiang P, Chan KC, Wong J, Cheng YK, Liang RH, et al. Plasma DNA 
tissue mapping by genome-wide methylation sequencing for noninvasive 
prenatal, cancer, and transplantation assessments. Proc Natl Acad Sci U S A. 
2015; 112: E5503-12. 

36. Xu RH, Wei W, Krawczyk M, Wang W, Luo H, Flagg K, et al. Circulating 
tumour DNA methylation markers for diagnosis and prognosis of 
hepatocellular carcinoma. Nat Mater. 2017; 16: 1155-61. 

37. Ooki A, Maleki Z, Tsay JJ, Goparaju C, Brait M, Turaga N, et al. A Panel of 
Novel Detection and Prognostic Methylated DNA Markers in Primary 
Non-Small Cell Lung Cancer and Serum DNA. Clin Cancer Res. 2017; 23: 
7141-52. 

38. Hulbert A, Jusue-Torres I, Stark A, Chen C, Rodgers K, Lee B, et al. Early 
Detection of Lung Cancer Using DNA Promoter Hypermethylation in Plasma 
and Sputum. Clin Cancer Res. 2017; 23: 1998-2005. 

39. Sakurai H, Nakagawa K, Watanabe S, Asamura H. Clinicopathologic features 
of resected subcentimeter lung cancer. Ann Thorac Surg. 2015; 99: 1731-8. 


