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Abstract: Recently, humidity sensors have been investigated extensively due to their broad
applications in chip fabrication, health care, agriculture, amongst others. We propose a capacitive
humidity sensor with a shielding electrode under the interdigitated electrode (SIDE) based on
polyimide (PI). Thanks to the shielding electrode, this humidity sensor combines the high sensitivity
of parallel plate capacitive sensors and the fast response of interdigitated electrode capacitive sensors.
We use COMSOL Multiphysics to design and optimize the SIDE structure. The experimental
data show very good agreement with the simulation. The sensitivity of the SIDE sensor is
0.0063% ± 0.0002% RH. Its response/recovery time is 20 s/22 s. The maximum capacitance drift
under different relative humidity is 1.28% RH.
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1. Introduction

In addition to daily applications, such as air conditioners and humidifiers, humidity sensors
are widely used in industrial process control, medical science, food production, agriculture,
and meteorological monitoring [1–9]. In industry, the many manufacturing processes, such as
semiconductor manufacturing and chemical gas purification, rely on precisely controlled humidity
levels. In medical science, environmental humidity needs to be controlled during operations and
pharmaceutical processing. In agriculture, humidity sensors are used for greenhouse air conditioning,
plantation protection (dew prevention), soil moisture monitoring, and grain storage. Furthermore,
in meteorological monitoring, weather bureaus and marine monitoring applications rely on accurate
humidity sensing. For modern agriculture [10] and weather stations [11,12], accurate and fast
measurement of humidity is becoming more and more important. Compared to existing infrared
humidity sensors, electronic humidity sensors are cheaper, lighter, and smaller, which makes them
more suitable for sensor networks to feed weather models. Nonetheless, high-precision fast-response
sensors are important for many fields. For instance, fast and accurate humidity measurement are critical
for eddy covariance systems [13]. Hence, electronic sensors have to become faster and more accurate.

Electronic humidity sensors can be divided into resistive and capacitive [14]. Resistive humidity
sensors tend to have higher gain and are usually cheaper to manufacture than capacitive humidity
sensors. However, these sensors do not respond well when operating at low relative humidity (about
10% RH) because they exhibit very poor conductivity in low relative humidity environments, making
it difficult to measure the output response [15]. In contrast, capacitive humidity sensors have better
linearity, accuracy, and higher thermal stability than resistive humidity sensors [16–19]. A capacitive
humidity sensor responds to changes of humidity by changes of the relative dielectric constant of the
sensing layer, e.g., polymer film, upon water vapor absorption. Therefore, it is possible to directly
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detect changes in capacitance to monitor changes in humidity. Unlike resistive humidity sensor,
capacitive humidity sensors respond linearly with humidity, which simplifies the sensor readout.

Various materials can be used as humidity sensing materials, such as electrolyte [20],
ceramics [21,22], porous inorganic material [23–26], and polymers [27–30]. In particular, polymers
have been used as sensing materials for capacitive humidity sensors owing to their good dielectric
properties arising from their microporous structure and measurable physical property changes due to
water absorption. PI is among the most commonly used moisture sensing material [31] for its good
mechanical strength, electrochemical stability, and flexibility [32]. It remains stable after long time
exposure to the measurement environment. Furthermore, PI is a microporous material with imide
groups that strongly bond water molecules, which makes the material dielectric constant very sensitive
to humidity. Therefore, we used PI in the proposed capacitive sensor.

Capacitive humidity sensors have two basic structures: parallel plate (PP) capacitance (Figure 1a)
and interdigital electrode (IDE) capacitance (Figure 1b).

Figure 1. Structure diagram of parallel plate (PP) and interdigital electrode (IDE) sensors. (a) PP
sensors composed of a solid substrate, two layers of parallel plate electrode, and a sensing material
between them. (b) IDE sensors composed of an inert substrate, IDEs, and sensing material layer atop
of the IDEs. A partial enlarged detail of IDE is shown on the right.

In PP sensors, the upper plate is perforated by an array of holes or parallel stripes to allow water
molecules from the air to reach the sensing material underneath. Since the sensing area of the PP
capacitor is sandwiched between two parallel plates, the change in the relative dielectric constant
of the sensing material in the PP sensors affects the overall capacitance change. Unlike PP sensors,
IDE sensors usually only affect the change in the upper capacitance of the IDEs, which makes them
less sensitive than PP sensors. However, the exposed sensing area of the PP sensors is smaller than for
IDE sensors, which causes a slower response than for IDEs.
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The IDEs are fabricated on an inert solid or flexible substrate as parallel comb electrodes that
overlap each other [6,33]. IDE sensors are easier to fabricate than PP ones. The sensitive area of the
IDEs is typically a few square millimeters, and the electrode gap is a few microns. The sensitivity
of this type of sensor increases with decreasing pitch [34]. The electric field strength above the IDEs
decreases exponentially away from the electrode surface, and becomes one-thirtieth, or even lower,
of the surface value [35] after a few microns. Therefore, in the case where the gap between the IDEs
is several microns, a sensing layer only a few microns thick is enough. Thanks to this layer being
completely exposed to the measurement environment, the IDE sensors are faster. However, in the
IDEs, only half of the electric field lines pass through the sensing layer, and the other half of the electric
field lines pass through the underlying substrate. Therefore, the IDE sensors will have only half or less
sensitivity (depending on the relative dielectric constant of the substrate) compared to an equivalent
PP sensor [36].

It is clear that there are advantages and disadvantages of these two types of sensors. There has
been a significant effort to improve the sensor structures. For example, Zhao et al. used RIE (Reactive
Ion Etching) and ICP (Inductively Couple Plasma) to etch sensing materials between parallel plates of
the sensors to obtain a larger contact area with the tested environment to reduce response time from
35 s to 25 s [37], but this was still slower compared to typical equivalent IDEs.

Inspired by combining the advantages of PP and IDE structures, this paper proposes a novel
IDE humidity sensor with a shielding electrode under the IDEs, namely, SIDE. On the SIDE,
the capacitance of the lower half of the IDEs is shielded by an additional electrode underneath
the IDEs, which effectively raises the relative capacitance change as it becomes exposed to moisture.
Thus, a SIDE humidity sensor combines the high sensitivity of PP sensors and the fast response (20 s)
as the IDE ones.

In this work, we first verified the feasibility of the SIDE structure in the simulation software.
Secondly, the thickness of the sensing layer with different electrode gaps and the dielectric thickness
between the shielding electrode and the IDEs were optimized regarding the sensitivity and response
speed. The SIDE sensor with optimized parameters was fabricated. The sensitivity, response time,
recovery time, and stability of the sensor were measured.

2. Simulation of SIDE

COMSOL Multiphysics®(Stockholm, Sweden) is applied to simulate the SIDE and IDE structure.
Figure 2a shows the SIDE structure. The size of this sensor is 13 mm × 6 mm with a sensing area
of 1.6 mm × 1 mm. The sensor consists of a 100 nm-thick shielding electrode, a 1 µm-thick silicon
dioxide dielectric layer, a standard 100 nm IDE layer, and a PI film as the sensing layer. The finger
length of the interdigitated electrode is 1 mm, with the width and the gap both being 5 µm. A total
of 80 pairs of IDEs are used. A 5 µm-thick PI layer is utilized as the humidity sensing layer. Since
the PI’s relative dielectric constant increases linearly with humidity [38], we simulate variations of
humidity by directly changing the relative dielectric constant of the PI. An IDE model with the same
structural parameters as the SIDE one is implemented with the only difference being the absence of
the shielding electrode.

Figure 2b shows the simulation results of the capacitance change rate (∆C/C0) of SIDE and IDE
under different relative dielectric constant of PI representing the humidity conditions. C0 is the total
capacitance when the relative dielectric constant of the sensing layer is 2.9. ∆C is the capacitance
difference between any other relative dielectric constant of PI and 2.9. It can be seen that under the
same conditions, ∆C/C0 of the SIDE structure, is about 4 times bigger than that of the IDE structure,
which implies that the SIDE will have much higher sensitivity than IDE with the same parameters.

The effect of the thickness of the sensing film on ∆Cmax/C0 is also simulated by COMSOL
Multiphysics®(Stockholm, Sweden). We define that ∆Cmax/C0 equals to ∆C/C0 with the relative
dielectric constant of PI at 2.9 (C0) and 3.7 (Cmax), which indicates the sensitivity of the sensor.
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Figure 2. SIDE structure and simulation results. (a) 3D model of SIDE structure; (b) Comparison of
the relative changes in capacitance of the SIDE (red line) and IDE (black line) structure according to
numerical simulations.

Figure 3 shows that ∆Cmax/C0 increases as the thickness of the sensing film increases, but flattens
at higher thickness. To optimize the sensing film thickness, two facts should be taken into account.
On the one hand, it is clear that when the sensing film thickness is equal to the gap between the IDEs
(as those dashed lines in Figure 3), ∆Cmax/C0 almost reaches saturated values. There is no significant
increase of ∆Cmax/C0 with thicker sensing film than the gap. On the other hand, the thickness of
the sensing film also affects the speed of water molecules diffusing into the sensing film completely,
which defines the sensor response and recovery time. Therefore, we select the optimized sensing film
thickness as equal to the gap of the IDEs. Considering the laboratory conditions, we set the width and
gap of the IDEs to 5 µm.

Figure 3. Influence of sensing film’s thickness on sensor sensitivity. The vertical ordinate of the
intersection of all the dashed lines and the solid curves represents the sensor’s ∆Cmax/C0 when the
sensing film thickness is equal to the gap between the IDEs.

The effect of the spacing between the shielding electrode and the IDEs, i.e., the thickness of the
silicon dioxide under the IDEs on the sensitivity in the SIDE structure is also studied.

Figure 4 shows that with the increasing thickness of the silicon dioxide layer, the ∆Cmax/C0

increases first and then decreases, with an optimal value of the SiO2 thickness of 1 µm.
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Figure 4. Influence of silicon dioxide thickness on the sensor sensitivity. For increasing silicon dioxide
layer thickness, the full sensitivity increases first and then decreases past an optimal value.

There are several parameters of the optimized SIDE structure through the simulation: the gap of
IDEs and spin-coated sensing film thickness are both 5 µm, and the thickness of the silicon dioxide
layer is 1 µm. These parameters are used in the fabrication of the sensor.

3. Materials and Methods

The sensor is fabricated on a 3-inch silicon wafer according to the following steps: (a) A
2.5 µm-thick negative photoresist is patterned. (b) An e-beam-evaporated Ti/Au layer is deposited
and selectively removed by a lift-off process to form the bottom shielding electrode. (c) A layer of 1 µm
silicon dioxide is deposited by PECVD (Plasma Enhanced Chemical Vapor Deposition). (d) IDEs are
fabricated on the silicon dioxide by the same sequence of lithography, e-beam evaporation, and lift-off.
(e) A 5 µm-thick PI is spin-coated. Subsequently, the device is baked at 120 ◦C for 1 h, 180 ◦C for
1 h, and 250 ◦C for 6 h to cure the sensing layer. The completed sensor and cross-section of the SIDE
structure under scanning electron microscope (SEM) are shown in Figure 5. The same IDE structure
fabricated on the glass substrate without the shielding electrode is studied as the control experiment.

Figure 5. SIDE sensor picture under microscopy, and its cross-section image under SEM.

The setup for the humidity measurement is shown in Figure 6. The test is always carried out in an
incubator. We build the simple incubator with heaters and semiconductor coolers inside. Each of them
is controlled by an external PID (proportional integral derivative) controller to keep the temperature
constant. In the incubator, we place a bottle of saturated salt solution and the sensor. The humidity is
also monitored by a commercial humidity meter (Rotronic, HC2-S) at the same time and in the same
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incubator. The uncertainty of HC2-S is ±0.8% RH. The capacitance measurement uses an IC chip
(SMARTEC’s UTI03) and additional circuits. The commercial humidity sensor and the capacitance
measurement circuit communicate with the computer using serial port simultaneously. The humidity
and capacitance are recorded in parallel by the computer for later analysis.

Figure 6. Block diagram of the measurement system consisting of an incubator, a measurement circuit
and recording software.

The capacitance above the shielding electrode Cx can be directly measured using the circuit shown
in Figure 7 without mixing the capacitance between the shielding electrode and IDEs Cpn (n = 1, 2).
Cx is the sensing capacitance proportional to the humidity. Cp1 and Cp2 are the capacitances between
the shielding electrode and the IDEs. Cf is the fixed capacitance of the IC chip. U1 and U2 are the
potentials before the humidity sensor and after the IC chip that both can be measured. Therefore,
Cx can be calculated using Equation (1).

Cx = −U1/U2·Cf (1)

Figure 7. The working principle of the humidity capacitance measurement. The key point is to calculate
the capacitance of Cx by measuring the induced charge generated at point B.

Before the test, each device is placed in an oven at 100 ◦C for 10 min to get rid of the effect of the
previous measurement.

The sensitivity (S) can be expressed as Equation (2):

S = (∆C/C0)/∆(% RH) (2)

where ∆C = C1 − C0, C0 is the capacitance measured at the RH, which is 23.7% ± 0.8%, and C1 is the
capacitance measured when the RH is 73.0% ± 0.8%. ∆(% RH) is the difference between the relative
humidity values when measuring C1 and C0.
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The response and recovery dynamics are among the most important characteristics for evaluating
the performance of humidity sensors. The response time for RH increase and the recovery time for
RH decrease are usually defined for a sensor as the time taken to reach 90% of its total capacitance
variation. The response and recovery curves are measured by exposing the SIDE sensor to alternate
levels of humidity between 2.0% ± 0.8% and 77.0% ± 0.8% RH.

In order to evaluate the functioning of the humidity sensor over long periods of time, we measured
the sensor’s capacitance over the duration of 20 h at 25 ◦C with relative humidity levels of 25.7% ± 0.8%,
34.4% ± 0.8%, 45.0% ± 0.8%, 57.0% ± 0.8%, and 73.5% ± 0.8% RH.

4. Results and Discussion

A sensitivity test is carried out on the SIDE and IDE structure. Figure 8 shows the capacitance
measured from SIDE and IDE at different levels of humidity, and their linear fits with R2 of 0.996 and
0.991, respectively. The slopes of the line, i.e., S of SIDE and IDE are 0.0063 and 0.001,65, respectively.
Taking the uncertainty of HC2-S into consideration, the S of SIDE and IDE are 0.0063 ± 0.0002 and
0.001,65 ± 0.000,05, respectively. Hence, the sensitivity of the SIDE structure is 3.82 times bigger
than that of the IDE. These results show the significant improvement of sensitivity brought by the
shielding electrode, that minimizes the large constant capacitance of the substrate. Indeed, whatever
substrate the IDE is built on, the relative dielectric constant of the substrate is larger (e.g., Si is 11.9,
glass is 10) or close to (e.g., flexible polymer films) the relative dielectric constant of PI (2.9–3.7).
The experimental result and simulation data verify the effects of the shielding electrode and shows
high agreement as well. It is clear that our proposed SIDE structure can provide an effective way
to measure relative humidity more sensitively and accurately. Another advantage of the shielding
electrode is that it can effectively suppress the external electromagnetic interference and reduce the
noise in the measurement process.

Figure 8. Experimental measurement of sensitivity of SIDE and IDE humidity sensors.

Figure 9 shows the responses of the SIDE sensor. The absorption curve represents the response of
the sensor as a function of time, from an environment with low relative humidity to an environment
with high relative humidity. The desorption curve represents the response of the sensor as a function
of time, from an environment with high relative humidity to an environment with low relative
humidity. The curve can switch to steady states rapidly after the RH level changes. Our sensor’s
response/recovery time is 20 s/22 s, which is comparable to 1 s/15 s for normal IDE reported in
the literature [39], but a little worse. This is because in their work, the thickness of the sensing
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film is only 0.65 µm, while ours is 5 µm. If we scale down our sensors to reduce the IDE gap,
the required sensing film thickness will also decrease, resulting in great improvement in response
speed. Limited to laboratory conditions, we fabricated the sensor with 5 µm gap. However, our
sensor’s response/recovery time is still much better than 122 s for PP sensors [40].

Figure 9. The response and recovery curves are measured by switching the SIDE sensor, alternately,
between 2.0% ± 0.8% and 77.0% ± 0.8% RH. The response/recovery time is 20 s/22 s.

Figure 10 shows the stability characteristic of the SIDE sensor. The sensor is kept in the incubator
for 20 h at 25.7% ± 0.8%, 34.4% ± 0.8%, 45.0% ± 0.8%, 57.0% ± 0.8%, and 73.5% ± 0.8% RH, respectively.
The magnitude of the drift of sensor capacitance is converted into the apparent changes in relative
humidity, D, which is calculated by

D = (Cmax − Cmean)/(C0·S) (3)

where Cmax is the maximum measured capacitance after the sensor is exposed to different RH atmosphere,
and Cmean is the average capacitance of all recorded values at a certain relative humidity, C0 is the
capacitance measured when the RH is 23.7% ± 0.8%. The maximum drift value (D) obtained from
Figure 10 under different relative humidity was 1.28% RH. Thus, our sensor is able to achieve satisfactory
stability from a practical standpoint, which makes it promising as a commercially available sensor.

Figure 10. Stability of SIDE sensor. The sensor is kept in the incubator for 1200 min at 25.7% ± 0.8%,
34.4% ± 0.8%, 45.0% ± 0.8%, 57.0% ± 0.8%, and 73.5% ± 0.8% RH, respectively.
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5. Conclusions

In summary, we propose a novel shielded interdigitated electrode structure for humidity sensing.
We perform a comprehensive simulation of this structure to optimize the parameters for the sensor
fabrication. In simulation and actual testing, we find that the sensitivity of the SIDE structure is
much higher than that of the IDE structure because of the effect of the shielding electrode on the
capacitance change rate. Since the surface structure of the SIDE structure is still the same as IDE,
the SIDE sensor combines the high sensitivity of the parallel plate sensors and fast response of the
IDE sensors. The sensitivity of SIDE is 0.0063% ± 0.0002% RH, and the response/recovery time is
20 s/22 s. The stability of the SIDE sensor was also characterized. The maximum drift value under
different relative humidity is 1.28% RH.

Meanwhile, since the basic operating principle of many capacitive sensors is the same, the SIDE
structure can even be applied to capacitive gas sensors, such as volatile organic compound (VOC)
sensors which are used to monitor toxic gases. This shows that SIDE can replace IDE in various sensors
that are more sensitive to the accuracy and response speed.
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