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Abstract: Delphinidin (Del) is an anthocyanin component with high in vitro antioxidant capacity.
In this study, based on the screening of a cell model, gas chromatography-time of flight mass
spectrometry (GC-TOF/MS) was used to evaluate the effect of Del pre-protection on the metabolite
levels of intracellular oxidative stress induced by paraquat (PQ). According to the cytotoxicity and
reactive oxygen species (ROS) responses of four lung cell lines to PQ induction, A549 cell was selected
and treated with 100 µM PQ for 12 h to develop a cellular oxidative stress model. Compared with
the PQ-induced group, the principal components of the Del pretreatment group had significant
differences, but not significant with the control group, indicating that the antioxidant activity of Del
can be correlated to the maintenance of metabolite levels. Del preconditioning protects lipid-related
metabolic pathways from the disturbance induced by PQ. In addition, the levels of amino acid- and
energy-related metabolites were significantly recovered. Del may also exert an antioxidant effect
by regulating glucose metabolism. The optimal combinations of biomarkers in the PQ-treatment
group and Del-pretreatment group were alanine-valine-urea and alanine-galactose-glucose. Cell
metabolome data provided characteristic fingerprints associated with the antioxidant activity of Del.

Keywords: delphinidin; metabolomics; paraquat; A549 cell; antioxidant activity

1. Introduction

Delphinidin (Del) is one of the main components of six anthocyanins in dark pig-
mented fruits, vegetables, and herbal plants, accounting for about 12%. Many studies have
shown that Del has a variety of significant biological functions, including antioxidant [1–3],
anti-inflammatory, antinociception [4], antiangiogenesis, and anticancer [5,6] owing to
the presence of many active hydroxyl groups in its structure. The antioxidant protective
effect of Del on endothelial cells can be attributed to the upregulation of intracellular total
glutathione level by Del itself or by its degradation product gallic acid [7]. Del exerts its
antioxidant activity by directly or indirectly affecting the levels of related intracellular
regulatory factors involved in maintaining redox balance. At present, studies on Del at the
cellular and animal levels have mainly focused on the bioavailability, metabolite identifi-
cation, and specific signaling pathway regulation mechanism; the effect of anthocyanins
on the biological metabolism level of their various functions and activities has rarely been
studied [8,9]. Notably, only focusing on the bioavailability of anthocyanins or the signal
pathways related to a certain redox system is not sufficient, which might lead to missing
useful information about the regulation of various intracellular biochemical reactions.

In recent years, metabolomics based on cell culture in vitro has become an impor-
tant and valuable tool for drug screening, toxicological, and functional evaluation [10–12].
Metabolomic analysis can show the overall physiological and biochemical function or
status of biological systems, providing critical biological information about the relation-
ship between the object and level changes of metabolites in a specific cell line [13]. The
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identification of potential biomarkers to evaluate the subtle physiological stress reflected
by the organism can provide meaningful information for evaluating the function of com-
pounds in the whole organism [14]. For instance, Dai et al. [15] studied the mechanism
of potential recovery ability of soybean peptide TTYY to oxidative damage in rats by
metabolomics, and they identified the potential biomarkers in urine. Moreover, the biomark-
ers of anti-inflammatory activity screened and identified by untargeted metabolomics and
artificial neural network models can be used to predict new natural anti-inflammatory
compounds [16]. Increasing attention has been paid to the relationship between biological
or cellular metabolic dynamics and redox balance caused by active compounds or oxygen
promoters [17–19]. However, there is limited information about the antioxidant mechanism
of Del from the perspective of cell metabolomics.

In this study, the level changes in intracellular metabolites were analyzed, and the po-
tential biomarkers were quantified after the Del preintervention and followed by oxidative
stress. To obtain a cell line suitable for the oxidative stress model, the sensitivities of several
lung cancer cell lines to induction with paraquat (PQ) were compared. A comprehensive
nontargeted metabolomics strategy based on GC-TOF/MS was used to identify and quan-
tify the level changes in the metabolites of cells with PQ-induced oxidative stress after Del
pretreatment. Significantly different metabolites and the potential metabolic pathways
were deduced and identified through multivariate statistical and metabolic pathway analy-
ses, and potential biomarkers with high discriminant ability were identified by predictive
models and algorithms and validated. The antioxidant mechanism of Del on the selected
cell line was evaluated from the perspective of metabolomics, and the potential biomarkers
were identified, thus providing a new perspective to better understand the antioxidant
mechanism of active compounds.

2. Materials and Methods
2.1. Materials and Reagents

Human lung adenocarcinoma (NCI-H1395) cells, human embryonic lung fibroblast
(HFL1) cells, human lung squamous carcinoma (SK-MES-1) cells, human lung adenocar-
cinoma epithelial cells (A549), and human large cell lung cancer (NCI-H661) cells were
obtained from the Chinese Academy of Sciences (Shanghai, China). The cell culture me-
dia and fetal bovine serum were obtained from Gibco Laboratories (Gaithersburg, MD,
USA). Del (purity ≥ 98%) was purchased from Shanghai Yuanye Bio-Technology Co., Ltd.
(Shanghai, China).

PQ, ethoxyamine hydrochloride, N-methyl-N-trimethylsilyl trifluoroacetamide (MSTFA)
(containing 1% trimethylchlorosilane, v/v), fatty acid standard (C8–C24), and
2,7-dichlorodihydrofluorescein diacetate (H2DCF-DA) were supplied by Sigma-Aldrich Chem-
ical (St. Louis, MO, USA). The kits for BCA protein assay and CCK-8 assay were purchased
from Beyotime Biotechnology Co., Ltd. (Shanghai, China). HPLC-grade methanol, isopropyl
alcohol, acetonitrile, other analytical-grade chemicals, and Milli-Q-quality water (Millipore
Corp., Bedford, MA, USA) were also used.

2.2. Cell Culture and Sample Preparation

Five cell lines were cultured to the continuous logarithmic growth phase in their
optimal complete medium at 37 ◦C in 5% CO2. First, 100 µM PQ was added to induce
cells for 12 h and 24 h after the cells grew to 80% confluence, respectively. A sensitive cell
line was selected according to the results of cytotoxicity and reactive oxygen species (ROS)
level. A PQ concentration range of 0–400 µM was designed to determine the induced dose
of oxidative stress injury model. Subsequently, the selected cell line was grown to 80%
confluence and was pretreated with the Del for 12 h, and the PQ was added for another
12 h with the optimal concentration. According to the preliminary experimental results,
Del treatment within the range of 80 µM showed no significant cytotoxicity, and it showed
high in vitro antioxidant capacity. Combined with the low bioavailability of anthocyanins,
40 µM concentration was finally selected as the preintervention concentration. Cells for cell
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viability and ROS analysis were cultured in 96-well plates, and for metabolomics analysis,
they were cultured in 6-well plates (at least 1 × 107 cells/well). Each group was designed
with six replicates.

2.3. Cell Viability and ROS Assay

The cell survival rate and ROS generation were measured using a CCK-8 kit and the
H2DCF-DA fluorescence probe (20 µM) following the manufacturer’s protocols. The exper-
iments were independently performed three times; each group had three parallel runs at a
time. Protein was quantified using a BCA protein assay kit and compared with the control
group. The cell viability was obtained as follows: Cell activity/% = (OD450 nm treatment group
− OD450 nm blank)/(OD450 nm control group − OD450 nm blank) × 100. ROS were detected in
A549 cells with or without the Del treatment as described in our previous study [20].

2.4. Metabolite Analysis

Metabolite extraction. The extracted and derivation methods for the metabolites were
used as described by Liu et al., with slight modifications [21]. After the cells were treated,
the culture medium was removed; 1 mL of chilled (4 ◦C) water was added, and the cells
were washed twice gently. Then, 1 mL of −20 ◦C prechilled methanol/water (3:2, v/v) was
added to quench the cell activity, and the cells were scraped off gently with a sterile scraper
and collected in an Eppendorf tube. This process was repeated twice, and the samples
were held on ice. The samples were centrifuged at 13,500× g at 4 ◦C for 2 min, then the
precipitated cells were collected. Up to 500 µL of chilled acetonitrile/isopropanol/H2O
(3:3:2, v/v/v) and two clean stainless-steel beads were added, and then vortexed for 15 s.
The cells were homogenized using eight cycles of GenGrinder at 1350× g for 30 s, followed
by 3 min of sonication. The cells were centrifuged at 13,500× g for 2 min at 4 ◦C, and
the supernatant was transferred into a new Eppendorf tube. This extraction procedure
was repeated three times. Each group was designed with six replicates, and one quality
control (QC) was used for every six samples. A blank sample without cells was used to
calibrate the background signals. The protein concentration in each supernatant sample was
determined to standardize the data. All the samples were vacuum-freeze-dried completely
for further derivatization.

Derivatization. An aliquot of a fatty acid methyl ester mixture (C8–C16: 1 mg/mL;
C18–C24: 0.5 mg/mL in chloroform) was used as the internal standard and then added to
the samples. Up to 10 µL of O-methoxyamine hydrochloride (dissolved in pyridine) with a
final concentration of 0.02 g/mL was mixed with the samples and derivatized for 20 min at
80 ◦C. Subsequently, 80 µL of MSTFA was added to each tube after cooling. Then, the tubes
were sealed promptly and incubated at 37 ◦C for 90 min. The samples were transferred to a
chromatographic injection vial for the GC–TOF/MS analysis.

GC–TOF/MS conditions. A Pegasus BT GC–TOF/MS (LECO, Joseph, MI, USA)
coupled with a DB–5 MS column (30 m × 250 µm id, 0.25-µm film thickness; Agilent
Technologies, Palo Alto, CA, USA) was used for sample analysis. The details of the GC–
TOF/MS detection are described in our previous publication [22]. Solvent delay time was
set as 4 min.

2.5. Metabolite Profiling Analysis

The raw data were converted twice using ChromaTOF software from LECO as well as
the ABF converter to obtain the “mzXML” and “abf” formats. The files in the “abf” format
were analyzed using MS DIAL software with the Fiehn library, including filtration and
calibration of the baseline, peak alignment, deconvolution analysis, peak identification, and
integration of peak height [23]. The parameter settings for peak detection were carried out
following a report by Wang et al. [24], which will not be described in detail here. The peak
area for each detected peak of each sample was normalized using the SERRF normalization
method based on the QC samples, and the normalized data were used for the subsequent
multivariate analysis.
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2.6. Multivariate Analysis

SIMCA 14.1 (Umetrics, Malmo, Sweden) and R i386 3.6.3 software, MetaboAnalyst
4.0 platform were used to carry out multivariate statistical analysis, including a principal
component analysis (PCA, including score plot and loading plot) and orthogonal projection
to latent structure discriminant analysis (OPLS-DA), a heatmap analysis, and a pathway
enrichment analysis. Pathway mapping was analyzed using MetaMapp 2020 platform
and generated using CytoScape 3.7.2 (Boston, MA, USA). Significant differences between
the control and treated groups were analyzed by one-way ANOVA and t-test using SPSS
20 software (SPSS Inc., Chicago, IL, USA). Biomarkers were analyzed using S-plot in the
OPLS-DA model. The area under the receiver operating characteristic curve (ROC) curve
was computed based on two models using MetaboAnalyst 4.0 and SPSS 20.0 software to
evaluate the classification performance.

3. Results and Discussion
3.1. Optimal Cell Line for Oxidative Stress Damage Model

Lung tissue has a unique redox environment, as it is easily exposed to various exoge-
nous and endogenous oxidative inducers of oxidation that contribute to the frequency and
promotion of inflammation and even tumors [25–28]. Using this, the cytotoxicity of several
lung cell lines treated with 100 µM PQ as an oxidative stress inducer was measured at differ-
ent times. As shown in Figure 1A, H661 cells were sensitive to the PQ treatment, and they
reached their lowest cell survival rate after the 12 h and 24 h treatments (65.25 ± 2.53% and
31.70 ± 3.09%, respectively). NCI-1395 cells were not significantly different from the control
group after induction for 12 h, but the survival rate significantly decreased after a pro-
longed treatment (72.57 ± 6.33% for 24 h). The survival rate of SK-MES-1, A549, and HFL-1
cells remained ≥85% after 24 h treatment, which was suitable for the oxidative stress cell
model. Furthermore, the ROS production of the five cell lines induced by PQ showed that
A549 cells and SK-MES-1 cells had a higher ROS fluorescence intensity (3.15- and 3.40-fold
compared with the control group, respectively) (Figure 1B). Considering the relatively short
proliferation cycle, A549 cells were selected to study the antioxidant effects and mechanism
of Del.
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as percentage compared with each control group under different treatment time, and the cell 
Figure 1. (A) Cell viabilities of the five lung cancer cell lines treated with PQ. Results were expressed
as percentage compared with each control group under different treatment time, and the cell viabilities
of all the control groups were set to 100%. (B) Fluorescence intensity values of ROS in different cell
lines treated with PQ. The fluorescence intensity of control group was used as a background baseline.
* means p < 0.05 and ** means p < 0.01. All experiments were repeated three times and results were
expressed as means ± SD.

3.2. Multivariate Statistical Analysis to Visualize Metabolites

The metabolic regulation of Del in A549 cells was investigated at 40 µM under the
oxidative stress induced by PQ (100 µM). The GC-TOF/MS analysis detected a total of
166 metabolites in the control group, Del pre-protected group, and PQ-induced group
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after the identification and quantification of the mass spectra using the software and an
in-house library. A multivariate analysis method was performed to compare the metabolic
perturbations in the three experimental groups. The metabolite profiles of A549 cell samples
were analyzed by PCA and OPLS-DA analysis to demonstrate the differentiation in the
metabolite profiles between the control group and treated groups.

The PCA results showed that the metabolites in the PQ-induced group were distinctly
separate from those in the control group, and the cluster of dots in the Del pretreatment
group was closer to the control group (Figure 2A). This observation suggests that the PQ
treatment indeed altered the metabolism of A549 cells, and that pre-protection with Del
reversed this perturbation to a certain extent. The first two principal components of the
treatment groups explained 48.1% of the total variation (63.68% and 52.13% for the PQ
group and Del group compared with the control group, respectively). The PCA loading
plot further indicated the inconsistencies in the metabolic profiles in these treatment groups
based on the relationship between the first two principal components and the metabolite
level, consistent with the PCA results (Figure 2B). The control group and PQ group showed
a clear intergroup separation along PC1, indicating significant variations in the level of
metabolic components, and the model was successfully verified. This finding further
indicates that the changes in the metabolic profile, which can be attributed to the induction
of PQ and protection by Del, were reproducible.
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Figure 2. Multivariate statistical analysis of different treatment groups. (A) PCA score plot. Variance
of PC1 was 28.5%, and variance of PC2 was 19.6%. (B) PCA loading plot. (C) Score plot from
OPLS-DA models. (a) PQ vs. control group and (b) Del vs. control group.
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Two OPLS-DA models were successfully obtained by modeling the first two principal
components after PQ and Del groups were compared with the control group (Figure 2C).
The interpretation rates (R2 X = 0.776 and 0.691, R2 Y = 0.994 and 0.997 for the PQ and
Del groups, respectively) and the prediction (Q2 = 0.981 and 0.973 for the PQ and Del
groups, respectively) showed that the OPLS-DA model has good fitness and predictability.
Permutation tests with 200 iterations were performed to check the validity and avoid
overfitting [29]. As shown in Figure 3A,B, R2 (blue) and Q2 (red) values to the left were
lower than the right points. The R2 intercept values were 1, 1, and the Q2 values were
−0.429 and −0.263 for the PQ and Del groups, respectively, further indicating a verified
model. The metabolites extracted from treated A549 cells showed inconsistencies in the
metabolic profiles.
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Figure 3. OPLD-DA analysis of metabolites in PQ-induced A549 cells with or without Del. (A) and
(B) The permutation results with 200 iterations of metabolites in PQ and Del treatment groups. The
corresponding intercept values of R2 were 1 and 1, Q2 were −0.429 and −0.263, respectively. (C) and
(D) S-plot of OPLS-DA analysis of metabolites in PQ and Del treatment groups. Metabolites in the
left bottom and right top of the S-plot were potential biomarkers.

A heatmap was also constructed to understand the differences and similarities among
the control group and the two treated groups (Figure 4). To clearly present the discrepancies
in the metabolite concentrations of different groups, the first 20 metabolites were selected
for hierarchical Pearson clustering. The hierarchical Pearson’s clustering analysis indicated
differences between the control and PQ groups. The color changes in the Del treatment
group were closer to those observed in the control group, consistent with the results of PCA
and OPLS-DA analyses. The intensity of these metabolites was reversed to a certain extent
by the Del pretreatment. Among all significant metabolites in the PQ group, 7 metabolites
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exhibited a decreasing trend and 11 metabolites exhibited an increasing trend, while these
disturbances were recovered to varying degrees after the Del pretreatment.
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PQ treatment significantly downregulated the L-proline level in A549 cells. L-proline
is a multifunctional amino acid that plays an important role in various important physiolog-
ical activities, such as primary carbon and nitrogen metabolism, oxidative stress protection,
cell signal transduction, and programmed cell death [30]. L-proline has been shown to
protect animals, microorganisms, and plants from oxidative stress, possibly by participating
in ROS scavenging, increasing antioxidant related enzyme activity, and maintaining the
levels of key redox equilibrium molecules such as glutathione and nicotinamide adenine
dinucleotide phosphate (NADPH/NADP+) [31–34]. Moreover, PQ also decreased the
level of 3-hydroxybutyric acid, a normal metabolite of fatty acid oxidation, which can
be used as an energy resource in the case of hypoglycemia [35]. Studies have shown
that 3-hydroxybutyric acid can reduce the level of ROS, nitrite, and lipid peroxidation,
increase the levels of glutathione, and improve mitochondrial function in hippocampal
HT-22 cells [36]. The significant upregulation of 3-hydroxybutyric acid may be related to
the antioxidant activity of Del.

Moreover, PQ significantly increased the levels of L-valine, linoleic acid, malonic acid,
and citric acid. A study has shown that high L-valine level is associated with increased
oxidative stress, thus promoting insulin resistance and newly diagnosed type 2 diabetes
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mellitus [37]. Linoleic acid is an essential fatty acid, but its high level of dietary and in vitro
cellular exposure has been shown to increase oxidative stress [38,39]. Malonic acid can
induce Huntington-like behavioral and mitochondrial alterations by significantly causing
oxidative stress damage in rat ipsilateral striatum [40]. Furthermore, glucose 6-phosphate
and citric acid are important substances involved in energy metabolism, and their abnormal
accumulation suggests that energy metabolism pathway may be disturbed. For example,
the activities of glucose-6-phosphate dehydrogenase in pentose phosphate pathway and
aconitase in citric acid cycle (TCA) affected the metabolism of glucose -6-phosphate and
citric acid [41,42]. These speculations require further study.

3.3. Identification of Different Metabolites and Prediction of Biomarkers
3.3.1. Differential Metabolite Screening

Furthermore, the variable importance for the projection (VIP) obtained by the S-plot
analysis of the OPLS-DA model (Figure 3C,D) was combined with the FC value and p value
obtained by volcano plot analysis. The metabolites with VIP value > 1.0 and p < 0.05 in
two treatment groups were screened, and the corresponding FC values were summarized.
Twelve and six significant metabolites (FC > 1.5 or FC < 0.65) were obtained in the PQ
and DEL treatment groups, respectively, as potential metabolite biomarkers, as shown
in Table 1. Five amino acids, three fatty and fatty acids, one carbohydrate, and other
metabolites related to proteins and energy metabolism were identified in the PQ group. In
the Del pretreatment group, four amino acids, two carbohydrates, and other metabolites
were involved in energy metabolism. These different metabolites varied between the
PQ-induced group and Del pretreatment group.

Table 1. Statistical analysis of differential metabolites in PQ and Del treatment groups.

Number Metabolites PubChem ID/ * KEGG ID
Fold Change Value

PQ Del

1 Propane-1,3-diol 10,442 C02457 3.93 **∆ 1.87 **∆
2 L-Alanine 5950 C00041 3.93 **∆ 2.49 **∆
3 Oxalic acid 971 C00209 0.59 **∆ 0.94
4 D-Galactose 6036 C00984 0.79 **∆ 0.36 **∆
5 Maleimide 10,935 C07272 2.87 **∆ 1.10
6 L-Valine 6287 C00183 25.95 **∆ 1.20 ∆
7 Urea 1176 C00086 1.54 *∆ 1.04
8 Malonic acid 867 C00383 5.13 **∆ 1.21
9 Isobutene Glycol 68,410 C21290 0.65 **∆ 1.07

10 Thymine 5610 C00483 5.30 **∆ 3.65 **∆
11 Oleic acid 445,639 C00712 3.91 **∆ 1.21
12 3-Hydroxybutyric acid 441 C01089 0.26 **∆ 1.14
13 L-Threonine 6288 C00188 0.40 **∆ 1.83 **∆
14 D-Glucose 5793 C00031 1.06 0.53 **∆

∆ means VIP > 1 in OPLS-DA. * means p < 0.05 compared with control group; ** means p < 0.01. compared with
control group. KEGG is short for Kyoto Encyclopedia of Genes and Genomes.

The abundance levels of eight metabolites were higher than those of the control
group in the Del treatment group, while the abundance levels of three metabolites were
downregulated (Table 1). Notably, other significant metabolites were also observed in the
Del group, including L-lactic acid, L-Threonine, sulfate, and succinic acid. In addition,
D-galactose and D-glucose in the Del group significantly decreased with FC values of
0.36 and 0.53 (p > 0.01), respectively. This result indicates that Del was not only involved in
regulating the metabolic pathways induced by PQ, but also responded to other metabolic
processes. The S-plot of OPLS-DA model showed the clusters of the three groups, which
was consistent with the one-way ANOVA result, and further identified the differences
between the groups (Figure 3C,D).
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3.3.2. Prediction and Verification of Biomarkers

Since a single differential metabolite or combination of metabolites can be used as
biomarkers, the area under the ROC (AUC) value (>0.7) of each differential metabolite
was calculated by using SPSS20 software to screen single biomarkers. The results show
that six metabolites were obtained in the PQ-treatment group, including alanine, valine,
urea, thymine, maleimide, and isobutene glycol (AUC = 0.733–0.917). Five metabolites
were screened in the Del pre-protected group: alanine, threonine, thymine, galactose, and
glucose (AUC value was 0.722–0.889).

Further, these metabolites (AUC value > 0.7) were calculated using a binary logistic
regression model to obtain the combined factor variable values of different combinations.
Then, a predictive ROC curve of biomarkers for multifactor joint evaluation was plotted,
and the corresponding AUC values were obtained (as shown in Figure 5A,B). The com-
binations of metabolites were sorted according to the AUC value, which was used as the
optimal combination for evaluating PQ-induced oxidative stress and antioxidant activity of
Del (Table 2 shows the three combinations with the largest AUC values in the two treatment
groups). As shown in Table 2, the combination of three metabolites was optimal in each
treatment group. The selected combination of biomarkers in PQ-treatment group was
alanine-valine-urea (AUC = 0.972), which was mainly involved in the metabolism of amino
acids. A significant effect on glycometabolism and amino acid metabolism was found in
the Del pre-protected group, and the combination of alanine-galactose-glucose afforded the
optimal evaluation and prediction effect (AUC = 0.998) (all confidence interval was <0.75).
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Table 2. List of the screened biomarker metabolites.

Combination
PQ Group vs. Con Group Del Group vs. Con Group

Metabolites AUC Value Metabolites AUC Value

1 L-alanine/L-valine 0.944 L-alanine/L-Threonine 0.889
2 L-valine/urea 0.972 D-galactose/D-glucose 0.944
3 L-alanine/L-valine/urea 0.972 L-alanine/D-galactose/D-glucose 0.998

AUC in the table means the area under the receiver operating characteristic curve.

The AUC values of alanine with a high predictive accuracy were found in both the
treatment groups (Table 2). Neutral amino acids such as alanine, glycine, and serine
can protect the liver and kidney cells from various oxidative, metabolic, and chemogenic
damage [43]. Alanine and its similar amino acids can effectively reduce cell apoptosis
caused by the increase of the ROS or calcium ion levels. Meanwhile, alanine protects
cells by regulating the signaling pathways and genes related to the intracellular oxidative
defense system, such as heme oxygenase-1 and ferritin (a key catalyst for the formation of
oxygen-centered free radicals through Fenton reaction) [44]. When cells are subjected to
oxidative stress, the intracellular alanine level is significantly increased. In addition, alanine
is involved in the intracellular glycolytic energy supply pathway, and the accumulation
of alanine may lead to an abnormal energy metabolism pathway. Combined with the FC
value of alanine and the antioxidant activity of Del shown in Table 1, alanine could be used
as a cobiomarker for the evaluation of antioxidant activity in a PQ-induced oxidative stress
cell model.

To verify the accuracy of biomarker combination, the level of biomarkers under
5, 20 µM of Del was studied, and the results are shown in Figure 5C. Compared with
the control group, the levels of L-alanine and L-valine were significantly upregulated in
the PQ-induced group, while the levels of D-glucose and D-galactose were moderately
downregulated. In the Del pre-protected group, with the increase in the concentration of
Del, the change trend of L-alanine and L-valine was closer to that of the control group,
but the levels of D-glucose and D-galactose were continued to decrease significantly in a
dose dependent manner. These results show that the identified biomarkers had excellent
predictive accuracy.

3.4. Metabolic Pathway Analysis

To analyze the effects of intracellular oxidative stress environment on metabolic
pathways induced by PQ with or without Del pretreatment, metabolites with FC val-
ues < 0.65 and >1.5 in the two treatment groups were screened, and Venn analysis was
performed to remove the repeated values. The set of metabolites was mapped using
MetaboAnalyst 4.0 to determine whether the screened metabolites would map to pathways
related to the biochemical and physiological changes that occurred in the groups after the
PQ and Del treatments. Several metabolic pathways were identified when A549 cells were
treated with PQ and significantly enriched from the oxidative stress perspective. These
pathways were involved in linoleic acid, pyrimidine, glycerolipid, glutamate, galactose,
glutathione, and metabolism of several amino acids, TCA cycle, arginine, phenylalanine,
tyrosine, and tryptophan biosynthesis, which participated in the metabolism of energy,
amino acids, and lipids (Figure 6A). The enrichment results of metabolic pathways were
consistent with the screening results of differential metabolites described above.
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Many studies have shown that stress response or disease can affect amino acid
metabolism, energy metabolism, and lipid metabolism [45–47]. Amino acids such as gluta-
mate, aspartate, phenylalanine, tyrosine, and leucine are pivotal metabolic intermediates in
the central carbon metabolic pathway, including TCA cycle and pentose phosphate path-
way [48]. For example, pyruvate, a-ketoglutarate, and oxaloacetate, which are important
substances involved in the pentose phosphate pathway, were formed by transamination
of alanine, glutamate, and aspartate, respectively [49]. Therefore, the imbalance of amino
acid metabolism will directly or indirectly affect the energy metabolic pathway, while the
disruption of energy homeostasis is a potential marker of inflammation, oxidative stress
damage, and even disease [50]. The arginine biosynthesis pathway was enriched in PQ
treatment group. This may be attributed to the significantly increased level of L-valine
which inhibits arginase activity, thus, reduces the arginine level. L-valine is a known
inhibitor of arginase [51]. Moreover, intracellular β-oxidation has been reported to generate
ROS. Mitochondrial β-oxidation is responsible for the degradation of short, medium, and
long-chain fatty acids, while peroxisomal β-oxidation of long, very long, and branched-
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chain fatty acids, which are associated with the increase level of intracellular ROS [52].
Fatty acids can be broken down into acetyl-CoA and enter the TCA cycle to participate in
the ATP production [53]. Meanwhile, fatty acids are also involved in the formation of more
complex lipids. In the PQ treatment group, several pathways related to lipid metabolisms
were enriched, such as linoleic acid, glycerolipid, and glycerophospholipid metabolisms,
and fatty acid degradation and biosynthesis. These results suggest that PQ induction
significantly disrupt metabolism in A549 cells.

However, the A549 cells pretreated with Del reversed the significant metabolic effects
induced by PQ, with several metabolic processes returning to levels similar to those of the
control group (Figure 6B). Pathways such as beta-alanine metabolism, phenylalanine, tyro-
sine and tryptophan biosynthesis, TCA cycle, starch and sucrose metabolism, pyrimidine
metabolism, alanine, aspartate, and glutamate metabolism, and glutathione metabolism
were enriched. These results also suggest that Del protected A549 cells from oxidative stress
by regulating multiple metabolic pathways, consistent with the aforementioned cellular
antioxidant results.

To further evaluate possible metabolite–metabolite interactions, a metabolic pathway
map, potentially influenced by PQ induction and Del pre-protection, was analyzed using
the MetaMapp platform and generated using CytoScape 3.7.2 (Figure 7). The diameter
of graph is related to the FC value and the p-value of the t-test. The PQ treatment af-
fected several metabolic processes in A549 cells. The level of metabolites such as citrulline,
L-alanine, L-serine, L-valine, propane-1,3-diol, malonic acid, 2-monoolein, and oleic acid
increased significantly (p < 0.001) compared to those in the control group, whereas squa-
lene, 1-monopalmitin, glycolic acid, D-galactose, and 3-hydroxybutyric acid (p < 0.01)
significantly decreased (Figure 7A). Treatment with Del reversed the PQ-induced changes
(Figure 7B) similar to the control group, indicating that Del reversed the metabolic dis-
turbance caused by PQ and significantly maintained the normal metabolic dynamics in
A549 cells. Interestingly, the abundance levels of D-glucose and D-galactose significantly
decreased in the Del treatment group and combined with the enriched pathway of starch
and sucrose metabolism, indicating that Del also resisted oxidative stress by affecting
glycometabolism. These analytical results support the previous results, indicating that
the metabolic pathways in A549 cells changed after the PQ treatment and were effectively
reversed by Del.
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Amino acids play important roles in purine and sphingolipid biosynthesis, cell metabolism,
and neurotransmitter synthesis associated with oxidative stress and aging [54–56]. For in-
stance, sulfur-containing amino acids play key roles in the metabolic adaptations to oxidative
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stress [57,58]. The PQ and Del treatments did not completely interrupt the energy supply
process but rather replenished it via the glycolytic pathway to resist oxidative stress. The
disturbance in the TCA cycle and pentose phosphate pathway induced by PQ led to a re-
duction in mitochondrial ATP synthesis, affecting energy generation [59–61]. However, the
PQ treatment had no significant effect on glycometabolism, whereas the Del pretreatment
upregulated or downregulated the abundance of several metabolites such as fructose, lactu-
lose, and glucose. Moreover, the abundance levels of octadecanol, glycerophosphoric acid,
glycerol, and 2-monoolein significantly increased in the PQ group, whereas those of squalene,
1-monoolein, and glyceric acid significantly decreased relative to those in the control group
(p < 0.05) (Table 1). These results indicate that the lipid metabolism was affected by oxidative
stress which integrated with the enriched pathways. Del reversed the changes in fatty acids
and lipids induced by PQ, indicating that Del may reduce the incidence of obesity [62,63].
Unsaturated fatty acids are intracellular scavengers, which illustrates the relationship between
the reversal in the abundance of the unsaturated fatty acids and the antioxidant activity of
Del [64].

A549 cells pretreated with Del generally changed the cellular metabolic perturbation
effect of PQ, particularly the metabolites associated with oxidative stress. The intracellular
antioxidant effect of Del is a complex process, which requires the mobilization of multiple
pathways. The metabolic pathway analysis and differential metabolite results showed that
the Del pretreatment caused the least metabolic disturbance and the PQ treatment had the
greatest effect compared to the control group, consistent with the previous antioxidant ac-
tivity results. The metabolites reflected the results of perturbations in A549 cells induced by
various stressors, which may be overlooked by traditional antioxidant evaluation methods.

4. Conclusions

In this study, A549 cell line was selected to establish a PQ-induced oxidative stress
cell model; then, the potential mechanism of Del on the oxidative stress of A549 cells was
preliminarily investigated using cell metabolomics analysis combined with GC-TOF/MS.
The Del pretreatment alleviated the disorders of tricarboxylic acid cycle, energy metabolism,
amino acid metabolism, lipid metabolism, and glucose metabolism which induced by
PQ. Alanine-galactose-glucose was identified as a biomarker combination of antioxidant
activity of Del. The results indicate that that Del can maintain the metabolic characteristics
of A549 cells related to normal redox homeostasis, and it probably provides a characteristic
fingerprint associated with cellular antioxidant activity. This analysis of the potential
antioxidant mechanism of Del based-on metabolomics will help in understanding the Del
response to relevant metabolic pathways after oxidant exposure and provide potential
screening biomarkers for the antioxidant activity evaluation of Del.
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Abbreviations

AUC area under the ROC
Del delphinidin
FC fold change
GC-TOF/MS gas chromatography-time of flight mass spectrometry
KEGG Kyoto Encyclopedia of Genes and Genomes
NADPH nicotinamide adenine dinucleotide phosphate
OPLS-DA orthogonal projection to latent structure discriminant analysis
PCA principal component analysis
PQ paraquat
QC quality control
ROC receiver operating characteristic curve
ROS reactive oxygen species
TCA citric acid cycle
VIP variable importance for the projection
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