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Abstract: Hfq is a bacterial regulator with key roles in gene expression. The protein notably regulates
translation efficiency and RNA decay in Gram-negative bacteria, thanks to its binding to small
regulatory noncoding RNAs. This property is of primary importance for bacterial adaptation and
survival in hosts. Small RNAs and Hfq are, for instance, involved in the response to antibiotics.
Previous work has shown that the E. coli Hfq C-terminal region (Hfq-CTR) self-assembles into an
amyloid structure. It was also demonstrated that the green tea compound EpiGallo Catechin Gallate
(EGCG) binds to Hfq-CTR amyloid fibrils and remodels them into nonamyloid structures. Thus,
compounds that target the amyloid region of Hfq may be used as antibacterial agents. Here, we
show that another compound that inhibits amyloid formation, apomorphine, may also serve as a new
antibacterial. Our results provide an alternative in order to repurpose apomorphine, commonly used
in the treatment of Parkinson’s disease, as an antibiotic to block bacterial adaptation to treat infections.

Keywords: apomorphine; bacterial amyloid; functional amyloid; protein fibrils; protein fibrillation
inhibition; Hfq; bacterial adaptation; antibacterial compound

1. Introduction

Antibiotic resistance happens when a bacterium fights a compound developed to kill
it. This existed before antibiotics were used by humans [1]. Indeed, antibiotic resistance
occurs naturally through mutations and natural selection. The antibiotic action can be
considered an environmental pressure. Thus, bacteria that have a mutation allowing them
to survive in the presence of an antibiotic will be selected from others. This results in
the constant emergence of new resistant pathogens that have acquired new resistance
mechanisms. The inappropriate use of antibiotics over years has induced an increasing
bacterial resistance and the appearance of multidrug-resistant (MDR) bacteria. Indeed,
some bacterial strains have acquired resistance to more or less all existing antibiotics, which
use four main mechanisms (i.e., inhibition of cell wall, protein or nucleic acid synthesis, or
of metabolic pathways such as folate synthesis). This acquisition of resistance may consist
in antibiotic modification, destruction or efflux [2]. For the past years, the development
of “new” antibiotics consisted primarily of chemical derivatives of previously existing
antibiotics. Nevertheless, this strategy resulted in a rapid new resistance acquisition.
Identifying new antibiotics based on a novel mechanism of action is therefore of prime
importance in the fight against MDR bacteria.

Due to their two membranes, Gram-negative bacteria are particularly resistant to
antibiotics. Recent research thus aims at exploring new antibiotics that target proteins
involved in Gram-negative bacterial adaptation and help them respond to the changes
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encountered in their host. Only this adaptation allows the bacteria to survive. To achieve
this goal, bacteria operate at two levels: regulation at the transcriptional level [3] or at the
post-transcriptional level, which allows a faster response to the changing environment [4].
One of the most promising approaches targeting post-transcriptional regulation consists
in blocking noncoding RNA-based (ncRNA) regulation [5]. Many ncRNA from different
bacterial species have been identified. They are, on average, hundreds of nucleotides
long, hence their name of small RNA (sRNA). In Escherichia coli, it is likely that a few
hundred sRNAs exist. Many of these sRNA bind mRNAs via imperfect base-pairing, and
for this reason a protein called Hfq is usually needed to facilitate RNA’s annealing [6–8].
Due to the diversity of their targets, sRNA and Hfq are involved in important bacterial
processes, including virulence and pathogenicity [9]. As an example, the acquisition of
iron in the infected host is particularly critical, and sRNA with Hfq help to respond to
iron starvation [10].

Although Hfq is important in many bacterial pathogens [11], its exact role in drug
resistance is still unclear. Recently, its involvement in response to antibiotics was observed
in Gram-negative bacteria [12]. Indeed, Hfq mediates drug resistance by regulating the
efflux system [13]. For this reason, Hfq has attracted considerable attention, as it could be
a promising target for developing new antibiotics against several Gram-negative bacteria:
blocking the Hfq function may depress the bacterial adaptive capacity and resistance to
antibiotics [13,14]. Structurally, Hfq belongs to the Sm protein family, which is also involved
in RNA-related processes such as splicing [15]. Hfq forms a toroidal ring similar to that of
Sm proteins [16]. The N-terminal region of Hfq (NTR, 65 amino acids residues) is formed by
an antiparallel β-sheet following an amino-terminal α-helix; the NTR bent β-sheets of each
monomer interact in order to form the hexameric torus [17]. Many membrane-proteins are
regulated by the Hfq-NTR region, including porins involved in antibiotic import and/or
efflux [18]. For this reason, attempts have been made to block the Hfq–NTR interaction with
sRNA to affect virulence [19]. On the other hand, Hfq comprises a C-terminal region (CTR)
of about 40 amino acid residues, located outside of the NTR-ring [20]. No 3D structure
is known for this CTR [7]. Nevertheless, the CTR can self-assemble into an amyloid-like
structure with repetitive stacked β-strands in vitro and in vivo [21,22]. This CTR region has
been shown to play a major role in DNA compaction and to affect the cell membrane [21,23].
We thus hypothesize that interfering with the formation of the Hfq-CTR amyloid structure
may have a direct consequence for bacterial survival.

Many amyloid inhibitors have been designed [24]. Historically, these inhibitors have
been used to target pathogenic amyloids to treat neurodegenerative diseases. Indeed,
the accumulation of amyloids is a characteristic of neurodegenerative disorders such as
Alzheimer’s and Parkinson’s diseases. Nevertheless, functional amyloids also exist in
nature [25]. Among them, functional amyloids form in bacteria [26]. They can form in
either the cytoplasm, as in the case of Hfq, or on the cell surface, for instance with proteins
constituting curli [27]. As bacterial amyloids share structural properties with eukaryotic
amyloids, inhibitors used against these pathogenic amyloids may thus be effective in
altering the bacterial amyloid structure and thus bacterial survival. This has already been
proven using Epigallo catechin gallate (EGCG) to target the amyloid region of Hfq or
proteins constituting curli [28,29]. Thus, a bacterial amyloid inhibitor against the Hfq-CTR
region may provide a valid antimicrobial agent.

Among treatments used in neurodegenerative diseases, apomorphine is often used
in the treatment of Parkinson’s disease [30]. Its hydrophobic structure allows it to cross
the cell membrane, and it could thus be particularly effective in Gram-negative bacteria.
In the past, apomorphine has been tried for different uses, including for reducing anxiety,
as a sedative, for craving in alcoholism, to induce vomiting, or to treat erectile dysfunc-
tion [31]. Nevertheless, the use of apomorphine was limited due to the hepatic metabolism
and side effects. Now, with the progresses in drug delivery, apomorphine is better tolerated
and more widely used [31]. In this manuscript, we describe promising preliminary results
that may propose apomorphine or its derivatives as new antibiotics.
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2. Results
2.1. Disruption of Hfq CTR Amyloid Fibrils by Apomorphine In Vitro

To investigate the possibility that the Hfq-CTR amyloid can be affected by apomor-
phine in vitro, we first screened its effect on Hfq-CTR preformed fibrils using transmission
electron microscopy (TEM). In order to allow a statistical approach, we used a negative
staining procedure and not Cryo Transmission Electron Microscopy (cryo-TEM). Potential
amyloid interference was first tested on preformed Hfq-CTR fibrils (amino acid sequence in
the Section 4). Fibrils were pre-formed at 20 mg/mL for one month, and then apomorphine
(or water as a control) was added for 24 h (Figure 1). As seen by TEM, the addition of
apomorphine (5 mM) did not result in the total disappearance of CTR preformed fibrils. Nev-
ertheless, a significantly lower number of fibrils was observed (compare Figures 1b and 1a).
Then, we tested the effect of apomorphine on the fibril formation. To this end, apomorphine
was added at the beginning of the reaction, before fibers formed. As seen on Figure 1c, the
spontaneous self-assembly of Hfq-CTR was drastically affected by the presence of apomor-
phine: only rare fibers were observed (under the same conditions of incubation as those
used in Figure 1a). This means that apomorphine inhibits both the formation of amyloid
fibrils, but also that it binds to existing fibrils to disrupt them into small aggregates.
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Figure 1. TEM visualization of the effect of apomorphine on CTR fibrils. (a) preassembled fibrils of CTR (control). More
than 100 fibers can be observed; (b) preassembled CTR incubated with 5 mM apomorphine; Incubation time 24 h. Here,
only tens of fibers are still present. (c) apomorphine was added before the fibrils’ formation, and almost no fibers can be
observed in this case. Scale bars, 100 nm.

As Hfq-CTR fibrillation is accelerated by DNA [32] and may result in a more stable
complex, TEM analyses have also been performed with apomorphine and Hfq-CTR bound
to DNA (compare Figures 2b and 2a). As shown, apomorphine does not only disrupt
Hfq-CTR preformed fibrils but also disrupts Hfq-CTR fibrils assembled on DNA.

2.2. Kinetics of Hfq-CTR Amyloid Disassembly in the Presence of Apomorphine

The effect of apomorphine on the Hfq-CTR secondary structure was analyzed. For
this, Circular Dichroism (CD) (more precisely, Synchrotron Radiation Circular Dichroism
(SRCD)) was used, which allows extending the wavelength range down to 170 nm for the
identification and distinction of amyloid signals [33,34]. Aggregation into β-sheets in an
amyloidal structure is implied by significant SRCD spectral changes, mainly a negative
band at ~215 nm (Figure 3) [32]. The decrease and shift of this band from ~215 nm to
~200 nm observed upon apomorphine addition (Figure 3) suggests that the amyloid cross-β
structure is disrupted by the compound, while the same peptide in the absence of apo-
morphine remains assembled. The Bestsel analysis [33,34], an algorithm that provides an
improved β-structure determination from the CD spectrum, indicates that in the presence
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of apomorphine, antiparallel β-sheets (mainly right-handed twisted, in agreement with
a previous report [22]) decrease from 19 to 17% to be converted into a random coil structure.
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2.3. Apomorphine Affects Bacterial Survival Due to Its Interaction with Hfq CTR

Finally, the effect of apomorphine on bacterial survival was evaluated. The bacterial
strains that were used were MG1655 WT, MG1655-∆hfq and MG1655-hfq72 (truncated pro-
tein with only the first 72 amino acids) [32]. As described previously in Partouche et al. [28],
the concentration of the apomorphine that inhibited bacterial growth by 50% was evaluated
using the plate count method. This concentration, called C50, was 0.27 ± 0.02 mM for the
WT strain vs. 0.34 ± 0.01 mM for MG1655-hfq72 (Figure 4). These values are the average of
multiple experiments (see methods for details). The E. coli strain that does not express the
CTR of Hfq (hfq72) is significantly less sensitive to apomorphine than the WT strain. C50
for the strain devoid of Hfq (MG1655-∆hfq) was 0.18 ± 0.02 mM (Figure 4). This result was
expected since Hfq (with sRNAs) establishes resistance to various antibiotics [36]. A similar
effect was observed for EGCG [28]. All p-values (for all pairwise comparisons) were smaller
than 2 × 10−5 and indicated that all three strains had significantly different medians.
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3. Discussion

Amyloid inhibitors, such as the green tea compound Epigallocatechin gallate EGCG
or curlicide, have antibacterial properties [28,29,37]. Conversely, antibiotics such as tetracy-
cline derivatives or rifampicin also affect eukaryotic amyloids’ formation [38,39] and may
be used to treat neurodegenerative diseases. This opens the possibility for existing drugs
to be repurposed in view of new therapy, targeting amyloid-like proteins from eukaryotes
to prokaryotes and vice versa.
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Here, we show that a different amyloid inhibitor than EGCG is also able to block
bacterial development by targeting the Hfq riboregulator, and more precisely the E. coli Hfq
C-terminal region. In this work, we characterize the effect of apomorphine, a dopamine
agonist, on Hfq-CTR amyloid self-assembly in vitro and on bacterial survival and show
that apomorphine, which is commonly used to treat Parkinson’s, emerges as a promising
new antibacterial agent against Gram-negative bacteria. We observed that apomorphine
significantly affected bacterial survival at a concentration of 1 mM. Taking into considera-
tion that apomorphine delivered in patients treated for Parkinson’s disease is accompanied
by a Cmax of approximately 20 ng/mL (i.e., in the few hundreds of micromolars range),
that it is well tolerated [40,41], and that new formulations have allowed a 10-fold increase
in apomorphine bioavailability (due, for instance, to solid lipid nanoparticles) [31], it is
noteworthy that the concentration of apomorphine allowing for antibacterial effects and
that attained with good tolerance in patients are rather close. Therefore, the accurate
determination of the apomorphine concentration needed in vivo in order to affect bacterial
survival remains to be determined and compared to the tolerated doses of apomorphine,
although we think that apomorphine could achieve these requirements so as to repurpose
apomorphine as antibiotics. It should also be noted that another strategy would be that
apomorphine could be considered as a lead compound scaffold for a new class of antibi-
otics that could serve for optimization in order to improve its pharmacokinetic and/or
pharmacodynamic properties (see below).

Note that Aβ peptide (involved in Alzheimer’s disease) has also been recently rec-
ognized as an antimicrobial peptide [42]: Aβ oligomers have antimicrobial properties by
forming fibrils that entrap bacteria and disrupt their cell membranes [43]. We thus need to
be careful with the use of anti-amyloid compounds and be attentive that they do not affect
the integrity of this natural protection of eucaryotic cells against bacteria.

The efficiency of apomorphine may thus need optimization in order to be used as
an antibiotic in the future. In particular, it may need synthetic chemistry to more specifi-
cally target the Hfq-CTR amyloid region and not the host’s amyloid-like structures with
beneficial properties. We know that the minimal amyloid region of Hfq-CTR consists
in 11 amino acid residues within the 38 amino acid sequence of the CTR (underlined:
SRPVSHHSNNAGGGTSSNYHHGSSAQNTSAQQDSEETE) [23]. Mechanistically, the au-
toxidation of apomorphine [44] is known to produce an unstable o-quinone form, which
forms an adduct with nucleophilic groups of amyloids in order to inhibit their forma-
tion [45]. Thus, in the case of Hfq it is probable that the histidines, aspartic acid, glutamic
acids and tyrosine residues close to the 11 amino acid sequence in Hfq-CTR contribute
to apomorphine binding. The modification of the compound in order to allow it to react
efficiently and specifically with Hfq-CTR will be necessary. Nevertheless, the precise
atomic 3D structure of this region of the protein is still unknown [7]. Many crystallization
tentatives, solid state NMR or molecular modelling approaches have been used over twenty
years [16,46,47], but as of now they have all failed. A rational design to find a more efficient
modified apomorphine to target Hfq-CTR is thus a challenge. As many properties of this
protein depend on its CTR (membrane remodeling, DNA compaction, sRNAs recycling . . .
[23,32,48]), efforts to obtain a structure for this region should be made to provide new clues
in order to target important functions of this bacterial master regulator and affect bacterial
survival. Considering the recent advance in cryo-TEM that enables a macromolecular
structure determination with and without antibiotics in vitro and now even in vivo [49],
one possibility would be to try to determine the structure of Hfq amyloid fibers using
high-resolution cryo-TEM with and without apomorphine [49]. Furthermore, it is possible
that the concentration needed in vivo to affect bacterial survival will be higher than that
used in vitro in our analyses. This also justifies a probable optimization of the compound
for it to be effective.
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4. Materials and Methods
4.1. Chemicals

All chemicals, including apomorphine (IUPAC name: (6aR)-6-methyl-5,6,6a,7-tetrahydro-
4H-dibenzo[de,g]quinoline-10,11-diol;hydrochloride), were purchased from Sigma-Aldrich.
Apomorphine was prepared in milliQ water at 10 mM.

4.2. Hfq CTR Peptides

Hfq-CTR peptide (SRPVSHHSNNAGGGTSSNYHHGSSAQNTSAQQDSEETE) was
chemically synthetized and prepared as described previously in Partouche et al. [28]. DNA-
induced fibrillation was described previously in [32,50,51]. As salts, pH and temperature
may influence the stability of amyloid self-assembly [52], we first check if our fibers are
stable in our experimental conditions. To this end, we used SRCD and followed the
decrease in the amyloid signal at 215 nm. We evaluated that the melting temperature of
the Hfq-CTR amyloid structure was about 80 ◦C in our experimental conditions. Note
that adding salts results in noise in deep-UV SRCD measurements and is thus avoided for
our analysis.

4.3. TEM Imaging of Protein Fibrils

Apomorphine was added to fibrils (final concentrations from 0.5 to 5 mM). Except
when specified, samples were incubated for 24 h and visualized by TEM. To perform
negative staining, 5 µL of the peptide sample was deposited on a glow-discharged electron
microscopy 200 mesh copper grid coated with a continuous film of carbon (purchased
from EMS). After 2 min of interaction with the grid, the excess sample was removed using
Whatman filter paper. Then, 5 µL of contrasting agent solution (Gadolinium salt, uranyl-
less) was applied onto the grid with peptide. After a 1-min incubation time, the excess of
contrasting agent was blotted out with Whatman filter paper, and then the grids were kept
in a grid box (a dry, dark and dust-free environment) until observation with the electron
microscope. The grids were mounted onto a room temperature holder and were introduced
into and observed with a JEOL 2200FS electron microscope (JEOL, Tokyo, Japan). The TEM
images (2048 × 2048 pixels) were acquired with a Gatan US1000 slow scan CCD camera at
various magnifications depending on the type of experiments. The displayed images are
representative of what was observed on the whole grids.

4.4. Synchrotron Radiation Circular Dichroism (SRCD)

SRCD analysis measurements were carried out on DISCO beamline at the SOLEIL
Synchrotron as described previously (proposal #20180165) [53]. 4 µL of samples were
loaded into circular demountable CaF2 cells with a 4.7-micron path length [54]. Data
analyses were carried out with CDtool [55]. The spectral cut-off was set to 175 nm
according to the high tension midpoint at 410 V of the photomultiplier. The secondary
structure content was determined using BestSel [33,34]. Disassembly of the Hfq-CTR
fibers structure by apomorphine at 5 mM was recorded for 15 h. The decrease in the
CD signal at 215 nm, which is characteristic of the amyloid structure, was reported as
a function of time. In our case, the apomorphine concentration was significantly higher
than fibers (referred to as [Hfq-CTRn]), and the absolute value of the CD signal at 215 nm
CD215 = CD0

215 × e−kt. CD0
215 is the CD signal at 215 nm at t = 0, and k is the apparent

dissociation constant of the reaction.

4.5. Construction of E. coli Strains

Strains were constructed with the λ-red recombination technique, as described in
Malabirade et al. [32].

4.6. Effect of Apomorphine on E. coli Survival

The effect of apomorphine on bacterial survival was evaluated using the plate count
method, as described previously in Partouche et al. [28]. Briefly, apomorphine ranging
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from 0 to 0.5 mM was incorporated into an LB agar medium, and a standardized number
of cells (three dilutions from 10−5 to 10−7 cells/mL) were plated in quadruplicate, followed
by overnight incubation at 37 ◦C [56]. The experiment was repeated with at least three
independent cultures to ensure the statistical significance of the analysis.

4.7. Statistical Analysis

As some data did not follow a normal distribution, a Kruskal–Wallis test was per-
formed and showed (p value < 2 × 10−7) that at least one sample stochastically dominated
another sample. Subsequently, multiple Wilcoxon rank-sum tests were performed and
were adjusted to control Type I error rates. Here, all p-values (for all pairwise comparisons)
were smaller than 2 × 10−5 and indicated that all three strains had different medians.
All analyses were performed with R (https://www.R-project.org/) (4 December 2020) [57].

5. Conclusions

The role of functional amyloids as bacterial virulence factors is diverse, even if it can
sometimes be indirect [58]. Here, we show that they can be promising targets to develop
new antibiotics. More precisely, apomorphine, used in the treatment of Parkinson’s, can
be used for this goal. If apomorphine has a low effect when taken orally (due to a fast
liver metabolism), it can be given subcutaneously at a concentration compatible with that
used in order to affect bacterial survival in our present analysis [31]. It could thus be
a promising drug to treat local infections such as skin or surgical site infections caused by
Gram-negative bacteria. Furthermore, progress in drug delivery could help in obtaining
a broader use of this compound or its derivative in the near future [31].
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