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Cancer is composed of multiple cell populations with different genomes. This phe-

nomenon called intratumor heterogeneity (ITH) is supposed to be a fundamental

cause of therapeutic failure. Therefore, its principle-level understanding is a clinically

important issue. To achieve this goal, an interdisciplinary approach combining gen-

ome analysis and mathematical modeling is essential. For example, we have recently

performed multiregion sequencing to unveil extensive ITH in colorectal cancer.

Moreover, by employing mathematical modeling of cancer evolution, we demon-

strated that it is possible that this ITH is generated by neutral evolution. In this

review, we introduce recent advances in a research field related to ITH and also dis-

cuss strategies for exploiting novel findings on ITH in a clinical setting.
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1 | INTRODUCTION

Cancer is composed of multiple cell populations with different gen-

omes. Each of the populations is called a clone (or subclone) and this

phenomenon is called intratumor heterogeneity (ITH). ITH is

observed in various types of cancers and is presumed to be a major

cause leading to therapeutic resistance. If a tumor harbors a major

clone sensitive to a specific anti-cancer treatment, the tumor shrinks

within a given period after the treatment. However, in most cases, a

minor clone resistant to the chemotherapy exists in the tumor and

predominantly regrows despite the intensive therapy. It is supposed

that ITH can be generated by clonal branching during cancer evolu-

tion.

In 1976, Nowell proposed that clones acquiring somatic muta-

tions were subject to natural selection in a stepwise manner, by

which cancer could originate from a single normal cell.1 According to

the hypothesis, cancer evolution can be regarded as Darwinian evo-

lution of a unicellular organism that divides through the process of

asexual reproduction. After this clonal evolution model was pro-

posed, molecular biologists discovered the involvement of proto-

oncogenes and tumor suppressor genes in the process of carcino-

genesis. In 1990, Fearon and Vogelstein integrated these discoveries

with the clonal evolution model to propose the multistep tumorigen-

esis model. Specifically, in colorectal tumorigenesis, while accumulat-

ing multiple causal mutations of significant genes, including APC,

KRAS, TP53 and SMAD4, a normal epithelial cell linearly transforms

through a benign lesion into a malignant tumor. Since then, the view

has been accepted that linear clonal evolution creates a uniform

population of malignant cells, although ITH was shown to exist by

single gene-focused experiments. However, genomic studies employ-

ing next-generation sequencers have recently demonstrated that

branching evolution is more predominant and generates more
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extensive ITH than we have presumed hitherto. In this review, we

focus only on genomic ITH in solid tumors, especially ITH of somatic

single nucleotide mutations, although there exist non-genomic ITH,

including ITH in transcriptome and methylome. First, we introduce

the recent genomic studies aiming to unveil ITH.

2 | UNVEILING INTRATUMOR
HETEROGENEITY BY GENOMIC ANALYSIS

The advent of next-generation sequencing technology enables us to

obtain a comprehensive profile of somatic mutations in cancer;

namely, cancer genome data. In various types of cancers, genomic

studies involving a large number of different patients have created

catalogs of driver genes, which play causal roles in tumorigenesis

and progression, as shown in The Cancer Genome Atlas (TCGA) and

the International Cancer Genome Consortium (ICGC). These studies

have also demonstrated that remarkable heterogeneity of cancer

genomes exists among patients, based on which the necessity of

precision medicine is advocated.2,3 In addition to this intertumor

heterogeneity, the presence of another kind of heterogeneity, ITH,

has been revealed by genomic analysis. To analyze ITH, an approach

called multiregion sequencing is commonly employed. Multiple sam-

ples obtained from physically separate regions within the tumor of a

single patient are analyzed by next-generation sequencing (Figure 1).

The samples from metastatic and recurrent lesions of the same

patient are also sequenced along with a primary lesion. By multire-

gion sequencing, 2 categories of somatic single nucleotide mutations,

“founder” and “progressor” mutations, are identified. These are pre-

sent in all or some of the regions, respectively (they are also referred

to by different terms in different studies: e.g. public and private

mutations, respectively). Founder mutations are assumed to accumu-

late in the early phase of cancer evolution. The common ancestor

clone that has acquired all the founder mutations then branches into

subclones, which accumulate progressor mutations and contribute to

the formation of ITH. Through these multiregion mutational profiles,

we can infer an evolutionary history of the cancer by constructing a

phylogenetic tree. For example, whole exome multiregion sequencing

using multiple samples from primary and metastatic lesions in each

of 10 renal cancer patients unveiled extensive ITH and divergent clo-

nal evolution in renal cancer.4,5 Their study also revealed founder

non-silent mutations in some known driver genes such as VHL as

well as progressor non-silent mutations in other known driver genes

such as SETD and BAP1. It is intriguing that, in some cases, indepen-

dent mutations on different positions of the same driver gene were

acquired by parallel evolution, strongly suggesting that a part of the

ITH was generated by Darwinian evolution. We can also obtain

information on ITH by performing deep sequencing in a sample from

1 region of a tumor (Figure 2). An advantage of next generation

sequencing technology is the ability to measure the allele frequency

of a mutation by sequencing the genomic position of the mutation

many times. Sequence reads of a higher coverage obtained by deep

sequencing (typically from hundreds to thousands) enable us to

calculate precise allele frequencies or to identify mutations of low

allele frequencies. Based on mutant allele frequencies in a tumor, we

can also evaluate the subclonal structure. If the tumor is clonal and

diploid, the allele frequencies of all the mutations are 0.5. In realistic

situations, because the tumor contains a small fraction of normal

stromal cells, the mutation allele frequencies decrease to less than

0.5 and mutations whose genomic positions are subject to copy

number alteration also show further deviated allele frequencies.

Moreover, subclonal mutations are observed as mutations with low

frequencies, which is not explained by the mixture of normal cells or

copy number alteration. For example, in a study demonstrating

whole genome deep sequencing of 21 primary breast tumors, the

subclonal structures were explored by combining the information on

mutant allele frequencies with allelic copy numbers. Furthermore,

the order of mutations and copy number alterations was regarded as

each phase in the evolutionary history of breast cancer.6 From the

viewpoint of bioinformatics, exploring the clonal structure and infer-

ring an evolutionary history from deep sequencing data is also a

challenging task, for which multiple methods have been developed

so far.7-10 Furthermore, in multiregion sequencing, local heterogene-

ity can be evaluated by obtaining a sufficient number of reads for

each of the multiregion samples. Multiregion sequencing has been

reported in various types of tumors, so far including brain tumors,11-

17 breast cancers,18-22 colorectal cancers,23-27 esophageal cancers,28-

30 head and neck cancers,31 hepatocellular carcinomas,32-34 lung can-

cers,35-38 melanomas,39 ovarian cancers,40-42 pancreatic cancers,43,44

prostate cancers45-50 and urothelial carcinomas,51 as summarized

comprehensively in a previous review.52 We also performed whole

exome multiregion sequencing in 9 cases of colorectal cancers to

identify founder and progressor mutations in each case.53 The result

obtained from 1 of the 9 cases is shown in Figure 3. Progressor

mutations showed a mutational pattern which was geographically

correlated with sampling locations. Moreover, we found that, in each

region, founder mutations existed as clonal mutations while progres-

sor mutations existed as subclonal mutations. This finding suggests

that, even in each region, there existed ITH which was not captured

by the resolution of multiregion sequencing. In addition, most of the

mutations of known driver genes, such as APC and KRAS, were

found to be founder mutations. Progressor mutations contained few

driver mutations and parallel evolution was not confirmed, which is

in contrast to the findings obtained in renal cancer. Moreover, fre-

quent parallel evolutions were demonstrated in prostate cancer and

low-grade glioma but not in other kinds of cancer, suggesting that

the origin of ITH cannot solely be explained by Darwinian evolution.

3 | EXPLORING EVOLUTIONARY
PRINCIPLES UNDERLYING INTRATUMOR
HETEROGENEITY BY MATHEMATICAL
MODELING

As described above, genome analysis has unveiled extensive ITH in

various types of tumors. However, genome analysis is not sufficient
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for understanding how ITH is generated. To answer this question,

mathematical modeling is a powerful tool when combined with

genomic analysis. Next, we introduce some of the mathematical

modeling studies that have sought to clarify the evolutionary princi-

ples underlying ITH.

Mathematical modeling can give us insights into system-level

principles underlying a phenomenon and is widely employed in the

natural sciences and engineering disciplines as well as in the social

sciences. In a mathematical modeling study, we start from expressing

a target dynamic system as a mathematical model, using mathemati-

cal expressions such as differential equations. The mathematical

model contains variables representing the system status and parame-

ters specifying the system dynamics. After constructing the

mathematical model, we usually try to express the variables as a

function of the parameters and initial values of the variables. When

a mathematical model is a simple differential equation, the model is

analytically solvable. That is, it is possible to obtain the function by

manipulating the mathematical expression. However, because most

mathematical models are not analytically solvable, we use a com-

puter simulation to numerically solve the models and analyze system

dynamics. Therefore, computer simulation is currently an indispens-

able tool in mathematical modeling studies.

One of the mathematical models that is often used for modeling

cancer evolution is an agent-based model. An agent-based model

assumes there are system components called agents and defines

rules that specify behaviors of the agents as well as interactions
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Progressor
mutation

Normal cell

(A) (B) (C)

F IGURE 1 Multiregion sequencing. A, DNA samples from multiple regions of a single tumor were analyzed by next-generation sequencing.
B, Through multiregion mutation profiling, founder and progressor mutations were found as the common mutations in all the regions tested
and only restricted regions, respectively. C, In a phylogenetic tree constructed from the multiregion mutation profile, the trunk and branches
correspond to the founder and progressor mutations, respectively

Normal cell

Clone 2 Genome

Clonal mutation Subclonal mutation

Sequence read

Clone 1

(B) (C)(A)

F IGURE 2 Deep sequencing. A, A sample from a single region usually contains multiple types of cell populations with different genomes. B,
Assume that the sample harbors normal cells, clone 1 with a clonal mutation, and clone 2 with the same clonal mutation and a subclonal
mutation and all cell types are diploids without copy number alterations. C, By employing next-generation sequencing, a sufficient number of
sequence reads encompassing the positions of the target mutations are obtained to precisely estimate mutant allele frequencies which reflect
the mixing proportion of each type in the whole cell populations
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between the agents, and between the agents and environments. By

employing an agent-based model, we can construct a flexible model

and easily analyze the system dynamics by simulation, if parameter

and initial variable values are given. In mathematical modeling of

cancer evolution, it is natural to assume each cell to be an agent and

thereby ITH is easily expressed as the difference of internal states of

agents. For example, in a pioneering model, agents were assumed to

be cells which contained a few genes and proliferated while accumu-

lating mutations. As a result, the computer simulation succeeded in

reproducing ITH observed in single gene-focused experiments.54

Since then, multiple mathematical modeling studies employing agent-

based models have been developed to shed light on the principles

underlying the generation of ITH. For example, stem cell hierarchy

may contribute to ITH55 and the interaction between cells as well as

the turnover of cells in 3-D space may affect the formation of

ITH.56

Because the existing models could not completely reproduce the

extensive ITH revealed by our multiregion sequencing of colorectal

cancer, we developed a new agent-based model, the branching evo-

lutionary process (BEP) model, to simulate heterogeneous cancer

evolution.53 In a way similar to the other models, the BEP model

assumes cells to be agents (Figure 4A). Each cell harbors n genes

including d driver genes, while each cell divides and dies in a unit

time with a probability p and q, respectively. When the cell divides,

each gene is mutated with probability r, and if any driver genes are

mutated, the division probability p increases 10f-fold per mutation.

In the BEP model, f can be regarded as the strength of the driver

genes. Given that a cell without mutations divides according to this

rule, after the normal cell acquires the first driver mutation, which

accelerates cell division, the proportion of the clone originating from

the cell increases in a whole cell population. By repeating these

steps, each cell gradually accumulates driver mutations as well as

accompanying passenger mutations, which do not affect the cell divi-

sion rate, and, finally, a tumor is formed with numerous mutations

accumulated. Depending on parameter values in the course of the

cancer evolution, each of the cancer cells can accumulate different

combinations of mutations to generate different kinds of ITH. In Fig-

ures 4B,C, an example of snapshots of 2-D tumor growth is shown,

which was simulated using the BEP model with appropriate parame-

ter values. In this example, driver mutations gradually accumulated in

the cells and a clone with 4 mutations was selected during natural

selection, which finally became dominant in the tumor.

To explore the principles of ITH generation, we performed a

large number of BEP simulations using a supercomputer with various

parameter settings to find conditions leading to the extensive ITH

observed in our genomic analyses. As a result, when cancer evolu-

tion was simulated with an assumption of a high mutation rate (i.e.

with a large r value), followed by computer simulation of multiregion

sequencing, we could reproduce mutation profiles similar to those

obtained by our multiregion sequencing of colorectal cancers (Fig-

ure 5A,B). That is, irrespective of the presence of founder mutations,

progressor mutations contributed to the formation of a heteroge-

neous mutation profile, which was geographically correlated with

sampling locations. Moreover, we could also reconstruct local

heterogeneity, as illustrated by the finding that progressor mutations

existed as subclonal mutations in each region. Intriguingly, while dri-

ver mutations were acquired as founder mutations, progressor muta-

tions contained few driver mutations and most of them consisted of

neutral mutations that did not affect the cell division rate. This sug-

gests that, after the appearance of the common ancestor clone with

accumulated driver mutations, extensive ITH was generated by neu-

tral evolution. In neutral evolution, which was introduced by Motoo

Kimura,57 neutral mutations that are neither advantageous nor disad-

vantageous for survival and growth prevail in a population by

chance. This contrasts with classical Dawinian evolution, which is

caused by natural selection; therefore, when introduced, the neutral

evolution theory was strongly opposed by supporters of Darwinian

evolution theory. However, it is currently well-accepted that most of
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F IGURE 3 Multiregion sequencing of colorectal cancer. A, A schema of a multiregion sampling in a primary colorectal cancer and matched
metastatic liver lesion. In this case, we obtained 20 samples from the primary lesion and 1 sample from the metastatic lesion. B, A multiregion
mutation profile. The depth of red represents mutant allele frequency while the colors of sample labels were prepared so that the similarities
of colors represent those of mutation patterns. C, A phylogenetic tree constructed from the multiregion mutation profile. The time when
mutations in known driver genes of colorectal cancer is acquired is indicated along the tree
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the genetic diversity among biological species is generated by neutral

evolution. Moreover, single-cell mutation profiles of the simulated

tumor suggest that the tumor consists of a large number of minute

clones with numerous neutral mutations accumulated (Figure 5C).

This extensive ITH generated by neutral mutation could be a funda-

mental cause of therapeutic failure. Because whether a mutation is

neutral or not depends on the surrounding environment, an environ-

mental change induced by a specific therapy can convert a neutral

mutation which has no effect before the therapy to a driver muta-

tion leading to therapeutic refractoriness (resistant mutation). This

means that any type of therapy can potentially generate a resistant

clone with a resistant mutation, which leads to the tumor relapse

even if the therapy is temporarily effective (Figure 6).

Similar to our study, there is a recent report demonstrating the

presence of uniformly high ITH in colorectal tumors unveiled by gen-

ome analysis through multiregion and deep sequencing.26 Moreover,

the authors found that progressor mutations identified in some

regions were often scattered in geographically separated regions as

subclonal mutations of low allele frequencies. This phenomenon

could be reproduced by computer simulation, and the Big Bang

model was proposed. In the Big Bang model, a large number of sub-

clones are generated in the early phase of cancer evolution, and

then these subclones expand without natural selection, while par-

tially mixing, to eventually show uniformly high ITH in every region

of the tumor. Another study involving liver cancers demonstrated

that a statistic value indicative of clonal diversity in multiregion

sequencing data was consistent with a theoretical value derived ana-

lytically from the neutral evolution model.32 The claim that neutral

evolution accumulated numerous mutations in the tumor is

consistent with ours. An approach to test the neutrality using deep

sequencing data has also been proposed.58 Mathematical modeling

proved that allele frequencies of new mutations decreased inversely

with tumor size in neutral evolution, based on the fact that the new

mutations in the genome only represent labels of individual cell lin-

eages. In the case where Darwinian evolution works, both subclonal

driver and passenger mutations are inherited at a higher frequency

than expected under neutral evolution, thereby generating signatures

of clonal outgrowth. That is to say, there exist “too many” mutations

at a high frequency. Based on this logic, we can determine whether

the distribution of allele frequencies in deep sequencing data origi-

nates from neutral or Darwinian evolution. By applying this approach

to whole exam sequencing data of multiple cancer types, the degree

of contribution of natural selection was examined in each cancer

type. In another recent study, this approach was developed further

to analyze multiregion sequence data,59 where the distributions of

allele frequencies in 2 separate regions of a single tumor were exam-

ined together to discriminate between Darwinian and neutral evolu-

tion. The researchers analyzed multiregion sequencing data to find

evolutionary modes specific to different tumor types while simula-

tion of cancer evolution and multiregion sequencing were employed

to benchmark the proposed approach. In addition to the cancer

type-specific observation of parallel evolution, these results showed

that the neutral evolution model was evident in some types of

tumors while the contribution of Darwinian evolution was prominent

in other types. However, the reason why the evolutionary principles

underlying ITH differ in different types of cancers remains unclear.

We expect that mathematical modeling will be a promising and pow-

erful tool for gaining an insight into this issue.
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simulating 2-D tumor growth based on the BEP model with an appropriate parameter setting. The region with the same color represents a
clone with the same set of mutated genes. C, Single-cell mutation profiles at 3 time points in the simulated tumor growth. Top colored bands
represent clones, while the blue bands on the left represent driver genes
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4 | PERSPECTIVE

As described so far, substantial progress has been made in the

understanding of ITH. As a next step, we should apply this under-

standing to a clinical setting to tackle the problems related to ther-

apeutic resistance. Although a large number of molecular target

drugs are currently available or under development, drug-resistance

frequently appears during chemotherapy in most of the drugs,

which leads to therapeutic failure. Mathematical modeling assuming

simple ITH has shown that the regrowth of tumors can be delayed

or prevented by adjusting a therapeutic regimen. The normal clini-

cal practice is that an anti-cancer drug is continuously administered

to a cancer patient in the maximum tolerated dose, if possible.

Given that a tumor is composed of major and minor clones which

are sensitive and resistant to the chemotherapy, respectively, the

tumor temporarily shrinks because the major chemosensitive clone

is eradicated. However, as the major chemosensitive clone disap-

pears, the minor resistant clone can grow freely due to the release

from growth competition; that is, the competitive relationship

between the 2 clones is dissolved. On the other hand, if we can
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F IGURE 5 A computer-simulated tumor with extensive intratumor heterogeneity (ITH) generated by neutral evolution. A, A tumor depicted
by branching evolutionary process (BEP) simulation with an assumption of a high mutation rate. B, A simulated multiregion mutation profile of
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F IGURE 6 Acquisition of therapeutic resistance by neutral evolution. Among numerous subclones generated by neutral evolution, a
resistant clone emerges and expands at an accelerated pace, thereby leading to tumor relapse
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keep the 2 clones in a competitive state while controlling the total

tumor volume within an acceptable threshold, the survival of the

patient can be prolonged as compared with the routine continuous

administration. Thus, the usefulness of several alternative treatment

regimens has been proposed by mathematical modeling.60,61 For

example, in “adaptive therapy”, the initial dose of an anti-cancer

drug is high and then the dosage is decreased as the tumor shrinks

to eventually maintain the sensitive clone at a level sufficient to

suppress the growth of the resistant clone.62 Similarly, in “metro-

nomic therapy” an anti-cancer drug is continuously administered in

a low dose.63 Treatment regimens using a combination of drugs are

also proposed as exemplified by “double bind therapy.” In this ther-

apy, 2 different kinds of drugs are administered alternately to

expose each of the 2 clones to their respective effective drugs,

which can theoretically keep the tumor volume at a constant

level.64 When combined with novel findings obtained by recent

advances in genome analysis, these treatment strategies can be fur-

ther refined. In particular, liquid biopsy based on circulating tumor

DNA (ctDNA) appears to be an essential tool for monitoring the

efficacy of the treatment and for detecting recurrences in the early

phases.65 ctDNA is also referred to as a tumor-derived portion of

cell-free DNA (cfDNA), which is all non-encapsulated DNA circulat-

ing in the bloodstream. By applying digital PCR or deep sequencing

to cfDNA extracted from patients’ plasma, we can non-invasively

detect mutations in ctDNA. The allele frequencies of the mutations

in ctDNA are supposed to reflect the real-time clonal proportions

in the whole tumor, including primary and metastatic lesions, which

can provide an opportunity for tracking the temporal dynamics of

ITH during a therapeutic course. For example, the time-series data

acquired by digital PCR of ctDNA showed the emergence of a

resistant KRAS mutation during anti-EGFR therapy in colorectal

cancer patients.66 Moreover, mathematical analysis of the time-ser-

ies data suggested that the KRAS mutation already existed in the

tumor before the initiation of chemotherapy, which is consistent

with the view derived from our neutral evolution model (Figure 6).

In a recent study designed to combine multiregion sequencing of

the tumor and deep sequencing of ctDNA,37 first, surgical samples

of early-stage lung cancer were analyzed by multiregion sequencing

to identify target mutations which can trace existent clones in the

primary tumors. Then, deep sequencing of the target mutations

was performed using time-series ctDNA samples after the surgery.

The researchers succeeded in unveiling the clonal evolutionary

dynamics during the treatment period to the eventual tumor

relapse. These time-series analyses utilizing ctDNA-based liquid

biopsy are expected to give us deeper insight into the heteroge-

neous cancer evolution responsible for therapeutic failure and are

indispensable for the realization of anti-cancer therapies based on

mathematical modeling.
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