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Abstract

The Human Connectome Project (HCP) is a large structural and functional MRI dataset with

a rich array of behavioral and genotypic measures, as well as a biologically verified family

structure. This makes it a valuable resource for investigating questions about individual dif-

ferences, including questions about heritability. While its MRI data have been analyzed

extensively in this regard, to our knowledge a comprehensive estimation of the heritability of

the behavioral dataset has never been conducted. Using a set of behavioral measures of

personality, emotion and cognition, we show that it is possible to re-identify the same individ-

ual across two testing times (fingerprinting), and to identify identical twins significantly

above chance. Standard heritability estimates of 37 behavioral measures were derived from

twin correlations, and machine-learning models (univariate linear model, Ridge classifier

and Random Forest model) were trained to classify monozygotic twins and dizygotic twins.

Correlations between the standard heritability metric and each set of model weights ranged

from 0.36 to 0.7, and questionnaire-based and task-based measures did not differ signifi-

cantly in their heritability. We further explored the heritability of a smaller number of latent

factors extracted from the 37 measures and repeated the heritability estimation; in this case,

the correlations between the standard heritability and each set of model weights were lower,

ranging from 0.05 to 0.43. One specific discrepancy arose for the general intelligence factor,

which all models assigned high importance, but the standard heritability calculation did not.

We present a thorough investigation of the heritabilities of the behavioral measures in the

HCP as a resource for other investigators, and illustrate the utility of machine-learning meth-

ods for qualitative characterization of the differential heritability across diverse measures.

Introduction

With the recent availability of cost-efficient methods for obtaining genomic and neuroimaging

data, a number of influential projects have generated large-sample databases that combine

multiple types of data across the same set of individuals. For instance, the Nathan Kline
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Institute database provides physiological, psychological, genetic and neuroimaging data, the

Cambridge Center for Aging Neuroscience database provides physiological, cognitive and

imaging data, and the UK Biobank provides genotyping, imaging and questionnaire data. Per-

haps most widely studied to date is the Human Connectome Project (HCP), an NIH-funded

database that offers a uniquely rich sample of measures across the same 1200 subjects: struc-

tural, diffusion, and functional MRI, together with questionnaire- and task-based measures

that assess many different psychological domains as well as genomic information [1]. This

database has been analyzed in hundreds of publications, and is being expanded to include

younger age ranges. The HCP dataset has proven to be a valuable resource for investigating

individual differences. A number of recent studies have utilized the HCP dataset to predict

personal identity, gender, fluid intelligence, personality, and executive function from brain

connectivity [2–5]. Another valuable aspect of the HCP is that it has a biologically verified fam-

ily structure, including 149 genetically confirmed monozygotic twin pairs and 94 genetically

confirmed dizygotic twin pairs. Given all the other rich measures in the HCP, this family struc-

ture provides an important opportunity for investigating heritability across behavior, brain

structure, and brain function. Yet to date no study has characterized the heritability of the

diverse behavioral measures available in the HCP’s 1200 subjects, limiting this line of investi-

gation. Our goal in the present study was to provide such a characterization.

Decades of research have accumulated abundant knowledge on the heritability of various

human traits. A recent meta-analysis studied 28 functional domains and found the largest heri-

tability estimates for several physical trait domains (such as the ophthalmologic and skeletal

domains) but the lowest heritability for some psychological domains (such as the social values

domain; [6]). This domain-wise characterization was largely consistent with reported values

from studies that focused on individual traits. For example, height is one of the most studied

traits in the physical domain. An earlier study involving twins from eight countries estimated

the heritability of height to be 0.87–0.93 for males and 0.68–0.84 for females [7], although a

more recent study of larger samples produced estimates up to 0.83 in boys and 0.76 in girls [8],

comparable to the reported meta heritability of 0.73 [6]. By contrast, the heritability of psycho-

logical traits is generally estimated to be lower: episodic memory has a heritability around 0.3–

0.6 [9] (with meta heritability around 0.6), and personality has a heritability around 0.4 [10]

(with meta heritability around 0.48). These traits have typically been studied in isolation in

previous studies. Here we took advantage of the comprehensive set of measures available in

the Human Connectome Project (HCP) dataset (including both self-report questionnaires and

behavioral tasks), which allowed us to describe an individual’s psychological profile and simi-

larity to others. Our goal was to provide comprehensive estimation of the heritabilities of

behavioral measures in this dataset as a resource that could be used for studies of heritability in

the neuroimaging data component.

Several studies have used MRI data in the HCP to investigate the heritability of brain struc-

tures and connectivity patterns, many aspects of which are heritable [11]. For instance, surface

area and cortical thickness [12], the depth of Sulcal Pits [13], subcortical shape [14], hippocam-

pal subfield volumes [15] and cortical myelination [16] are all heritable structural features.

Similarly, connectivity patterns, especially resting-state fMRI, have been shown to be heritable

[17, 18], with highest estimates found for repeat measurements that account for transient fluc-

tuations [19]. Other studies have also probed the neural correlates of cognitive processes in the

context of heritability using HCP data [20–23]. For instance, one study used bivariate genetic

analyses to identify brain networks that were genetically correlated with cognitive tasks in

math and language [21]. Similarly, another study found common genetic influences for white

matter microstructure and processing speed [22]. Both studies demonstrated that heritability

can provide a powerful link between brain and behavior.
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Behavioral heritability is defined as the genetic contribution to the total variance for a pheno-

typic trait in a population, an important statistic for understanding individual differences. Twins

(both monozygotic/MZ and dizygotic/DZ) are particularly useful for the estimation of heritabil-

ity as they can help to differentiate the contribution of genes versus environment. In the classical

twin design, the total phenotypic variance of a trait can be decomposed into four components:

additive genetic influences (A, theoretically correlates at 1.0 for MZ twins and at 0.5 for DZ

twins), non-additive genetic influences (D, theoretically correlates at 1.0 for MZ twins and at 0.25

for DZ twins), common environmental influences (C, theoretically correlates at 1.0 for both MZ

twins and DZ twins) and unique environmental factors (E, theoretically uncorrelated for both

types of twins). Due to modeling constraints, only three of these four parameters can be assessed

simultaneously. When the MZ correlation is less than twice that of DZ correlation, non-additive

genetic influences (D) are assumed to be negligible, resulting in the ACE model. When the MZ

correlation is more than twice that of DZ correlation, common environmental influences are

assumed to be negligible, resulting in the ADE model [6, 24–27]. Modern maximum likelihood-

based modeling estimates various components for the total variance [28, 29], but in essence relies

on the same set of assumptions and logic, which continue to be debated and depend on prior

assumptions about the dataset. For example, researchers have different opinions on whether the

equal environment assumption (EEA) is tenable. On the one hand, some believe that a greater

level of physical similarity shared by MZ twins leads to more similar social environment. A sepa-

rate argument is for the prenatal environment, MZ twins, especially monochorionic twins, are

believed to share a more similar womb environment which is hypothesized to be important for

certain developmental outcomes [30–34]. On the other hand, it has been argued that EEA is

largely tenable as long as there is only a modest bias and the model is limited to few traits. One

study controlling for environmental similarity between MZ and DZ pairs found significantly

reduced heritability for only one out of 32 outcomes examined [35]. Another study concluded

that the effects of chorionicity are small and limited to few phenotypes of the whole set of 66 phe-

notypes examined [36]. Furthermore, gene-environment interaction is often not properly mod-

eled or completely omitted as in the case of using Falconer’s formula in twin studies [37]. Yet a

recent meta-analysis paper that investigated the heritability of a wide range of human traits based

on twin studies in the past fifty years showed that for 69% of the traits analyzed, there was a two-

fold difference in the MZ correlations relative to DZ correlations, consistent with a simple model

that all twin resemblance was solely due to additive genetic variation [6]. Falconer’s formula thus

continues to be used, but modifications to it, and assumptions behind it, depend on theoretical

assumptions that may or may not be valid, depending on the details of the dataset.

Unlike traditional approaches in twin studies where researchers impose strong theoretical

constraints on the exact causes for the difference between MZ and DZ twins, machine-learning

tools have recently emerged as a model-free approach to such questions. Rather than describ-

ing genotype-phenotype associations based on the statistics of the population (as classical

approaches do), machine-learning approaches learn multivariate patterns across individuals,

and aim to produce a model that is predictive, i.e., that generalizes to held-out cases (as

assessed, e.g., with cross-validation). The approach is entirely data-driven, and can reveal use-

ful individual differences. However, a main challenge with machine-learning models is feature

selection and model complexity, both of which can promote models that overfit the data and

that fail to generalize. Feature selection and regularization are thus important; as well as com-

parisons across more than one type of model.

Several modern machine learning models, including the ones we use in the present paper,

have been shown to outperform classical approaches across a number of different datasets

[38]. These models have yielded notable improvements in the prediction of human phenotypic

traits using single-nucleotide polymorphism (SNP) data [39–43]. One review that evaluated
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Ridge regression (which is a model used in our study) lists several advantages over conven-

tional genome-wide association methods: (1) substantially increased accuracy, especially for

large sample sizes; (2) the regularization term in the Ridge regression allows flexible account-

ing of the linkage disequilibrium between SNPs; (3) more computationally efficient than

repeated simple regressions [39]. Other models, such as Random Forest, a nonlinear machine

learning model, have been used to predict coronary artery calcification using SNP data, achiev-

ing not only good prediction, but also reliably identifying best predictors across different data-

sets [43]. Feature weights have been further utilized in one study that trained support vector

machines (SVM) to classify siblings versus unrelated people using resting-state fMRI data to

derive heritability for brain activity [44]. Overall, machine learning models have demonstrated

superior prediction performance compared to conventional methods, and the feature weights

learned by the models have the potential to be used for qualitative estimation of heritability

(although feature weights need to be interpreted with caution (see Discussion; [45, 46]).

The present study had two broad aims: 1, We tried to re-identify the same individual (“fin-

gerprinting”), and also identify an individual’s identical twin, based on their behavioral profile.

We tested if the success in connectome fingerprinting that has been applied to the neuroimag-

ing component of the HCP [3] could be replicated also using this set of rich behavioral mea-

sures. 2, We set out to characterize the relative heritability of the behavioral data in this dataset

using the classical method, and at the same time using machine-learning models to classify

MZ and DZ twins (from both raw behavioral scores and latent factors). Aside from valuable

comprehensive data that describes the heritability of psychological variables in the HCP, our

results motivate hypotheses about the heritability of the neural underpinnings, which we hope

future studies will pursue in the same subject sample.

Materials and methods

Data

We used behavioral data from the Human Connectome Project (HCP) S1200 release under

the domains of cognition, emotion and personality [1]. The 37 selected variables were sum-

mary scores for either a behavioral task or a questionnaire (see S1 Table for more detailed

description for each variable, and Fig 1A for their phenotypic correlation structure and Fig 1B

for the genetic correlations). The NEO agreeableness score was re-calculated since item #59

was incorrectly coded at the time of downloading the data (an issue reported to and verified by

HCP: https://www.mail-archive.com/hcp-users@humanconnectome.org/msg06007.html).

Since the variables were on different scales, we first pre-processed them to all have zero mean

and unit variance. Each subject was thus essentially described by a vector of 37 z-scored

scores/features, representing their psychological profile.

Of 1206 subjects, 1189 subjects had complete data for the 37 scores of interest, and 1142

had family relationship data verified by genotyping, yielding a final set of 149 pairs of geneti-

cally confirmed monozygotic (MZ) twins (298 subjects, all of the same sex) and 90 pairs of

dizygotic (DZ) twins (180 subjects, one twin pair was of opposite sex and thus excluded) with

complete data for the 37 behavioral variables of interest. A subset of 46 MZ subjects had com-

plete test-retest data for the selected 37 scores, which we used to calculate test-retest reliability

(as their Pearson’s correlation coefficients, Fig 1C). We thus used 1189 subjects in total, of

which 478 were either MZ or DZ twins.

Bivariate genetic correlation

To estimate the degree of shared genetic influences among behavioral measures, we calculated

bivariate genetic correlations using the SOLAR software package (https://www.nitrc.org/
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projects/se_linux). Briefly the total phenotypic correlation ρP is partitioned into a genetic com-

ponent ρG and an environmental component ρE according to the following model:

rP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

h2
a � h2

b

q

� rG þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 � h2
aÞ � ð1 � h2

bÞ

q

� rE ð1Þ

where h2
a and h2

b correspond to the heritability for trait a and b, respectively. For all analyses,

age, sex, age×sex, age2, age2×sex were included as covariates. Inverse Gaussian transformation

was applied to ensure the normality of the measures.

Same individual and twin identification

Same individual. We first asked how well a subject could be re-identified from their

retest, compared to all other subjects, for the 46 subjects who had test-retest data available. We

calculated pairwise Euclidean distances between a given subject’s retest data and each of the

1189 subjects’ original data (including the subject’s own original data) and then ranked the dis-

tances in ascending order to see if the subject’s retest data was closer to his/her own original

data than the data from any other of the 1188 subjects.

MZ twin. Similar to the above, we took one person (target) out of the 298 MZ twins and

calculated pairwise Euclidean distances between this subject and each of the remaining 1188

subjects, and then ranked the distances in ascending order to see if the corresponding MZ

twin was closer to the target subject than were any of the other 1187 subjects.

Fig 1. Overview of the dataset. (A) empirical correlation matrix for 37 behavioral variables in HCP (sample size N = 1189), color coded for Pearson’s

correlation coefficient, (B) genetic correlation matrix for 37 behavioral variables, color coded for the magnitude of the bivariate genetic correlation (see text),

(C) empirical test-retest reliability for 37 measures (sample size N = 46), color coded for domain. See S1 Table for descriptions of the variables.

https://doi.org/10.1371/journal.pone.0235860.g001
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In both cases, the Euclidean distance between two subjects was calculated as the following:

d ðp; qÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P37

i¼1
ðpi � qiÞ

2

q

ð2Þ

Where p, q correspond to the 37-length vector representations for two subjects, and pi, qi

correspond to each of the individual behavioral measures.

Standard calculation of heritability. In the behavioral genetics literature, a standard way

to derive heritability for the ACE model (contribution from additive genetic influences only) is

based on twin correlations calculated using Falconer’s formula [25]:

h2 ¼ 2 � ðrMZ � rDZÞ ð3Þ

Where h2 is the overall heritability, rMZ the correlation for a phenotypic trait between

monozygotic twins, and rDZ the correlation for a phenotypic trait between dizygotic twins.

Different a priori assumptions can modify this theoretical model. For example, if the ADE

model is suggested, then rMZ is taken as approximation for heritability which reflects the con-

tributions from both the additive and non-additive genetic influences.

Machine learning approach

We took as input data the absolute z-scored feature-wise difference between each twin and

their co-twin, each described by a vector of 37 pre-processed behavioral variables as described

above, giving us 149 MZ pair data and 90 DZ pair data which we tried to classify. Given that

the MZ and DZ classes were not balanced (had different numbers of subjects), we randomly

over-sampled the DZ class with replacement to match the number of individuals in the MZ

class. This simple and conservative approach would prevent the models from focusing on

learning the characteristics of the MZ class only, neglecting the examples from the DZ class, a

common problem when machine-learning is used on unbalanced classes.

We used three widely used models: a Ridge classifier, a simple univariate model, and a Ran-

dom Forest model, which is a nonlinear decision tree-based model that ensures accurate fea-

ture weights even when features are correlated. For the univariate model, the dependent

variable was the class (MZ or DZ) and the independent variable was each of the 37 features; we

used this simple model because it most clearly tests the maximal contribution of each feature

in isolation. All three models were implemented in Python (v2.7.6) using the Scikit-learn

(v0.20.3) library; the exact models used were sklearn.linear_model.LinearRegression, sklearn.

linear_model.RidgeClassifier and sklearn.ensemble.RandomForestClassifier.

We fitted both Ridge (the alpha parameter for the regularization term was set to be

alpha = 100 for using 37 features, alpha = 10 for using the set of 9 factor scores calculated using

linear regression, and alpha = 100 for using both sets of 18 factor scores) and Random Forest

models (maximum tree depth was set to be 5 with 100 trees in the forest to prevent overfitting).

Each model was estimated 1000 times; for each iteration, data was sampled as described above

and then randomly split into 70% training data and 30% testing data.

More specifically, the alpha parameter in the Ridge regression model, which reflects the reg-

ularization strength, was determined by the built-in cross-validation in the Scikit-learn library.

We began with a wide range of initial alpha values (200,100,10, 1, 0.1, 0.01, 0.001) and the

model estimated the best alpha value independently for 1000 iterations. We then re-ran the

whole analysis using the single final alpha value that was chosen by the majority of the itera-

tions to be the best regularization parameter.

For the Random Forest model, there is a larger set of hyper-parameters to consider. Given

that we only had 239 unique data points available to learn to classify two classes, a thorough
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grid search for hyper-parameter optimization was not feasible and prone to overfitting. We

therefore focused on three hyper-parameters that would most strongly affect model perfor-

mance given prior knowledge (and fixed all other parameters to their default value), which

were: number of estimators/trees, maximum depth of the decision trees and maximum num-

ber of features to consider for best split at each node. The architecture of the Random Forest

model allowed us to make use of the out-of-bag samples that came for free as a validation set

because for each tree, a bootstrap sample of the original training data with replacement was

used and certain data points were left out. The generalization accuracy of the model was evalu-

ated using the out-of-bag accuracy. More specifically, to determine the best number of trees,

we tried out a list of values from 20 to 160, and at each given value, we ran three Random For-

est models (maximum number of features to consider set to be ‘auto’, ‘log2’ and ‘none’ respec-

tively) for 100 iterations to derive a stable mean out-of-bag accuracy. The result is shown in

S1A Fig. We found that (a) setting maximum feature to be “none” performed considerably

worse than the other two options, and (b) the out-of-bag accuracy increased first with more

decision trees and then reached a plateau at around 100 trees. Therefore, the number of esti-

mators was set to be 100 because setting it even higher did not improve model accuracy signifi-

cantly and would be more computationally expensive. Similarly, to determine the optimal

maximum depth, we tried out a list of values from 1 to 10 and also ‘none’. From S1B Fig, we

observed again that setting the maximum feature to ‘none’ was considerably worse than the

other two options which didn’t differ much from each other, and the out-of-bag accuracy

increased first with more depth and then reached a plateau at around 5. Therefore, the maxi-

mum depth was set to be 5 and the maximum number of features to consider was set to be

‘auto’ which was the default option.

Ridge classification produced a measure of testing accuracy as well as the coefficients

(weights) for each of the 37 behavioral features. For both Ridge and univariate models, we

reported the absolute values for the coefficients. Detailed interpretation for the theoretical

meaning of the sign of the coefficients is provided in the Discussion section. The Random For-

est model returned feature importances (which are always positive and reflect mean decrease

impurity (averaged across all decision trees in the random forest) [47]). So, a feature with a

higher importance score is better at decreasing node impurity (which is a metric of the number

of mis-labeled data points at the current node of a decision tree), i.e., it is more informative

than other features. We evaluated the performance of Random Forest models using both test-

ing accuracy and ROC curve analysis.

Factor analysis

Given the strong inter-correlations between the 37 behavioral variables (Fig 1A) and the consid-

eration that a single individual variable/task may yield an imprecise measure of the underlying

psychological construct, we performed an exploratory factor analysis using SPSS with principal

axis factoring as the extraction method, and kept nine factors that had eigenvalues>1, which

together explained about 60% of the variance. This is not the only criterion for factor retention,

therefore we included the scree plot in the supplement for readers’ own judgements. Factors

were rotated using Promax rotation, since there was no evidence that the factors were orthogo-

nal. We then calculated the factor scores using both regression and Bartlett methods. These fac-

tor scores were the features used for subsequent machine-learning prediction of heritability.

Statistical testing

The statistical significance of our identification tests was evaluated with permutation testing.

Over 1000 iterations, subject identity was randomly shuffled from the original dataset across
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the 1189 subjects, and the same identification procedures described above (both same-individ-

ual identification and identical-twin identification) were performed to derive the empirical

distribution for chance-level identification accuracy.

To assess the statistical significance of our classification performance, we constructed the

95% confidence interval from the empirical distribution of the model’s prediction accuracy

(resulting from the 1,000 bootstraps that we performed) for each classification problem. A

bootstrap p-value was also computed as the ratio of the instances of having a testing accuracy

equal to or lower than 50% (which is the expected chance accuracy for random guessing with

equal probability for a balanced binary classification) out of the total number of bootstraps.

Permutation testing was also used to test for a significant difference in average heritability

between the questionnaire domain and the behavioral task domain. The null hypothesis was

that the task and the questionnaire domain comprised the same distribution. Under the null

hypothesis, the number of all possible permutations (selecting 15 out of 37 measures as task

scores) was 9.4�109, which we approximated using Monte Carlo sampling of 100,000 permuta-

tions. For each permutation, we randomly assigned 15 values to the task domain and the rest

to the questionnaire domain and then calculated the absolute difference between the two heri-

tability means as our test statistic. Statistical significance was quantified as the probability

(under the null hypothesis) of observing a value of the test statistic more extreme than what

was actually observed. We performed the same analysis for four sets of estimates (standard

heritability estimates, univariate model weights, Ridge weights, and feature importances for

the Random Forest model, each consisting of 37 values).

Results

Individual re-identification, and monozygotic twin identification

A number of recent studies have attempted to identify individuals using different brain finger-

prints, including functional connectivity [3, 4], structural connectivity [48], and white matter

fiber geometry [49], motivated by the potential use of neural markers for precision medicine

and precision psychiatry. Those studies have demonstrated that brain fingerprints can predict

individual identity and behavioral outcomes. For example, using HCP data from 126 subjects,

the whole brain connectivity matrix approach can identify individuals across two resting state

scans with a success rate as high as 94% as well as predict intelligence score [3]. Given the rich

set of behavioral measures that we have, we tested how well behavioral fingerprinting could

work which would allow us to assess how reliable, robust and unique the behavioral profiles

are for each individual.

We first attempted to re-identify the same individual using all of the 37 measures. Of the 46

subjects with retest data, we were able to re-identify 26 (meaning that the original data of those

26 individuals were closest to their retest data compared to all other 1188 subjects), yielding an

accuracy of 56.5% (26/46) with a median distance rank of 1.0 and a mean distance rank of 12.1

among 1189 people. This suggests that even for cases where exact matches failed, the individu-

als were not that far from their own retest data (ranked on average as the 12th closest to their

own retest data among 1189 subjects). We performed permutation testing to assess the statisti-

cal significance of our identification accuracy. Across 1,000 iterations, the highest success rate

ever achieved on any one of the 1,000 permutations was 2/46 (roughly 4.3% and considerably

lower than our observed accuracy). Since none of the 1,000 iterations ever exceeded our

observed accuracy, the overall p-value associated with obtaining at least 26 correct identifica-

tions was the minimum we could estimate, that is p<0.001.

We carried out the same analysis for MZ twin identification: compared to other siblings

and genetically unrelated people, MZ twins should be most similar to one another [24–26]. Of
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the 298 MZ subjects, we identified the exact corresponding MZ twin for 21 of them (i.e., the

corresponding twins of those 21 individuals had the smallest distances to them when described

by this set of behavioral measures compared to all other 1187 subjects), yielding an accuracy of

7.0% (21/298) with a median distance rank of 47.5 among 1188 people. This suggests that even

for cases where exact matches failed, the MZ twins were not that far from each other (ranked

at furthest as the 48th closest among 1188 subjects for half of the cases). Assessing statistical

significance with 1,000 permutations, the highest success rate ever achieved on any one of the

1,000 permutations was 3/298, roughly 1.0%, and the p-value associated with obtaining at least

21 correct identifications was again the lowest possible, that is p<0.001. Thus, both our ability

to identify somebody’s identical twin based on the behavioral data, and to re-identify the same

individual, was highly statistically significant, even though accuracy for the first was consider-

ably worse than for the second.

The ability to re-identify a given individual (that is, test-retest reliability) essentially sets an

upper bound on the ability to identify a MZ twin, and presumably reflects the specific mea-

surement limitations of this particular dataset, including factors such as the number of features

(37 compared to ideally infinite) and the reliability of the features (test-retest reliability or mea-

surement error in Fig 1C). However, both identifications (same individual and MZ twins) had

the same set of limitations inherent to this dataset, and both groups share 100% genetic simi-

larity. The lower prediction accuracy for MZ twins as compared to re-identification of the

same individual thus suggests that the behavioral measures in our dataset have only low-mod-

erate heritability, and that environmental factors may explain some of the individual differ-

ences in MZ twins (which is consistent with the literature as reviewed in the introduction). We

next investigated the heritability of each measure and the fundamental assumptions of twin

studies.

The standard method of calculating heritability

In twin studies, one of the most common approaches to calculate heritability is based on the dif-

ference in correlations between MZ and DZ twins (see Introduction). As can be seen from Fig

2A (and S1 Table), the heritability calculated in this manner had a large range across different

tasks and surveys. For about half of the measures, the MZ correlation was less than two times

the DZ correlation, suggesting the ACE model. On the other hand, for the other half of the mea-

sures, the MZ correlation was more than two times the DZ correlation, suggesting non-additive

genetic contributions (ADE model). There were two measures whose MZ correlation was

smaller than the DZ correlation, indicating no genetic contributions at all. One possible expla-

nation for this result could be that the measures have poor test-retest reliability. Based on retest

data from 46 subjects, the short Penn line orientation test had a test-retest reliability of 0.76 and

the life satisfaction questionnaire had a test-retest reliability of 0.89. Another limiting factor

could be the sample size used to calculate the twin correlations (on the order of 100 here and

DZ twins were fewer than MZ twins). There exist more complex modeling approaches to esti-

mate heritability [28, 29], but fundamentally, those methods rely on the same assumptions. The

standard correlation-based calculations were simple and straightforward, but with many

assumptions built in [27, 30–33, 37]. In this study, we explore the possibility of utilizing

machine learning models that are more data-driven and less model-based to provide heritability

estimates against which the standard heritability estimates could be compared.

A machine learning approach to classify MZ and DZ twins

The traditional approach derives heritability from the differences between MZ and DZ twins

at the population level. If we assume that any differences between the two types of twin pairs
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indeed arise solely from genetics, then in an ideal case with no noise components and no cor-

relation among features, a classifier trained to distinguish MZ twins and DZ twins should

assign greater weights to those features that have higher heritability, as they are more informa-

tive for discriminating the two classes. This allows us to test at least qualitatively how reason-

able the heritability estimations were that we derived above using standard methods (see

Discussion for some caveats in interpreting feature weights in multivariate linear regression).

The first approach we used was Ridge classification, which is a variant of a simple multivari-

ate model with a regularization term that forces the weights to be more stable and robust to

correlated features [50, 51] (which we had, as illustrated in Fig 1A). The mean coefficients for

each feature are plotted in Fig 2C, the model had a mean testing accuracy of 68.7% (95% confi-

dence interval for the testing accuracy: [58.9%,77.8%]; the bootstrap p-value under the null

hypothesis that testing accuracy is not significantly higher than 50% was <0.001). In addition

to Ridge regression, we also fitted the simplest univariate model for each of the 37 measures,

an OLS regression model with a single feature, each one of the coefficients are shown in Fig

2B. This univariate regression would therefore reflect the maximal contribution from each fea-

ture in isolation, allowing a clearer quantification of each individual feature’s importance than

the Ridge or Random Forest models, which incorporate multicollinearity between features.

The two sets of coefficients (univariate and Ridge) had a Spearman’s rank-order correlation of

0.82 across the 37 features.

Another popular approach is the Random Forest classifier, which is a nonlinear model

comprised of many decision trees. For each decision tree inside the forest, the method draws a

Fig 2. Heritability estimation across four methods for 37 behavioral measures. (A) standard heritability estimates; (B) univariate coefficients for each feature; (C)

mean feature coefficients averaged across 1000 iterations for Ridge classifier (error bars represent standard deviation of coefficients); (D) mean feature importances

averaged across 1000 iterations for Random Forest (error bars represent standard deviation of importances); (E) correlation matrix for four sets of heritability

estimates assigned to 37 measures, color coded for Spearman’s rank correlation. See inset legend for details.

https://doi.org/10.1371/journal.pone.0235860.g002
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randomly sampled training set and only considers a random sample of features for splitting at

each node. The structure of the model helps with the problem of highly correlated features and

allows more stable and accurate estimations of feature weights (importances). The mean fea-

ture importances are plotted in Fig 2D, the model had a mean predictive accuracy of 79.4%

(95% confidence interval: [71.1%,87.8%]; p<0.001); mean area under the ROC curve was 0.88

(with a standard deviation of 0.04).

To compare all these different results, we quantified the correlations between all four sets of

values, including classic heritability estimates, Ridge classifier coefficients, univariate model

coefficients and Random Forest feature importances. We found good agreement across differ-

ent approaches with Spearman’s rank correlation ranging from 0.36 to 0.82 (Fig 2E), which

was consistent with our hypothesis that the heritability of a measure should be positively

related to its contribution to the classification of MZ vs DZ twins. Considering that we had

correlated features in the dataset (Fig 1A), the results also partially confirmed the capability of

both Ridge and Random Forest at handling feature correlations as they both agreed well with

the univariate coefficients, correlated at 0.82 and 0.69 respectively. Results that corrected for

test-retest reliability were similar to the uncorrected ones presented here (S2 Fig).

We next asked a more general question: are the heritability or feature weights on average

significantly different for the behavioral task domain compared to the self-report question-

naire domain? Significant domain-wise differences in terms of heritability could imply that

these two domains have distinct genetic origins (and possibly distinct neural substrates as

well) which would be of theoretical interest to researchers working on those measures [52].

The comparison was also motivated by the possibility of identifying one domain with signifi-

cantly lower heritabilities, as that might suggest that environmental factors play a greater role

for that domain and the possibility of developing more directed behavioral intervention for

clinical populations.

Under the null hypothesis that average heritability for the task and the questionnaire

domain are not significantly different, we constructed the distribution of the absolute differ-

ence for average heritability between the task and questionnaire domain (Fig 3), and calculated

the p-values for four sets of estimates (see more details in the Methods section). For all cases

except Ridge classification (for which the p-value was 0.021, uncorrected for testing our

hypothesis with the four sets of heritability estimates), we found no strong evidence to reject

the null hypothesis. When taking test-retest reliability into consideration by simple disattenua-

tion (dividing by rest-retest reliability), again only Ridge coefficients had the smallest p-value

of 0.008 (S3 Fig). However, it may not be valid simply to divide by test-retest reliability, since

measures with very poor reliability could yield artificially inflated heritability. It’s worth noting

that the genetic correlation structure among measures (Fig 1B) did seem to imply that the two

domains we tested here (tasks and questionnaires) have largely distinct genetic origins and

perhaps distinct neural mechanisms as well, even though their heritabilities did not differ.

As noted before, there were strong inter-correlations among the 37 behavioral measures.

We therefore used factor analysis to derive latent factors underlying those measures, an

approach commonly taken when large numbers of tasks are available.

Estimating heritability for the factors

As an example of this approach, we extracted nine factors from all 37 measures that together

accounted for 59.7% of the total variance (S2 Table). Determining how many factors to retain,

and the interpretations for those factors, were inevitably subjective. Retaining nine factors was

more conservative (accounted for more variance) than what the scree plot would suggest (S4A

Fig), which instead suggested three factors by visual inspection. In addition, we had a technical
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consideration that favored retaining a greater number of factors, since more features for classi-

fication models trained on latent factors would generally lead to better classification perfor-

mance and thus more accurate classification of MZ/DZ twins. We offer the analysis of the

heritability of latent factors as an exploratory complement to our main analysis of the heritabil-

ity of the individual measures.

Our interpretations (which are subjective) and the accounted variances of the factors were

as follows. Factor 1: positive social relationship (indicated by high positive loadings on mea-

sures such as emotional support and friendship survey) (22.2%); factor 2: negative affect (indi-

cated by high positive loadings on measures such as fear, sadness and anger survey) (11.0%);

factor 3: general intelligence (indicated by high positive loadings on a range of cognitive tasks

with highest loading on the Penn Progressive Matrices test) (5.1%); factor 4: impulsivity (indi-

cated by loadings on the two delay discounting tasks) (4.7%); factor 5: attention and processing

speed (indicated by high positive loadings on the NIH card sort task, and the Flanker and Pro-

cessing speed tests) (4.0%); factor 6: agreeableness (indicated by positive loading on NEO

agreeableness and negative loading on anger aggression survey) (3.6%); factor 7: efficacy and

conscientiousness (indicated by high positive loadings on NEO conscientiousness and self-effi-

cacy survey) (3.2%): factor 8: language and communication (indicated by high positive load-

ings on two language tests and NEO openness) (3.2%) and factor 9: competitiveness (indicated

by positive loadings on social distress and life satisfaction surveys) (2.8%).

We repeated the previous analyses using the set of factor scores derived from regression

methods so that each subject was represented by a vector of 9 factor scores to derive standard

heritability, Ridge coefficients, univariate coefficients and Random Forest feature importances

Fig 3. Distribution of the absolute mean difference between the task and questionnaire domain (vertical line indicates actual observation of the

difference for average heritability between the task and questionnaire domain) for (A) standard heritability estimates; (B) univariate coefficients

for each feature; (C) Ridge classifier coefficients; (D) Random Forest feature importances.

https://doi.org/10.1371/journal.pone.0235860.g003
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for the nine factors (Fig 4). When using the nine regression factor scores, The Ridge classifier

had a mean accuracy of 64.2% (95% CI: [53.3%,73.3%]; bootstrap p-value = 0.006) while the

Random Forest classifier had a mean testing accuracy of 77.9% (95% CI: [67.8%,86.7%]; boot-

strap p-value <0.001) and mean area under the ROC curve of 0.86 (with a standard deviation

of 0.04). The reduction of model performance compared to using all 37 measures was minimal,

indicating that the latent factors captured the information relevant for the classification.

We also computed factor scores using both regression and Bartlett methods for reliability

(since factor scores are indeterminate). These two methods produced two sets of very similar

factor scores for the same nine factors (see correlation structure between all 18 factor scores in

S4B Fig). We then used these two sets of factor scores simultaneously as features in the Ridge

classifier and Random Forest model to further assess the ability of each model to handle highly

correlated features (a more challenging task than handling the 37 variables which were less

inter-correlated in comparison). For a model that’s robust to correlation among features, it

should be able to assign similar weights or importances to features that are highly correlated

with each other. For standard heritability and univariate coefficients (S5A and S5B Fig), each

factor score was treated independently, so they were not susceptible to the influence of correla-

tion among factors. For the Ridge classifier, for the two sets of factor scores, the two sets of

coefficients (S5C Fig) had a Pearson’s correlation of 0.79. For the Random Forest analysis, the

correlation between the two sets of feature importances (S5D Fig) was 0.61. Therefore, these

results further confirmed that Ridge and Random Forest were able to assign similar weights to

highly correlated features and that their estimation of feature weights was reliable. In addition,

for the set of factor scores derived by regression, when trained alone versus together with the

other set of factor scores computed by the Bartlett method, the Spearman’s rank correlation of

Fig 4. Heritability estimation across four methods for nine latent factors. (A) standard heritability estimates; (B) univariate coefficients for each factor; (C)

mean feature coefficients averaged across 1000 iterations for Ridge classifier (error bars represent standard deviation of coefficients); (D) mean feature

importances averaged across 1000 iterations for Random Forest (error bars represent standard deviation of importances); (E) correlation matrix for four sets of

values assigned to 9 factors, color coded for Spearman’s rank correlation.

https://doi.org/10.1371/journal.pone.0235860.g004
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Ridge coefficients was 0.73. For the Random Forest classifier, the feature importances were

correlated at 0.93. These results demonstrated that the feature weights that Ridge and Random

Forest learned for the nine factors (when factor scores were calculated using the Regression

method) were robust and consistent.

We also carried out the same analysis using only the first three factors as the scree plot

would suggest (S6 Fig). The Ridge classifier had a mean accuracy of 59.5% (95% CI:

[48.9%,70.0%]; bootstrap p-value = 0.044) while the Random Forest classifier had a mean test-

ing accuracy of 65.7% (95% CI: [55.6%,75.6%]; bootstrap p-value = 0.001). The general pattern

of heritability estimation across methods was similar with the calculations using all nine factors

but the rank correlations were of lower resolution given the smaller number of factors.

Recall that for the 37 original measures, standard heritability and feature importances from

the three models agreed relatively well, from 0.36 to 0.7 (Fig 2E). However, for the nine factors,

the classical heritability estimates (Fig 4A) had lower correlations with the three other sets of

model estimation, from 0.05 to 0.43 (Fig 4E). One specific difference, for example, was the esti-

mation of factor 3 which reflects general intelligence. All three models assigned high impor-

tance to this factor while the traditional heritability calculation assigned a rather low value at

26.6%. In the literature, the heritability of intelligence has been studied extensively, often utiliz-

ing twin studies. The heritability of intelligence generally increases with age, estimated to be

about 20% in infancy to perhaps 80% in later adulthood. One possible explanation for this

trend is that small genetic differences get magnified as children select, modify and create their

own experiences on the basis of their genetic propensities (so called genetic amplification).

The HCP subjects are all in the age range of 22–35 years (young adulthood) and the heritability

of intelligence in this age range is estimated around 60%-80% [53–57]. The machine-learning

models are thus likely to have produced a more qualitatively accurate estimation of heritability

from this dataset than the standard approach was able to.

Discussion

Summary of results

The goal of our study was to characterize the heritability of behavioral measures in the Human

Connectome Project (HCP), given the prominence of this dataset in investigations of brain-

behavior relationships and individual differences. We analyzed a comprehensive set of 37

behavioral scores in the HCP. When representing each subject using this set of behavioral

data, we were able to achieve a behavioral fingerprinting accuracy of 56.5% (re-identification

of the same individual), and in the case of identifying identical twins, an accuracy of 7.0%

(both very significantly above chance as determined with permutation tests). We further com-

puted heritability for all 37 behavioral scores using both a classical correlation-based method

as well as three machine-learning based methods (univariate linear model; Ridge classification

model and Random Forest model) that were trained to distinguish MZ twins from DZ twins.

We found relatively high correlations between the two schemes (Fig 2E). Given the inter-cor-

relations among the 37 scores, an exploratory factor analysis was conducted to extract nine

latent factors, whose heritability we assessed similarly. In this case, the correlations between

the classical heritability estimation and machine-learning-based model weights were lower

(Fig 4E).

Same individual and MZ twin identification

Our behavioral fingerprinting scheme was inspired by the success of connectome fingerprint-

ing (based on a neuroimaging-derived measure) using HCP data [3]. Our accuracy of 56.5%

was relatively high considering the limiting factors that we faced: a small number of features
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compared to the connectome fingerprinting (where each subject was described as a 268�268

connectivity matrix which essentially gave 35778 unique neuroimaging-derived features) and

measurement error from some measures with relatively low test-retest reliability. For example,

in the cognitive task domain, the Penn word memory task (IWRD_TOT) may have had the

lowest test-retest reliability in part because it targets verbal memory in a novel situation, which

is a form of fluid ability that is less consistent across time. In contrast, cognitive tasks that tar-

get crystallized abilities, such as the oral reading recognition task (ReadEng_Unadj) and the

picture vocabulary task (PicVocab_Unadj), had the highest reliabilities. For the social and

affect domain measures in the form of questionnaires, we observed that the NEO personality

dimensions had superior test-retest reliability, which is consistent with the relative temporal

stability of personality traits. Some of the least reliable measures in this domain were question-

naires about state perception of negative affect in social settings (FearSomat_Unadj, PercHos-

til_Unadj, PercReject_Unadj). This was also expected, since the test and retest measures on

these variables were obtained at different times, making it possible for the same individual to

actually vary in the case of less temporally stable state variables such as these. It should also be

noted that the statistical power of our behavioral fingerprinting was limited by the sample size

of the HCP dataset where only 46 subjects had complete retest behavioral data. Ideally, a larger

sample size and a richer set of psychological measures will provide a more accurate and reliable

estimation for the behavioral fingerprinting accuracy.

Our identification of MZ twins faced the same limitations, but we observed a drop of per-

formance to an accuracy of 7.0% (still highly significantly better than chance). This accuracy

drop alone would seem to put a limit on the strength of the heritability of our measures. One

possible explanation is that the unique environment actually accounts for a substantial portion

of the variance for those measures, overwhelming the contribution of common environment

and genes. According to a study that used maximum likelihood modeling, unique environ-

ment does account for the majority of variances for many of the measures in the HCP, includ-

ing some of the ones we selected [29]. This may also partly explain the modest classification

accuracy of Ridge classification between MZ twins and DZ twins, since stronger contribution

of unique environment implies weaker contribution of genetics and common environment to

the overall phenotypic variances, thus diminishing group differences between MZ twin pairs

and DZ twin pairs.

Comparison of the standard correlation-based heritability estimation

versus machine-learning-based model weights

The standard analysis calculates the heritability based on the MZ and DZ correlations for a

phenotypic trait. Depending on the relative ratio between the twin correlations, researchers

choose to include either the common environment (C) or non-additive genetic influences (D)

in the model. It should be noted that since those two factors compete towards making the MZ

correlation more or less than two times the DZ correlation, if C and D both exist, they can

mask the effects of one another [58]. In our calculations, we also found that two measures that

had good test-retest reliability had lower MZ correlations compared to DZ correlations. Possi-

ble reasons for ‘negative heritability’ could be due to small sample size and/or lack of explicit

knowledge of the common environment. However, it should be mentioned that a negative esti-

mation of heritability is not rare using such methods and although most researchers attribute

such invalid results to noise, they could in fact be evidence against the assumptions behind the

calculations [37, 59].

In addition, we trained machine learning models to distinguish MZ twin pairs and DZ twin

pairs and used the model weights to verify the validity of the traditional heritability estimates.
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Measures/features that have high heritability are expected to contribute more to the classifica-

tion. We found good rank correlations between the standard heritability and another three

sets of model coefficients for the 37 behavioral variables (Fig 2E). More specifically, for mea-

sures with good test-retest reliability such as the five NEO personality traits, we observed con-

sistent estimation of heritability across all four methods both in terms of their magnitudes

among all of the 37 measures and the magnitudes relative to one another. On the other hand,

for some measures such as the Penn word memory task (IWRD_TOT) and the Penn emotion

recognition task (ER40_CR), the poor test-retest reliability seemed to put a ceiling on the mag-

nitude and reliability of the heritability estimation across methods. The openness personality

dimension (NEOFAC_O) had the highest and most consistent heritability estimation across

all four analytic methods in the questionnaire domain and the oral reading recognition task

(ReadEng_Unadj) had the highest average heritability estimation in the task domain; heritabil-

ity estimates for these two tasks were fairly consistent across models, but less consistent with

the standard estimates.

When applied to nine latent factors, the agreements between the standard heritability esti-

mate and the three sets of model coefficients were substantially lower (Fig 4E). However, the

three machine learning models had good agreement with one another, as shown by relatively

high rank correlations (all above 0.6) (Fig 4E). As mentioned above, the standard heritability

estimation for the general intelligence factor deviated greatly from the other three models, and

from the literature. Such disagreement raises concerns about the validity of the assumptions

made by the classical twin study and the usage of traditional methods for calculating

heritability.

Limitations and future directions

To the best of our knowledge, this is the first comprehensive characterization of the heritability

of the behavioral measures in the full HCP database, and the first application of utilizing

machine learning models to address this question. We will evaluate each model respectively

and make recommendations for future use.

For the univariate linear model, a conceptually simple model, each measure was evaluated

independently for its maximal contribution for the classification. For both raw measures and

latent factors, univariate model coefficients agreed best with standard heritability calculations.

Though it should be noted that given the shortcomings of standard calculations that we dis-

cussed before, good agreement with these doesn’t necessarily imply agreement with the true

set of heritability values.

The second model we used was a Ridge classifier, a commonly used linear model to deal

with correlated features [50, 51, 60]. A recent paper (using single-nucleotide polymorphism

data) concludes that Ridge classification will improve predictive accuracy substantially com-

pared to standard repeated univariate regression for a large enough sample size [39]. As a regu-

larized regression, Ridge has proven to be effective at handling feature correlation, illustrated

by its good agreement with the univariate coefficients (Figs 2E and 4E) and its ability to assign

similar weights to the two sets of factor scores (S5C Fig). However, it is important to note that,

in general, multivariate linear models such as Ridge are better suited for decoding and predic-

tion purposes, whereas the interpretation for feature weights in the presence of noise and fea-

ture correlations can be problematic. The reason is that multivariate linear classification will

assign weights to features based on the overall (multivariate) performance, which means that

feature weights are not independent. In an extreme case, a feature (behavioral measure) that

by itself contains no relevant information for the classification may be assigned a large weight

because it cancels out shared noise present in other features [45]. In our study, our confidence
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in interpreting the Ridge weights comes from two considerations: 1, the high agreement

between the univariate weights (whose weights do not suffer from the same caveat) and the

Ridge ones, correlated at 0.82 and 0.65 for the case of 37 measures and 9 factors, respectively.

2, after transforming the Ridge weights into activation patterns of the corresponding forward

model (see [45] for details and mathematical formulas), we observed a similar level of agree-

ment with the univariate model, correlated at 0.84 for the 37 measures. For these reasons, we

believe that the Ridge weights, in our case, were largely reasonable to be interpreted as relative

heritability strengths.

For both the univariate regression model and the Ridge classification model (which is

essentially a Ridge regression model with an addition step of taking the sign of the regression

outcome), MZ twins were labeled as +1 while DZ twins were labeled as -1 in our implementa-

tion. So, both models tried to predict more positive regression outcomes for MZ twins com-

pared to DZ twins. Theoretically, given the expectation that MZ twins have smaller absolute

discrepancy than DZ twins for each measure (reflected by smaller absolute difference in their

z-scored behavior scores for each measure), the sign of the coefficients should be negative such

that the linear combination of the features for MZ twins will be more positive than DZ twins.

Furthermore, the absolute magnitudes of the coefficients from these two regression models

should reflect the informativeness of each feature. Because the features are z-scored scores for

each behavior measure, the same amount of change for a feature with a coefficient of larger

absolute magnitude will result in a larger absolute shift for the regression outcome. In our

analysis, we found most of the coefficients to be negative with occasional positive coefficients

that were of small magnitude. Possible explanations for the unexpected positive coefficients

include: unstable estimation due to small sample size of HCP (on the order of 100 per class,

which is also modest for twin studies); random measurement errors and also possibly innate

errors due to a lack of explicit knowledge on common environment (which means our

assumption that MZ/DZ twins share the same common environment might be violated). For

this study, we couldn’t rule out the possibilities listed above and therefore chose to report the

absolute values of the coefficients conservatively instead of concluding that the positive coeffi-

cients indicate theoretically invalid results.

The Random Forest model was also robust with respect to correlations among features

(e.g., S5D Fig, for two sets of almost identical factor scores for the same nine factors, the two

sets of feature importances had a Pearson’s correlation of 0.61), and achieved the highest accu-

racy for the classification between MZ twin pairs and DZ twin pairs. It does not suffer from

the caveat that we noted above for Ridge classification with respect to interpreting the feature

weights. One reason for the superior performance of Random Forest compared to the other

approaches is likely its ability to find nonlinear separation of the two classes, which is impossi-

ble for linear models, especially in the presence of noise. A second reason is the property of

“bagging” in the model; specifically, for each tree, the training data is a bootstrap sample of the

original training sample with replacement, meaning that each tree has slightly different train-

ing data. Also, for each node of a decision tree in the random forest, it only makes use of a sub-

set of features, which further de-correlates the trees. So, by averaging the prediction of those

shallow trees (maximum tree depth set to be 5 in our case), the end result would reduce vari-

ance and prevent the random forest from overfitting (unlike a single deep decision tree).

Given the nonlinear nature of the model, though, the feature importances should be inter-

preted in a qualitative sense rather than in an absolute sense. In addition, because feature

importance scores are always positive, it’s not possible for them to signal the sign of effect, as

was the case with the regression coefficients.

In this study, we focused on the classification of MZ twins versus DZ twins as a starting

point, because within the classical twin study framework, the model weights in this
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classification scheme have a clear theoretical interpretation (that they should only reflect con-

tribution from genetics). Weights derived from classification of MZ twins versus genetically

unrelated people, for example, would reflect a complex mixture of genetic effects and common

environment, which would be difficult to interpret. However, future research could explicitly

quantify the common environment (the HCP does not provide such information, besides

household ID), and even propose new models to explain the composition of the total pheno-

typic variance. Researchers could then train multiple classifiers (such as MZ versus DZ, full

siblings versus half siblings) to further disambiguate the contribution of each component.

This general machine-learning framework could be applied to the qualitative estimation of

heritability of brain activation as well, a source of data much more mined in the HCP than the

phenotypic data. One recent study organized a subset of HCP subjects into MZ twins, DZ

twins, siblings and unrelated people and found greater activation pattern similarity with

greater genetic relatedness [61]. Using our approach, such findings could go beyond simple

association to heritability estimation, by training classifiers on brain activation patterns for dif-

ferent groups. In summary, the machine learning methods that we introduced here have the

potential to not only supplement standard heritability calculations, but also to provide insights

for theories explaining phenotypic variance, and studies that focus on linking brain activation

with behavior.
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S1 Fig. Hyper-parameter optimization for the Random Forest model. (A) the general trend

of how the number of estimators (x-axis) affects the out-of-bag accuracy (y-axis) and (B) the

general trend of how the maximum depth of the decision trees (x-axis) affects the out-of-bag

accuracy (y-axis). Each point represents the mean out-of-bag accuracy across 100 iterations

and three different conditions for maximum feature (‘auto’,’log2’and ‘none’) are color-coded

as shown in the figure legend.

(TIF)

S2 Fig. Spearman’s rank correlation matrix for four sets of heritability estimates assigned

to 37 measures that are corrected for test-retest reliability.

(TIF)

S3 Fig. Distribution of the absolute mean difference between the task and questionnaire

domain (vertical line indicates actual observation) for (A) standard heritability estimates; (B)

univariate coefficients for each feature; (C) Ridge classifier coefficients; (D) Random Forest

feature importances. All values are corrected for test-retest reliability.

(TIF)

S4 Fig. (A) Scree plot for the factor analysis; (B) Pearson’s correlation matrix for two sets of

factor scores derived using regression method (FAC1_R to FAC9_R) and Bartlett method

(FAC1_B to FAC9_B).

(TIF)

S5 Fig. Heritability estimates for latent factors. (A) standard heritability estimates; (B) uni-

variate coefficients for each feature; (C) mean feature coefficients averaged across 1000 itera-

tions for Ridge classifier (error bars represent standard deviation of coefficients); (D) mean

feature importances averaged across 1000 iterations for Random Forest (error bars represent

standard deviation of importances for two sets of factor scores (color coded for Regression and

Bartlett).

(TIF)
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S6 Fig. Heritability estimation across four methods for the first three latent factors. (A)

standard heritability estimates; (B) univariate coefficients for each factor; (C) mean feature

coefficients averaged across 1000 iterations for Ridge classifier (error bars represent standard

deviation of coefficients); (D) mean feature importances averaged across 1000 iterations for

Random Forest (error bars represent standard deviation of importances); (E) correlation

matrix for four sets of values assigned to 3 factors, color coded for Spearman’s rank correla-

tion.

(TIF)

S1 Table. List of 37 behavioral variables selected with basic descriptions, twin correlations

and heritability estimates.

(DOCX)

S2 Table. Loading matrix for factor analysis. The Table shows the loadings of each of the 37

measures (rows) onto the 9 factors that we derived (absolute values less than 0.30 were sup-

pressed).

(DOCX)

S3 Table. List of 9 latent factors with interpretations, twin correlations and heritability

estimates.

(DOCX)
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tal influences on height from infancy to early adulthood: An individual-based pooled analysis of 45 twin

cohorts. Scientific Reports. 2016; 6: 28496. https://doi.org/10.1038/srep28496 PMID: 27333805

9. Papassotiropoulos A, de Quervain DJ-F. Genetics of human episodic memory: dealing with complexity.

Trends in Cognitive Sciences. 2011; 15: 381–387. https://doi.org/10.1016/j.tics.2011.07.005 PMID:

21835680

10. Vukasović T, Bratko D. Heritability of personality: A meta-analysis of behavior genetic studies. Psycho-

logical bulletin. 2015; 141: 769–785. https://doi.org/10.1037/bul0000017 PMID: 25961374

11. Ge T, Reuter M, Winkler AM, Holmes AJ, Lee PH, Tirrell LS, et al. Multidimensional heritability analysis

of neuroanatomical shape. Nat Commun. 2016; 7: 13291. https://doi.org/10.1038/ncomms13291

PMID: 27845344

12. Strike LT, Hansell NK, Couvy-Duchesne B, Thompson PM, de Zubicaray GI, McMahon KL, et al.

Genetic Complexity of Cortical Structure: Differences in Genetic and Environmental Factors Influencing

Cortical Surface Area and Thickness. Cereb Cortex. 2019; 29: 952–962. https://doi.org/10.1093/cercor/

bhy002 PMID: 29377989

13. Le Guen Y, Auzias G, Leroy F, Noulhiane M, Dehaene-Lambertz G, Duchesnay E, et al. Genetic Influ-

ence on the Sulcal Pits: On the Origin of the First Cortical Folds. Cereb Cortex. 2018; 28: 1922–1933.

https://doi.org/10.1093/cercor/bhx098 PMID: 28444225

14. Gutman BA, Jahanshad N, Ching CRK, Wang Y, Kochunov PV, Nichols TE, et al. Medial Demons Reg-

istration Localizes The Degree of Genetic Influence Over Subcortical Shape Variability: An N = 1480

Meta-Analysis. Proc IEEE Int Symp Biomed Imaging. 2015; 2015: 1402–1406. https://doi.org/10.1109/

ISBI.2015.7164138 PMID: 26413211

15. Patel S, Park MTM, Devenyi GA, Patel R, Masellis M, Knight J, et al. Heritability of hippocampal subfield

volumes using a twin and non-twin siblings design. Human Brain Mapping. 2017; 38: 4337–4352.

https://doi.org/10.1002/hbm.23654 PMID: 28561418

16. Liu S, Li A, Zhu M, Li J, Liu B. Genetic influences on cortical myelination in the human brain. Genes,

Brain and Behavior. 2019; 18: e12537. https://doi.org/10.1111/gbb.12537 PMID: 30394688

17. Colclough GL, Smith SM, Nichols TE, Winkler AM, Sotiropoulos SN, Glasser MF, et al. The heritability

of multi-modal connectivity in human brain activity. Gallant JL, editor. eLife. 2017; 6: e20178. https://doi.

org/10.7554/eLife.20178 PMID: 28745584

18. Adhikari BM, Jahanshad N, Shukla D, Glahn DC, Blangero J, Reynolds RC, et al. Heritability estimates

on resting state fMRI data using ENIGMA analysis pipeline. Biocomputing 2018. WORLD SCIENTIFIC;

2017. pp. 307–318. https://doi.org/10.1142/9789813235533_0029

19. Ge T, Holmes AJ, Buckner RL, Smoller JW, Sabuncu MR. Heritability analysis with repeat measure-

ments and its application to resting-state functional connectivity. PNAS. 2017; 114: 5521–5526. https://

doi.org/10.1073/pnas.1700765114 PMID: 28484032

20. Babajani-Feremi A. Neural Mechanism Underling Comprehension of Narrative Speech and Its Heritabil-

ity: Study in a Large Population. Brain Topogr. 2017; 30: 592–609. https://doi.org/10.1007/s10548-017-

0550-6 PMID: 28214981

21. Guen YL, Amalric M, Pinel P, Pallier C, Frouin V. Shared genetic aetiology between cognitive perfor-

mance and brain activations in language and math tasks. Scientific Reports. 2018; 8: 17624. https://doi.

org/10.1038/s41598-018-35665-0 PMID: 30514932

22. Kochunov P, Thompson PM, Winkler A, Morrissey M, Fu M, Coyle TR, et al. The common genetic influ-

ence over processing speed and white matter microstructure: Evidence from the Old Order Amish and

PLOS ONE Heritability of traits in HCP

PLOS ONE | https://doi.org/10.1371/journal.pone.0235860 July 9, 2020 20 / 22

https://doi.org/10.1038/nn.4135
http://www.ncbi.nlm.nih.gov/pubmed/26457551
https://doi.org/10.1002/hbm.23890
http://www.ncbi.nlm.nih.gov/pubmed/29143409
https://doi.org/10.1002/hbm.23950
http://www.ncbi.nlm.nih.gov/pubmed/29322586
https://doi.org/10.1038/ng.3285
http://www.ncbi.nlm.nih.gov/pubmed/25985137
https://doi.org/10.1375/136905203770326402
https://doi.org/10.1375/136905203770326402
http://www.ncbi.nlm.nih.gov/pubmed/14624724
https://doi.org/10.1038/srep28496
http://www.ncbi.nlm.nih.gov/pubmed/27333805
https://doi.org/10.1016/j.tics.2011.07.005
http://www.ncbi.nlm.nih.gov/pubmed/21835680
https://doi.org/10.1037/bul0000017
http://www.ncbi.nlm.nih.gov/pubmed/25961374
https://doi.org/10.1038/ncomms13291
http://www.ncbi.nlm.nih.gov/pubmed/27845344
https://doi.org/10.1093/cercor/bhy002
https://doi.org/10.1093/cercor/bhy002
http://www.ncbi.nlm.nih.gov/pubmed/29377989
https://doi.org/10.1093/cercor/bhx098
http://www.ncbi.nlm.nih.gov/pubmed/28444225
https://doi.org/10.1109/ISBI.2015.7164138
https://doi.org/10.1109/ISBI.2015.7164138
http://www.ncbi.nlm.nih.gov/pubmed/26413211
https://doi.org/10.1002/hbm.23654
http://www.ncbi.nlm.nih.gov/pubmed/28561418
https://doi.org/10.1111/gbb.12537
http://www.ncbi.nlm.nih.gov/pubmed/30394688
https://doi.org/10.7554/eLife.20178
https://doi.org/10.7554/eLife.20178
http://www.ncbi.nlm.nih.gov/pubmed/28745584
https://doi.org/10.1142/9789813235533_0029
https://doi.org/10.1073/pnas.1700765114
https://doi.org/10.1073/pnas.1700765114
http://www.ncbi.nlm.nih.gov/pubmed/28484032
https://doi.org/10.1007/s10548-017-0550-6
https://doi.org/10.1007/s10548-017-0550-6
http://www.ncbi.nlm.nih.gov/pubmed/28214981
https://doi.org/10.1038/s41598-018-35665-0
https://doi.org/10.1038/s41598-018-35665-0
http://www.ncbi.nlm.nih.gov/pubmed/30514932
https://doi.org/10.1371/journal.pone.0235860


Human Connectome Projects. Neuroimage. 2016; 125: 189–197. https://doi.org/10.1016/j.neuroimage.

2015.10.050 PMID: 26499807

23. Vainik U, Baker TE, Dadar M, Zeighami Y, Michaud A, Zhang Y, et al. Neurobehavioral correlates of

obesity are largely heritable. PNAS. 2018; 115: 9312–9317. https://doi.org/10.1073/pnas.1718206115

PMID: 30154161

24. Bouchard TJ Jr, Propping PE. Twins as a tool of behavioral genetics. Dahlem Workshop on what are

the mechanisms mediating the genetic and environmental determinants of behavior? Twins as a tool of

behavioral genetics, May, 1992, Berlin, Germany. John Wiley & Sons; 1993.

25. Falconer DS, Mackay TFC, Bulmer M. Introduction to Quantitative Genetics. Genetical Research.

1996; 68: 183.

26. Plomin R, DeFries JC, McClearn GE, Rutter M. Behavioral genetics. WH Freeman and Co.; 1997.

27. Mayhew AJ, Meyre D. Assessing the Heritability of Complex Traits in Humans: Methodological Chal-

lenges and Opportunities. Curr Genomics. 2017; 18: 332–340. https://doi.org/10.2174/

1389202918666170307161450 PMID: 29081689

28. Martin NG, Eaves LJ. The genetical analysis of covariance structure. Heredity. 1977; 38: 79–95. https://

doi.org/10.1038/hdy.1977.9 PMID: 268313

29. Winkler AM, Harms MP, Burgess GC, Glahn DC, Smith SM. Investigation into the heritabilities of some

traits in the Human Connectome Project. Poster Session presented at: 21st Human Brain Mapping.

2015; Honolulu, HI, USA.

30. Beckwith J, Morris CA. Twin Studies of Political Behavior: Untenable Assumptions? Perspectives on

Politics. 2008; 6: 785–791. https://doi.org/10.1017/S1537592708081917

31. Charney E., Genes behavior, and behavior genetics. Wiley Interdisciplinary Reviews: Cognitive Sci-

ence. 2017; 8: e1405. https://doi.org/10.1002/wcs.1405 PMID: 27906529

32. Joseph J. Twin Studies in Psychiatry and Psychology: Science or Pseudoscience? Psychiatr Q. 2002;

73: 71–82. https://doi.org/10.1023/a:1012896802713 PMID: 11780600

33. Kamin LJ, Goldberger AS. Twin Studies in Behavioral Research: A Skeptical View. Theoretical Popula-

tion Biology. 2002; 61: 83–95. https://doi.org/10.1006/tpbi.2001.1555 PMID: 11895384

34. Marceau K, McMaster MTB, Smith TF, Daams JG, van Beijsterveldt CEM, Boomsma DI, et al. The Pre-

natal Environment in Twin Studies: A Review on Chorionicity. Behav Genet. 2016; 46: 286–303. https://

doi.org/10.1007/s10519-016-9782-6 PMID: 26944881

35. Felson J. What can we learn from twin studies? A comprehensive evaluation of the equal environments

assumption. Social Science Research. 2014; 43: 184–199. https://doi.org/10.1016/j.ssresearch.2013.

10.004 PMID: 24267761

36. van Beijsterveldt CEM, Overbeek LIH, Rozendaal L, McMaster MTB, Glasner TJ, Bartels M, et al. Chor-

ionicity and Heritability Estimates from Twin Studies: The Prenatal Environment of Twins and Their

Resemblance Across a Large Number of Traits. Behav Genet. 2016; 46: 304–314. https://doi.org/10.

1007/s10519-015-9745-3 PMID: 26410687

37. Schönemann PH. On models and muddles of heritability. Genetica. 1997; 99: 97–108. https://doi.org/

10.1007/BF02259513 PMID: 9463078

38. Grinberg NF, Orhobor OI, King RD. An evaluation of machine-learning for predicting phenotype: studies

in yeast, rice, and wheat. Mach Learn. 2020; 109: 251–277. https://doi.org/10.1007/s10994-019-05848-

5 PMID: 32174648

39. de Vlaming R, Groenen PJF. The Current and Future Use of Ridge Regression for Prediction in Quanti-

tative Genetics. In: BioMed Research International [Internet]. 2015 [cited 20 Jun 2019]. https://doi.org/

10.1155/2015/143712 PMID: 26273586

40. Koo CL, Liew MJ, Mohamad MS, Mohamed Salleh AH. A Review for Detecting Gene-Gene Interactions

Using Machine Learning Methods in Genetic Epidemiology. In: BioMed Research International [Inter-

net]. 2013 [cited 26 Jun 2019]. https://doi.org/10.1155/2013/432375 PMID: 24228248

41. Mieth B, Kloft M, Rodrı́guez JA, Sonnenburg S, Vobruba R, Morcillo-Suárez C, et al. Combining Multiple

Hypothesis Testing with Machine Learning Increases the Statistical Power of Genome-wide Association

Studies. Scientific Reports. 2016; 6: 36671. https://doi.org/10.1038/srep36671 PMID: 27892471
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