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Electronic matter waves traveling through the weak and smoothly
varying disorder potential of a semiconductor show a charac-
teristic branching behavior instead of a smooth spreading of
flow. By transferring this phenomenon to optics, we demonstrate
numerically how the branched flow of light can be controlled to
propagate along a single branch rather than along many of them
at the same time. Our method is based on shaping the incoming
wavefront and only requires partial knowledge of the system’s
transmission matrix. We show that the light flowing along a
single branch has a broadband frequency stability such that
one can even steer pulses along selected branches—a prospect
with many interesting possibilities for wave control in disordered
environments.
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When waves propagate through a disorder landscape that
is sufficiently weak and spatially correlated, they form

branched transport channels in which the waves’ intensity is
strongly enhanced. This phenomenon of “branched flow” was
first discovered for electrons gliding through semiconductor het-
erostructures (1). Instead of an isotropic spreading into all pos-
sible directions, the electron density injected through a quantum
point contact was observed to form esthetically very appeal-
ing branch patterns. This intriguing behavior can be attributed
to ripples in the background potential that are always present
in such structures (1, 2), which act like an array of imperfect
lenses, giving rise to caustics (3) and thereby, to distinct intensity
enhancements along branches (4–6). Although first discovered
as a nanoscale wave effect, branched flow was soon understood
to occur on a wide range of length scales up to the formation of
hot spots in tsunami waves as a result of the propagation through
the rough ocean sea bed (7–13).

Whereas a number of previous studies have already focused
on the statistics of this phenomenon (3, 10, 14) and on its ori-
gins (2, 3, 15–18), the question of how branched flow can be
controlled and thereby, put to use for steering waves through
a complex medium has not been addressed so far. This is
probably due to the fact that the possibilities to shape and
manipulate electrons or ocean waves are, indeed, very limited.
In other words, for the experiments where branched flow was
observed so far, the incoming wavefront as well as the potential
that the wave explores were considered as predetermined and
immutable. These limitations are currently about to be overcome
in a new generation of experiments, where coherent laser light
was observed to exhibit branching when propagating through
very thin disordered materials, such as the surface layer of a
soap bubble (19). Specifically, we expect that the transfer of
branched flow to the optical domain will open up the whole arse-
nal of photonics to shape the wavefront of such branched light
beams (20, 21).

A particularly exciting question that we will explore here from
a theoretical point of view will be whether optical wavefront
shaping tools, like spatial light modulators (SLMs), can be used
to manipulate an incoming light beam in such a way that it fol-
lows only a single branch through a disorder landscape rather
than many of them in parallel. The protocol that we will intro-

duce based on our analysis will open up ways of sneaking a beam
of light through a disordered medium while maintaining its focus
throughout the entire propagation distance—like a highway for
light through a scattering medium. More generally, we expect our
approach to be useful in a variety of different contexts, where
steering waves through a complex environment to a predeter-
mined target is a key goal, like in wireless communication (22),
adaptive optics (23), underwater acoustics (24), wave focusing
(25–28), and biomedical imaging (29, 30) as well as for wave
control in disordered systems at large (20, 21, 31, 32).

Results
System. The system that we consider is shown in Fig. 1A and
consists of a rectangular scattering region of length L and
width W that is attached to two straight semiinfinite wave-
guides (leads) of the same width W on the left and right (only
the left lead is shown). In transverse direction, hard-wall bound-
ary conditions are applied (i.e., the wavefunction is zero at
these boundaries). In all of the calculations reported below,
we choose the number of propagating open lead modes to be
M = 200 and a fixed wavenumber k =µπ/W of the incoming
light (the first three lead modes are indicated in Fig. 1A). For
simplicity, we set W =µ= 200.01, resulting in the following
simple expressions for the wavenumber k =π and the wave-
length λ= 2. The length of the scattering region is chosen as
L= 1.4W ≈ 140λ.

In analogy to the first observation of branched flow, where
electrons were injected through a constriction (quantum point
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Fig. 1. (A) Illustration of the setup under study: a disordered waveguide
(center region) of width W ≈ 100λ is attached to an incoming lead on
the left (through an aperture; blue) and an outgoing lead on the right
(not shown). The smooth disorder potential in the waveguide of length
L = 1.4W ≈ 140λ is illustrated in blue/red colors. On top of the potential,
the wave intensity is plotted, corresponding to a superposition of the wave
intensities of modes 1–100 injected through the left lead and resulting in
a pronounced branched structure. (The first three lead modes are depicted
in orange on the left-hand side.) The main goal of our study is to separate
these branches by suitably shaping the incoming wavefront in the left lead.
(B) Intensity output profile as a function of transverse coordinate y at the
right end of the disordered region (x = L). The seven maxima labeled from
one to seven (highlighted in light blue/magenta) are produced by the arrival
of different branches at the output.

contact) into a high-mobility electron gas (1), we also include
such a constriction in the form of an aperture of width d =
50.5≈ 25λ between the left lead and the disordered scattering
region (at x = 0). Whereas in many previous studies, the width
of the constriction was chosen such that it only allows for 1 or
2 modes to propagate, the 50 modes that we allow to pass pro-
vide us with many tunable degrees of freedom as required for
shaping the incoming wavefront (for a narrow quantum point
contact that transmits only a single mode, our method can-
not be applied). The smooth and long-range disorder necessary
to observe branched flow is modeled by a spatially dependent
index of refraction n(~r ) throughout the whole scattering region
indicated by the light red/blue color in Fig. 1A. This corre-
lated refractive index n(~r ) is characterized by a correlation
length ξ= 6 = 3λ, minimum/maximum values min(n(~r )) = 1
and max(n(~r ))≈ 1.19, and a mean value mean(n(~r ))≈ 1.1
(more details on the correlated disorder are in SI Appendix).

The scalar scattering problem in this two-dimensional setup is
described by the two-dimensional Helmholtz equation

[∆ + k2n2(~r )]ψ(~r ) = 0, [1]

with ψ(~r ) representing the out-of-plane z component of the
electric field and k =ω/c being the incoming wavenumber. To
solve this equation numerically, we discretize space on a Carte-
sian grid and use the modular recursive Green’s function tech-

nique (33, 34) (Methods has more details) to efficiently evaluate
the scattering states ψ(~r ) and the unitary scattering matrix

S =

(
r t ′

t r ′

)
. [2]

Here, the transmission (reflection) matrix t (r) contains the com-
plex amplitudes tab (rab) for transmission (reflection) from mode
b from the left lead to mode a in the right (left) lead. The
primed quantities t ′ and r ′ (not used here) are the correspond-
ing matrices for injection from the right. (More details on the
used scattering formalism can be found in Methods.)

To observe the branched flow of light, we inject the differ-
ent lead modes from the left into the constriction and super-
impose the corresponding wave intensities that they give rise
to. In the superposition, we consider only the first 100 lead
modes (of 200) to avoid high-angle scattering and to ensure a
high visibility of the individual branches. The branched struc-
ture in the propagation of waves through our setup is clearly
visible in Fig. 1A.

The challenge that we rise to in the next step is to address these
branches individually through a suitable coherent superposition
of incoming modes in the left lead. The methods that we choose
for this purpose involve only the transmission matrix t from Eq.
2, which is available in optics through interferometric measure-
ments involving an SLM (21, 35). As the branched flow in our
system naturally leads to a concentration of intensity at certain
spots at the output, we find here that the knowledge of the trans-
mission matrix t for modes concentrated around these spots is
sufficient for a clean separation of branches. In other words, we
may restrict ourselves to those regions in space at the output
where the branches arrive. These regions are determined from
the intensity profile at the output facet of our system at x =L
(Fig. 1B). Seven intensity maxima corresponding to the arrival of
different branches are clearly visible in Fig. 1B and highlighted
in light blue/magenta. For each intensity maximum, we manually
set lower and upper boundaries, which are indicated by verti-
cal lines in Fig. 1B, and define a reduced transmission matrix
t̄ connecting the incoming lead with the corresponding region
at the output (labeled from one to seven). The elements t̄ab of
this matrix hence describe the coherent transmission amplitudes
from all points b at the input (we choose 200 equidistant points
in the input lead corresponding to 200 open lead modes) to all
points a around a specific intensity maximum at the output (SI
Appendix has more details on the transmission matrix in a spatial
basis).

First Approach: Transmission Eigenstates. Our first approach to
achieve clean branch separation is to use a singular value
decomposition of t̄ : that is,

t̄ =UΣV †, [3]

allowing us to access the transmission eigenvalues τi in this
truncated spatial basis as contained in the real diagonal matrix
Σ = diag (

√
τi). The matrix U consists of eigenvectors of t̄ t̄ †,

and V consists of eigenvectors of t̄ † t̄ . The largest transmission
eigenvalues τi correspond to those transmission eigenchannels
~τi (contained in the columns of V ) that transmit the most inten-
sity to the desired region at the output. At this point, one might
be tempted to think that these highly transmitting channels will
already constitute the branches that we are after. To test this
hypothesis, we inject for each of the seven transmission matrices
t̄ the corresponding transmission eigenchannels with the largest
transmission eigenvalues. Checking the corresponding scattering
wavefunctions (Fig. 2 B, E–I, P, and T), we find that a clean
branch separation is, indeed, possible for a number of cases.
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Fig. 2. Transmission eigenstates (B, E–I, O, P, T) and time-delay eigenstates (A, C, D, J–N, Q–S, U) of the system shown in Fig. 1 calculated from the
transmission matrices t̄ connecting the incoming lead with the seven different output regions marked in Fig. 1B (see blue horizontal bars here). The
branched structure (Fig. 1A) is drawn here as a gray background. We show all eigenstates that are selected by our procedure (steps i–iii) with black text
labels and two examples of eigenstates that are filtered out by our procedure, since they address two different branches at once (red labels). The states are
ordered according to their output region on the right (numbers 1©– 7©). The average transmittance of all states with black labels is around 89% into the
region marked by the blue bars.

We also find, however, that several among the highly trans-
mitting eigenchannels follow two different branches in parallel
instead of only one. Fig. 2O shows an example of such a state,
where one can clearly see a mixing of one branch propagating
directly into the selected region (marked with blue bars at the
output) with another branch bouncing off the lower boundary.
Demanding high transmission into a desired region by choos-
ing high-transmission eigenchannels is thus clearly not enough to
guarantee clean branch separation, since high transmission can
also be obtained by propagating along multiple branches at once.
In a possible optical experiment, such a mixing can be expected
to be even more prevalent than in our numerical example, sim-
ply because optical implementations can typically involve a large
number of branches (19).

Second Approach: Time-Delay Eigenstates with Large Transmission.
To also be able to address such mixed branches individually, we
now introduce a more efficient method. Specifically, our aim is
to set up an approach in terms of the scattering matrix S and the
Wigner–Smith time-delay operator (36–38) derived from it:

Q =−iS−1 dS

dω
. [4]

Eigenstates of Q , also known as principal modes, are associated
with scattering states that have a well-defined time delay and the
remarkable property that their output profile is very robust to
frequency changes (39–44). Some of these eigenstates have the
additional feature of having a particle-like wavefunction (i.e., the
scattering states follow classical particle trajectories) (40, 42, 44).
Modifying the Wigner–Smith time-delay operator for our pur-
pose now allows us to separate those eigenstates of t̄ † t̄ with
the largest transmission eigenvalues τi by their time delay (27,
44). The key idea here is that two branches that may both be
highly transmitting (like those in Fig. 2O) can be distinguished by
their different time delays (as determined by the different branch
lengths). To be specific, we only work with those N transmission
eigenvalues τi that are larger than some value η and derive the
matrices u , v , and σ from U , V , and Σ by truncating all rows and
columns corresponding to τi <η. With these truncated matrices,
we can now replace the terms in Eq. 4,

dS

dω
→ uu†

dt̄

dω
vv† and S−1→ ′′ t̄−1′′→ vσ−1u†, [5]

to arrive at the reduced time-delay operator q ,

q =−ivσ−1u†uu†
dt̄

dω
vv†, [6]

that operates in the subspace of highly transmitting states only.
Note that Eq. 6 involves a quasi-inverse “t̄−1” of the rectangular
matrix t̄ , the regularity of which is guaranteed by the restriction
to only those transmission eigenvalues τi that are larger than the
cutoff value η. In practice, a value of η= 0.8 proved suitable for
all of our calculations. Note that, due to the nonunitarity of t̄ ,
the eigenvalues of the reduced time-delay operator q in Eq. 6
are complex (in contrast to the real eigenvalues of the Wigner–
Smith time-delay operator Q in Eq. 4). The imaginary parts of
the complex eigenvalues are, however, very small, and the real
parts can still be used as a good measure for the physical delay
times (44).

To put this method directly to the test, we turn our atten-
tion to the state shown in Fig. 2O featuring a mixture of two

A

C

B

D

Fig. 3. (A–D) Eigenstates from Fig. 2 I, K, M, and Q injected into an empty
waveguide without the disordered refractive index. The fact that removing
the disorder potential leads to a defocusing demonstrates that the for-
mation of collimated branch states crucially relies on the presence of the
underlying disorder landscape. The blue bars indicate the region where the
branch exits the scattering region in the presence of the disorder (Insets).
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Fig. 4. (A) Time-delay eigenstate propagating along one single branch in
a disorder landscape (to prove the general applicability of our approach, a
different disorder realization was used as in Fig. 1A). (B–D) Pulse propagat-
ing along the branch shown in A at three different time steps (t1 < t2 < t3).
The pulse remains spatially confined while traversing the disorder along the
branch shown in A. The Fourier spectrum of the pulse is Gaussian shaped
with an SD of σ≈ 0.034k, with k being the wavenumber.

branches with different path lengths and correspondingly, dif-
ferent time delays. A singular value decomposition of t̄ reveals
that it contains nine singular values larger than η= 0.8. With
this knowledge, we can now construct q according to Eq. 6 and
indeed, find among its eigenstates the desired wave fields that
follow the two involved branches individually (Fig. 2 R and S).

Restricting the construction of time-delay eigenstates to the
subspace of high transmission thus yields already very good
results. Using this method, we, however, also observed a few
time-delay eigenstates that mix two different branches as, for
example, shown in Fig. 2J. These two branches, however, turn out
to be individually addressable through those transmission eigen-
states ~τi with the smallest time delays (Fig. 2 G and I) [the time
delay of a transmission eigenstate ~τi can simply be calculated
by taking the expectation value with the time-delay operator
q (i.e., ~τ†i q~τi)].

Combined Method. One may thus also decide to turn the above
strategy on its head and look for transmission eigenstates in the
subspace of short time delays. Since neither one of these opposite
strategies seems to have an a priori advantage, we now com-
bine them with each other in a synergistic way to improve our
results even farther. (i) We evaluate all eigenstates ~τi of t̄ † t̄
and ~qi of q for all of the seven transmission matrices t̄ cor-
responding to regions of maximum intensity shown in Fig. 1B.
(ii) We select those states that are identical in both eigenstate
sets, since they turn out to be individual branch excitations in
all of the observed cases. To do this, we project each eigen-
vector ~qi onto each eigenvector ~τi such that we end up with
the matrix elements mij =~q †i ~τj . (The matrix m is not unitary,
since the eigenstate sets are not complete.) For the case that two
eigenvectors are the same, the matrix m has only one significant
nonzero element in the corresponding row/column. Practically,
we consider two eigenvectors to be the same when |mij |> 0.9.
(iii) In a last step, we deal with those eigenstates that consist
of more than one contribution from the respective other eigen-
state set (i.e., that have more than one nonzero element in the
corresponding row/column of m). Our task here is to select
those states that consist of only single branches and to discard
those states that propagate along more than one branch at once.
Since, however, the coefficients mij do not indicate per se which

states consist of single branches only, we first need to translate
the eigenvector coefficients to a corresponding angular profile
at the input aperture. Checking, in a next step, if this angular
input pattern is sufficiently collimated provides us finally with the
desired indicator for the excitation of a single branch (Methods
has details).

Following the above three steps (i–iii), which notably rely
only on the experimentally accessible transmission matrices t̄ , we
obtain well-separated branch states (Fig. 2 A–I, K–N, and P–U)
that stay collimated throughout the entire scattering region and
that feature an average transmittance of over 89% into one of
the designated seven output regions. These results show that our
method leads to a channeling of waves through the disordered
region and to a well-controlled branched flow. An interesting
detail that we emphasize here is that our approach not only
yields a single state for each individual branch but in fact, also
states that propagate along the same branch but with a higher
transverse quantization (Fig. 2 C, F, H, L, N, and R) (40).

Discussion and Summary
Injection into Empty Cavity. To underscore the nontrivial nature
of these collimated branch states that we identify here, we inject
several of the states shown in Fig. 2 into a clean waveguide with-
out any disorder. The results are displayed in Fig. 3, showing
that these states feature a considerably reduced collimation com-
pared with the case including the disorder (Fig. 3, Insets). This
observation demonstrates that the states that we identify here do
not just rely on a trivial injection with a narrow angular distribu-
tion at the input and that the disorder plays a crucial role for the
states’ collimation.

Pulse Propagation. In the last part of this study, we also demon-
strate explicitly that our collimated single-branch states can be
sufficiently stable in frequency to allow for the transmission of
pulses along a branch. Consider here, as an example, the time-
delay eigenstate shown in Fig. 4A that propagates along a certain
branch. Taking a superposition of this branch state at different
frequencies to form a Gaussian wave packet, we obtain a pulse
propagating along the selected branch as shown in Fig. 4 B–
D at three different time steps (t1< t2< t3). We observe that
the pulse transits the system while staying on this curved branch
throughout the entire transmission process.

Summary. In summary, this work demonstrates how to con-
trol the flow of waves through a correlated and weak disorder
potential landscape. Such systems give rise to branches along
which incoming waves travel through the disorder. We intro-
duce a method that allows us to inject waves in such a way that
almost all of the flow travels along a single branch alone. This
nontrivial finding can even be extended to the temporal domain
as we show by creating pulses that remain on a single branch
throughout the entire transmission process. Implementing such
concepts in optics requires only a small subpart of the transmis-
sion matrix and is thus within reach of present-day technology.
We expect our work to be generalizable from scalar to vector
waves and from two to three dimensions, where it may give
rise to interesting applications in communication and imaging
technology.

Methods
Numerical Method. To solve the Helmholtz Eq. 1 numerically, we discretize
the central scattering region on a Cartesian grid with a grid spacing
∆x = ∆y ≈ 0.1 that is about a factor 20 smaller than the considered wave-
length λ= 2. This discretization allows us to reformulate the scattering
problem as a standard matrix equation involving very large matrices. The
central quantity in our approach is the so-called Green’s function that
contains the information on how any incoming wave produces a certain
wave pattern inside the entire waveguide. We calculated this Green’s func-
tion through an efficient “modular” approach (33, 34) that involves the

Brandstötter et al. PNAS | July 2, 2019 | vol. 116 | no. 27 | 13263
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Fig. 5. (A and B) Spatial (left) and angular distribution (right) at the input
aperture (located at x = 0 between y/λ≈ 37 and y/λ≈ 62) of the transmis-
sion (red) and time-delay states (blue) shown in Fig. 2 O and R, respectively.
The different widths of the distributions indicate that the transmission state
is likely to excite more than one branch at once. (C and D) Spatial (left)
and angular distribution (right) of the time-delay (blue) and transmission
(red) states shown in Fig. 2 J and I, respectively. From the widths of the spa-
tial distributions shown in C, we can conclude that the transmission state is
more likely to excite only one single branch, which is confirmed by the wave
plots. The widths of the normalized distributions are quantified by the inter-
val around the maximum value of the distribution (indicated by the vertical
dashed lines) in which 60% of the distribution lies.

inversion of large matrices on a computer cluster using efficient linear
algebra packages.

Scattering Formalism. Our scattering system is a waveguide as described.
The semiinfinite asymptotic regions (also called leads) feature a constant
refractive index of n = 1, whereas the rectangular scattering region in the
middle contains the randomly distributed but correlated refractive index
n(x, y)≥ 1. Solving the Helmholtz Eq. 1 in the asymptotic regions yields
straightforward solutions—the so-called lead mode basis functions

ψa(x, y) =
1√
kx,a

χa(y)eikx,ax , [7]

where kx,a is the wavenumber in the x direction of mode a and 1/
√

kx,a

is a flux-normalization factor. The transverse profile χa(y) of each mode is
given by

χa(y) =

√
2

W
sin(ky,ay), [8]

with ky,a = aπ/W and W being the lead width. The transverse and longitu-
dinal wavenumbers follow the relation k2

x,a + k2
y,a = k2. The first three lead

modes (a = 1, 2, 3) are depicted in Fig. 1A in orange. The lead modes in Eq.
7 are orthogonal and complete, and they can thus be used as a basis to
decompose any arbitrary wave such that the wave can be described by a cor-
responding coefficient vector ~φ= (~φl, ~φr )T , where the upper components ~φl

represent a wave injected from the left lead and the lower components ~φr

represent a wave injected from the right lead. For our simulations, we exclu-
sively work with waves that approach the scattering region from the left
[i.e., ~φ= (~φl,~0)T ]. Due to scattering, the wave injected through the aperture
will be different after passing the scattering region [i.e., the outgoing wave
is described by a different vector ~µ= (~µl, ~µr )T , with ~µl being the reflected

wave and ~µr being the transmitted wave]. Incoming and outgoing waves
are related by ~µ= S~φ, with S being the scattering matrix

S =

(
r t′

t r′

)
, [9]

where r, t are the reflection and transmission matrices containing the scat-
tering amplitudes for injection from the left-hand side and r′, t′ consist of
the corresponding amplitudes for injection from the right-hand side. As
an example, the matrix element tab = 〈ψa|t|ψb〉 is the complex amplitude
for the transmission from incoming mode b to outgoing mode a. If M is
the number of propagating modes in one of the two leads, the matrices
r, t, r′, t′ are M×M dimensional, and correspondingly, the scattering matrix
S is 2M× 2M dimensional. When applying this formalism to the reduced
time-delay operator q in Eq. 6, the coefficient vector that corresponds to an
eigenstate of this operator reads ~φ= (~qi ,~0)T . Here, ~qi is the i th eigenvec-
tor obtained by solving the eigenvalue equation for the reduced time-delay
operator (i.e., q~qi = qi ~qi , where qi is the corresponding eigenvalue).

Spatial and Angular Profile of Eigenstates. To find individual branch excita-
tions among all eigenstates ~qi and ~τi , it is essential to determine if either
a time-delay eigenstate ~qi or a transmission eigenstate ~τi addresses only
one single branch rather than many at the same time. As we show here,
the spatial and/or angular distribution of an eigenstate at the input aper-
ture provides us with sufficient information to perform this task, since an
eigenstate exciting only one branch will be spatially more confined and
will radiate into a smaller angular region than a state addressing multiple
branches. Assuming that the transmission matrix t̄ is measured in the spatial
pixel basis, the eigenvectors ~qi and ~τi are naturally given in this spatial basis
as well. By plotting the absolute value of the coefficients |cy

n|, where n is the
nth component of the vector ~qi or ~τi , as a function of the transverse coordi-
nate at the aperture (x = 0), we can easily generate the spatial distribution
of an eigenstate.

To estimate the angular distribution of an eigenstate at the aperture,
we work with the Hermitian operator ky =−id/dy measuring the trans-
verse y component of the wavevector. The eigenvalue equation of the ith
eigenvector ~k(i)

y of this operator reads

ky
~k(i)

y =λ
(i)~k(i)

y , [10]

where λ(i) is the ith eigenvalue. Since a well-defined transverse wavevector
component corresponds to a well-defined angle of incidence, we can now
decompose the eigenvectors ~qi and ~τi into the momentum basis spanned by
the vectors ~k(i)

y and analyze the different angular components |ck
n|.

Fig. 5 A and B display the spatial and angular components of the trans-
mission eigenstate shown in Fig. 2O (red) and the time-delay eigenstate
in Fig. 2R (blue). We see that the spatial profile of the transmission state
is broader and that it features more angular components than the time-
delay state. We can, therefore, conclude that the transmission state is more
likely to address multiple branches, whereas the time-delay state addresses
only one single branch, which is confirmed by the wave plots shown Fig. 2
O and R. In Fig. 5 C and D, we plot the same distributions for the time-
delay state shown in Fig. 2J and the transmission state shown in Fig. 2I.
From Fig. 5C, we deduce that the time-delay state consists of more than
one branch due to the larger spatial distribution, which is confirmed by the
wave plots. We successfully applied this procedure to all eigenstates ~qi and
~τi , from which we can conclude that the spatial and angular distributions of
the time-delay and transmission states can be used to find those states out
of both eigenstate sets (time-delay and transmission eigenstates) that excite
only one single branch.
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