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ABSTRACT: Marine mussels adhere to virtually any surface via
3,4-dihydroxyphenyl-L-alanines (L-DOPA), an amino acid largely
contained in their foot proteins. The biofriendly, water-repellent,
and strong adhesion of L-DOPA are unparalleled by any synthetic
adhesive. Inspired by this, we computationally designed diverse
derivatives of DOPA and studied their potential as adhesives or
coating materials. We used first-principles calculations to
investigate the adsorption of the DOPA derivatives on graphite.
The presence of an electron-withdrawing group, such as nitrogen
dioxide, strengthens the adsorption by increasing the π−π
interaction between DOPA and graphite. To quantify the
distribution of electron charge and to gain insights into the charge distribution at interfaces, we performed Bader charge analysis
and examined charge density difference plots. We developed a quantitative structure−property relationship (QSPR) model using an
artificial neural network (ANN) to predict the adsorption energy. Using the three-dimensional and quantum mechanical electrostatic
potential of a molecule as a descriptor, the present quantum NN model shows promising performance as a predictive QSPR model.

1. INTRODUCTION
Marine mussels have genetically developed an extraordinary
aptitude for adhering to wet (underwater) surfaces via their
byssuses. So far, researchers have identified several proteins in
the byssal plaques of mussels: among these, mussel foot protein
(MFP)-3, -5, and -6 are known to play important roles in
adhesion.1,2 Interestingly, all of the MFPs undergo the
posttranslational modification of tyrosine to 3,4-dihydroxy-
phenyl-L-alanine (L-DOPA) which constitutes up to 30% of
MFP-5.

The current consensus is that L-DOPA is responsible for the
remarkable adhesiveness of MFP1−4: L-DOPAs play vital roles
both in the initial anchoring of an MFP on a surface5,6 and in
the subsequent cross-linking formed between MFPs.7,8 These
essential roles of L-DOPAs9−14 have triggered extensive efforts
to synthesize adhesives analogous to DOPA. In particular,
polydopamines (PDAs) have been widely used as adhesives or
coating materials on various (organic and inorganic)
substrates.6,15−18

However, diverse chemical derivatives of DOPA, other than
DA, are possible by attaching various functional groups. Such
substituent effects have not been studied in the context of
DOPA-inspired adhesives. Herein, by using f irst-principles
calculations, we simulate chemically diverse derivatives of
DOPA adsorbed on a graphite surface. Graphite is chosen
because it is a representative nonpolar surface utilized in wide
applications: for example, a graphite coated with PDA shows

an enhanced rate capability as an anode material in a lithium-
ion battery.19−23 Graphite is a versatile surface that can be used
to study a wide range of adhesive interactions including van
der Waals forces, electrostatic forces, and covalent bonds. This
makes it a good model surface for studying the adhesive
properties.

We construct a data set containing the molecular structures
and properties of 170 derivatives of DOPA (Figures 1 and S1).
The present data set also contains the geometries and energies
of these derivatives adsorbed on a graphite surface. We extract
molecular insights into how the adsorption energy is related to
the structure and physicochemical properties of an adsorbate
molecule. In addition, an artif icial neural network (ANN)
model is used to draw a quantitative structure−property
relationship (QSPR) model which predicts the adsorption
energy for a given molecule. By using the three-dimensional
(3D) and quantum mechanical (QM) molecular descriptors,
the present ANN model illustrates a promising performance in
predicting the adsorption energy of a DOPA derivative.
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2. COMPUTATIONAL METHODS
2.1. Adsorption of a DOPA Derivative on Graphite.

We designed 170 adsorbate molecules by attaching 35
chemically distinct substituents at various positions of
DOPA. We attach a substituent at one of the three different
locations in the aromatic ring of DOPA (R1, R2, and R3 in
Figure 1). We also designed adsorbates with double
substituents with R2 and −OH at the side alkyl chain of
DOPA (Figure 1). These substituents are −Cl, −F, −CN,
−NO2, −CHO, −COCH3, −CH3, −CF3, −CH(CH3)3, −OH,
−CH2OH, −CH2Cl, −SH, −CH2F, −CH2CN, −NH2, −Br,
−OCN, −OCH3, −CH2NH2, −SCH3, −CH2CH3, −OCH2F,
−COOCH3, −CH�CH2, −C2H2, −CH�CH−CH3, −CH�
C−CH3, −CH2OCH3, −COCl, −CONH2, −COOH,
−CH2C6H5, −CH2COC6H5, and −CH2OC6H5. The sub-
stituents differ in their electronic, steric, and functional
characteristics. For example, the data set includes strong
electron-withdrawing groups, such as −NO2 and −CN, and
the moderate-to-weak electron-withdrawing groups, such as
−CHO and −COOR. Also included in the data set are the
moderate-to-weak electron-donating groups such as −CH3 and
−CH2CH3 and strong electron-donating groups such as −NH2
and −OH.

By systematically tuning the chemical properties and
placement of a substituent, we investigated the influence of
these variations on the adsorption of a DOPA derivative. This
study not only provides insights into the interplay between
molecular structure and adsorption characteristics but also
provides basic guidelines for the rational design of an adhesive
molecule for wide applications. We optimize the molecular
geometries of adsorbates by using the density functional theory
(DFT) at the level of B3LYP/6−31G(d)24 implemented in the
Gaussian16 suite.25

Upon completion of geometry optimization, an adsorbate
molecule is deposited on a graphite surface. The geometry and
energy of the adsorption are simulated by using the DFT at the
level of the Perdew-Burke-Ernzerhof (PBE) functional with the
generalized gradient approximation (GGA) for the exchange
correlation. The projector-augmented-wave (PAW) potentials
are used to simulate the electronic−ionic core interactions for
atoms, such as hydrogen, carbon, nitrogen, oxygen, sulfur, and
bromine. The spin-polarized DFT simulations are carried out
by employing the Vienna ab initio simulation package
(VASP).26−28 As the dispersion plays a significant role in
evaluating the binding energy of the DOPA derivatives on the
graphite surface, we considered the dispersion correction using
Grimme’s DFT+D3 approach.29

A graphite surface is modeled as an AB-stacked30−35 bilayer
of graphene. The graphite surface is represented by a 6 × 6
supercell containing 144 carbon atoms under the periodic
boundary conditions (a = b = 14.76 Å and c = 45 Å). We fix
atoms in the bottom layer of graphite in simulation. For the
Brillouin-zone sampling, the Monkhorst-Pack scheme with 1 ×
1 × 1 k-points is employed, along with a plane-wave cutoff
energy of 450 eV. We calculate the adsorption energy, Eads,
defined as

= +E E E E( )ads surf mol mol@surf (1)

where Esurf, Emol, and Emol@surf are the energies of the surface,
adsorbate, and adsorbate@surface, respectively.

2.2. QM-3D Descriptor. A QSPR model to predict the
adsorption energy Eads of a given molecule requires a molecular
descriptor as input. In principle, such a descriptor should
accurately capture both the structure and physicochemical
properties of a molecule. We propose that the 3D distribution
of the electrostatic potential (ESP) of a molecule should be a
reasonable descriptor. Moreover, the 3D ESP can be accurately
calculated by using first-principles methods such as the DFT or
Hartree−Fock (HF) theory. Previously, this QM-3D descriptor
has proven to be successful for QSPR modeling of various
physicochemical properties of drug candidate molecules.36,37

In order to implement the present QM-3D ESP descriptor,
the adsorbate molecules in the present data set should be
structurally aligned first. Such a structural alignment is
nontrivial, however, especially in the case where molecules
have a wide range of molecular weights (MWs).38 It is necessary
to select a representative molecule that serves as a template to
align with the rest of molecules. Considering the wide range of
MWs of the present adsorbates, we categorize the adsorbates
into two subgroups with different ranges of MW: each subset
includes half of the molecules (85) with an MW range of
110.1−238.2 or 238.2−331.3 amu (Table 1). As usual in the
prior machine-learning (ML) studies,39,40 80 and 20% of
molecules in each subset are used for the train and test set of
the present QSPR model, respectively.

We align molecular structures by putting them in a common
rectangular box represented by a cubic grid with a spacing of
0.106 Å. The box is big enough to contain the van der Waals
volumes of all of the adsorbate molecules. We add an extra
margin of 2.7 Å along each axis of the common box in order to
secure sufficient space for the subsequent translational and
rotational movements required in the structural alignment (see
later).

The initial structure in aligning a molecule is obtained by
geometry optimization at the HF/6−31G (d,p) level of theory.
The structural alignment of a molecule with respect to the
template proceeds by translating and rotating the molecule so
that the overlap with the template is maximized. In each
subset, the structure of the heaviest molecule is taken to be the

Figure 1. Computational design of a molecule derived from DOPA.
Chemically distinct substituents are attached to one of the three (R1,
R2, and R3) positions of the aromatic ring of DOPA. Also designed are
the molecules doubly substituted with R2 and with −OH at the alkyl
side chain (bottom right).

Table 1. Two Molecular Subsets Used To Derive and
Validate the Predictive QSPR Model for the Adsorption
Energy of a DOPA Derivative

molecular
subset

MW range
(a.m.u.)

adsorption
energy (kcal/

mol)

no. of
molecules in
the train set

no. of
molecules in
the test set

subset 1 110.1−238.2 12.9−26.3 68 17
subset 2 238.2−331.3 15.4−27.6 68 17

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c07208
ACS Omega 2024, 9, 994−1000

995

https://pubs.acs.org/doi/10.1021/acsomega.3c07208?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07208?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07208?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07208?fig=fig1&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c07208?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


template. For a given molecule, 2000 rotamers are generated by
incremental sampling in the SO (3) rotation group employing
the Hopf fibration method.41 The charge density distribution
ρ(x, y, z) is calculated for the initial structure of a molecule
only, and the ρs of the subsequent rotamers are interpolated
from that of the initial structure.

For the jth molecule, the charge density of a rotamer, ρj(x, y,
and z), is calculated with the HF/6−31G (d,p) level of theory.
Each rotamer is translated to give the optimal alignment with
respect to stationary template molecule i. Incremental
translations are iterated to reach the maximum of the cross-
correlation, Eij, defined as

=E x y z x y z V( , , ) ( , , )dij
V i j (2)

where ϕi(x, y, z) is the ESP due to the template molecule. Eij is
calculated by using the fast Fourier transform algorithm.42

Among 2000 rotamers, the rotamer giving the highest value of
Eij is taken to be optimally aligned and is further used to
calculate ESP as the descriptor. This protocol of alignment
proves to be useful in deriving an accurate 3D-QSPR model for
various molecular properties.36,37 All of the molecules are kept
neutral in calculating Eij, in order to retain their original
electronic and structural features.

Figure 2 illustrates the final results for the structural
alignments of the molecules in each subset. In both subsets,

the core structures of molecules are overlaid in a similar region,
while the side chain moieties point in different directions. The
present 3D structural alignment has the advantage of coping
with the structurally diverse molecules because the Eij scores
are calculated via QM calculations. By contrast, the conven-
tional 3D-QSPR packages employ a simple atom-to-atom
matching protocol. We opt for the present QM method
because an accurate structural alignment is the most important
prerequisite for the predictive capability of a 3D-QSPR
model.43

Upon completion of the structural alignment of a molecule,
the 3D distribution of ESP is derived from its determinantal
wave function consisting of n molecular orbitals calculated at
the HF/6−31G(d,p) level of theory. Using the molecular wave
function, charge density ρ is calculated at the 3D grid points in
the common box. The ESP ϕ values at the grid points are
calculated from ρ by solving Poisson’s equation:

=x y z x y z( , , ) ( , , )
2

(3)

The present descriptor is preliminarily constructed as a K-
dimensional vector consisting of the ϕ values at the grid points.
Because of the huge number of grid points (K = 1,191,016), we
reduce the dimensionality for the QSPR modeling. This is
carried out by using principal component analysis (PCA) widely
used to reduce high-dimensional numerical data by extracting
the principal components only.44,45 This projected ESP vector,
made of 68 components, is finally used as an input to the 3D-
QSPR model (see later). In short, the present descriptor
represents the 3D ESP arising from a molecular charge density
that is calculated by the first-principles calculations.

2.3. ANN Model for Prediction of the Adsorption
Energy. We developed a QSPR model that can predict the
adsorption energy of a given molecule by using the 3D ESP as
an input descriptor. We employ an ANN algorithm operated in
a feed-forward fashion with the backpropagation of an error
network.46 The ANN comprises an input, a hidden, and an
output layer, as shown in Figure 3. The ESP vector of a

molecule forms 68 neurons in the input layer. All these input
neurons (Ik̂’s) are fed into the sigmoidal function after
multiplying the weighting factors (wki’s) to produce 40
intermediate neurons (Ĥi’s) in the hidden layer, which are in
turn processed in the same way to generate a single output
neuron (Ô):

= · = ·
= =

i
k
jjjjjj

y
{
zzzzzz

i
k
jjjjjj

y
{
zzzzzzH w I O w Hsgm and sgmi

k

N

ki k
i

M

ij i
1 1 (4)

where sgm(x) stands for the sigmoidal function (1 + e−x)−1.
The output neuron is therefore given by

= · ·
= =

i

k
jjjjjjj

i
k
jjjjjj

y
{
zzzzzz

y

{
zzzzzzzO w w Isgm sgm

i

M

ij
k

N

ki k
1 1 (5)

The adsorption energies from the DFT calculations serve as
the baseline for optimizing the weighting factors to obtain the
present 3D-QSPR model. This parameterization is completed
with a gradient-based minimization of the error hypersurface F,
which is given by the sum of the square differences between
the DFT-calculated (Dj) and ANN-predicted (Oj) adsorption
energ ie s o f N molecu le s in the t ra in ing se t :

= =F D O( )j
N

j j1
2. The vector elements of Ô, Oj’s,

correspond to the predicted adsorption energies of N

Figure 2. Structurally aligned molecules in subsets 1 (a) and 2 (b).
Carbon, hydrogen, nitrogen, and oxygen atoms are colored green,
gray, blue, and red, respectively.

Figure 3. Schematics for the present ANN model for prediction of the
adsorption energy of a DOPA derivative. Columns I, H, and O
indicate the input (of 68 neurons), hidden (of 40 neurons), and
output (of 1 neuron) layers, respectively. In each layer, neurons are
fully connected with those in the neighboring layer through the
weighting matrices wki or wij.
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molecules in the training set. An F value < 10−4 is used as the
criterion for the convergence of weighting parameters.

3. RESULTS AND DISCUSSION
The adsorption energies Eadss of the derivatives of DOPA
range from 12.9 to 27.6 kcal/mol. Among these molecules,
Mol17, Mol41, Mol95, and Mol104 (Supporting Information)
have the highest Eadss of 26.13, 24.33, 23.26, and 27.62 kcal/
mol, respectively. The Mol104 is doubly substituted with
−NO2 and −OH groups. Regardless of the position at the
aromatic ring (R1, R2, or R3), the NO2 substitution gives rise to
strong adsorption. The strong adsorption is attributed to the
electron-withdrawing capability of −NO2: the −NO2 group
pulls the electrons away from the aromatic ring of DOPA,
making it more positive. This positive charge makes the DOPA
derivative more attracted to the delocalized electron cloud on
the graphite surface, enhancing the π−π interaction between
the DOPA derivative (a π-acceptor) and graphite (a π-
donor).47 Additionally, the electron-withdrawing capability of
−NO2 activates lateral benzene hydrogens. These activated
hydrogens then engage in C�H···π interactions with the
graphite surface, which enhances the adsorption strength.
Another significant contribution to the strong adhesion is likely
due to the attraction between the partially positive H atoms of
the OH groups and the negative electric charges accumulated
at the centers of the hexagonal rings of graphite. We have
previously observed the existence of the electrostatic OH−π
interaction which attracts the OH groups toward the graphite
surface.30 Consequently, both −CH and −OH groups of the
adsorbate are likely to interact with the π electrons on the
underlying graphite surface.

The strong adsorption with the −NO2 substitution is further
examined by calculating the 3D distribution of the charge
density difference Δρ defined as

= mol@surf surf mol (6)

where ρmol@surf, ρsurf, and ρmol are the charge densities of the
adsorbate@surface, surface, and adsorbate, respectively. Figure
4 illustrates the 3D distribution of Δρ for DOPA and Mol104.
A negative charge accumulation (electron gain) and depletion
(electron loss) are drawn as yellow and cyan isosurfaces,
respectively. Interestingly, DOPA and Mol104 show opposite
Δρs: a negative charge accumulates on the graphite surface
with DOPA but on the molecule with Mol104.

In order to quantify the charge transfer at the interface, we
conduct the Bader charge analysis48 using the method
developed by Henkelman et al.49 The DOPA molecule has a
net change in charge of −0.0042|e| with adsorption,
representing an electron transfer from the molecule to the
surface. By contrast, Mol104 shows a net change in charge of
0.07421|e| upon adsorption, signifying an electron gain from
the surface. Note that the amount of charge transfer for
Mol104 is 17 times greater than that for DOPA. Therefore, a
relatively large amount of electron transfer from the surface
presumably gives rise to the strong adhesion found for Mol104.
The electron density distribution in frontier molecular orbitals
(FMOs) and molecular electrostatic potential surfaces
(MEPS) of DOPA and Mol104 are shown in Figure S2.

In addition to the molecular insights into the adhesion, it is
desired to predict the adsorption energy for a given molecule.
This is achieved by using the QSPR model described above.
The predictive capabilities of the present 3D-QSPR models are
validated by checking the correlation between the DFT data

Figure 4. Charge density difference plots for DOPA (left) and Mol104 (right) adsorbed on the graphite surface. Drawn in yellow and cyan are the
regions of negative charge (electron) accumulation and depletion, respectively. Side and top views are given in the top and bottom panels,
respectively. A blue arrow signifies the direction of electron transfer, as determined by the Bader charge analysis conducted on each molecule before
and after adsorption.
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(Eadss) and the QSPR-predicted ones. The squared Pearson
correlation coef f icients of the training (Rtrain

2 ) and test (Rtest
2 ) sets

serve as yardsticks to measure the convergence and accuracy of
the prediction models. These two statistical metric parameters
are expressed as

=

=

=

=

=

=

R
y y

y y
R

y y

y y

1
( )

( )
and

1
( )

( )

i i i

i i

i i i

i i

train
2 1

train 2

1
train

train
2 test

2

1
test 2

1
test

test
2.

(7)

where y̅ is the mean of the adsorption energies from DFT,
while yi and ŷi are the adsorption energies of molecule i from
DFT and QSPR models, respectively. The summations in
R2

train and R2
test run over the molecules in the data set.

Figure 5 displays the linear correlation diagrams for the
adsorption energies from DFT versus those from the QSPR

model. The R2
train values close to 1 for both subsets confirm

that the present QSPR model is optimized successfully. This
implies that the parameterization of the ANN model converges
well without regard to the MW range in the training set. By
contrast, the Rtest

2 parameters significantly decrease to 0.742
and 0.752 for subsets 1 and 2, respectively. These relatively low
Rtest
2 values in both subsets may be attributed to the wide range

of adsorption energies: the difference between the maximum
and minimum adsorption energies amounts to 65 and 59% of
the averages in subsets 1 and 2, respectively. Such a large
variation in the adsorption energy in turn gives an overtraining
in the optimization of 3 of the D-QSPR model as exemplified
by a significant difference (0.25 on average) between Rtrain

2 and
Rtest
2 values. However, the predictive capability is likely to be

enhanced by augmenting the present data set with more
molecules.

To further assess the performance of the present QSPR
model, we also measure the external predictivity parameter
(rpred2 ) widely used to quantify the predictive capability of a
QSPR model.50,51 This parameter is expressed as

= =

=
r

y y

y y
1

( )

( )
i i i

i i
pred
2 1

test 2

1
test

train
2.

(8)

where yi and ŷi denote the DFT and QSPR data in the test set,
respectively, while y̅train is the mean value of the data for the
training set. The rpred2 parameter would be meritorious over the
Rtest
2 value because the data in the training set are also reflected

in assessing a prediction model as well as those in the test set.
As shown in Figure 5, the rpred2 parameters for subsets 1 and 2
amount to 0.682 and 0.760, respectively. Both the rpred2 values
exceed the threshold (0.6) for the qualification as a statistical
prediction model.50 This supports the reliability of the QSPR
model. It is also noteworthy that the difference between the
rpred2 and Rtest

2 values is negligible in subset 2, implying that the
training and test sets are prepared reasonably well for subset 2
which comprises relatively heavy molecules. On the other
hand, the predictive capability seems to be influenced greatly
by the selection of training and test sets in subset 1 as indicated
in a relatively large difference (0.06) between rpred2 and Rtest

2

(Figure 5). The relatively low predictive capability in subset 1
can be understood by noting its wider MW range than that in
subset 2, which is likely to induce increased errors in the 3D
structural alignment. In this regard, the present 3D-QSPR
model is expected to be more accurate by further subdividing
molecules in subset 1 according to MW.

Real adhesives commonly take polymeric forms. Presumably,
the polymers of the present adhesive molecules are more
effective in adhesion because the polymer chains can establish
large contact areas with a surface and can be cross-linked to
give a more durable adhesion. The polymers based on the
present adhesive molecules might be structurally and chemi-
cally different from their constituting monomers. Nevertheless,
as seen from the prior success of PDA, the adhesive capability
of a monomer should be largely intact in the resulting polymer.

The present study focuses on the adhesion on a nonpolar
surface where the adsorbate interacts with the surface through
a van der Waals or π−π interaction. In the case of a polar
surface, however, the molecule−surface interaction will be
electrostatic or hydrogen bonding in nature. The two hydroxyl
groups of DOPA will play an essential role in the electrostatic
or hydrogen bonding interaction with a surface.52,53 It is left as
future work to extend the present QSPR model to include
hydrophilic surfaces such as metal oxides and silica.

There is room for improvement in the present QSPR model.
The statistical accuracy might be improved by adding the
molecular structures and Eads values to the present data set. An
improved method for reducing the dimensionality of 3D
descriptors other than PCA would be helpful for enhancing the
predictive capability because PCA is known to be sensitive to
gross errors in the data set.54 A further study is needed to
address the possibility of these new techniques.

The present DFT calculations and QSPR models provide
insights into the molecular origin of the adsorption. Further
experimental studies on the interactions between a DOPA
derivative and graphite might be very helpful: for example,
scanning tunneling microscopy could be used to image the
molecular mechanisms of adsorption for DOPA molecules, to
measure the binding energy of DOPA molecules to graphite,
and to study the dynamics of DOPA self-assembly on
graphite.55

The present study focuses on the adsorption of a single
molecule. In a real adhesive material, however, many molecules
might adhere to a surface simultaneously, for example, through
a self-assembly process or in a polymeric form. In that case,
intermolecular interactions between adsorbates (monomers)
might play an important role in the adhesion, presumably
giving rise to an adhesion stronger than that of a single
adsorbate.56 A study of the coadsorption of multiple molecules
and the role of intermolecular interaction is left as future work.

Figure 5. Linear correlation diagram between the DFT-calculated and
QSPR-predicted adsorption energies for subsets 1 (a) and 2 (b).
Indicated as black and red circles are the molecules in the training and
test sets, respectively.
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4. CONCLUSIONS
Motivated by the remarkably water-resistant and universal
adhesivity of marine mussels, extensive efforts have been made
to synthesize adhesive molecules containing analogues of
DOPA, an essential amino acid largely contained in mussel
foot proteins. Prior research and applications along this line
have focused on polydopamines. In this study, we expand the
chemical space of mussel-inspired adhesive by designing
diverse derivatives of DOPA. By constructing a data set of
170 derivatives of DOPA with chemically distinct substituents,
we find that a strong electron-withdrawing group (−NO2)
intensifies the adsorption onto a graphite surface. The strong
adsorption with −NO2 substitution is related to the electron
transfer at the interface by calculating the 3D distribution of
charge density difference plots and Bader charge analysis. We
also derived a QSPR model that can predict the adsorption
energy of a given molecule. The present QSPR model utilizes
an ANN model and the 3D ESP of a molecule as a descriptor.
The 3D ESP is accurately calculated using first-principles
methods. The present quantum mechanical 3D descriptor
contains more accurate information on the molecular
structures and properties, compared to prior classical
descriptors. The present QSPR model accurately predicts the
adsorption energy from DFT simulations and has the potential
to be further improved by adding more molecules to the data
set. Our findings might serve as fundamental guidelines for
developing a novel adhesive derived from DOPA.
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