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Abstract: In recent years, deep-learning-based motor imagery (MI) electroencephalography (EEG)
decoding methods have shown great potential in the field of the brain–computer interface (BCI). The
existing literature is relatively mature in decoding methods for two classes of MI tasks. However,
with the increase in MI task classes, decoding studies for four classes of MI tasks need to be further
explored. In addition, it is difficult to obtain large-scale EEG datasets. When the training data
are limited, deep-learning-based decoding models are prone to problems such as overfitting and
poor robustness. In this study, we design a data augmentation method for MI-EEG. The original
EEG is slid along the time axis and reconstructed to expand the size of the dataset. Second, we
combine the gated recurrent unit (GRU) and convolutional neural network (CNN) to construct
a parallel-structured feature fusion network to decode four classes of MI tasks. The parallel structure
can avoid temporal, frequency and spatial features interfering with each other. Experimenting on
the well-known four-class MI dataset BCI Competition IV 2a shows a global average classification
accuracy of 80.7% and a kappa value of 0.74. The proposed method improves the robustness of
deep learning to decode small-scale EEG datasets and alleviates the overfitting phenomenon caused
by insufficient data. The method can be applied to BCI systems with a small amount of daily
recorded data.

Keywords: brain-computer interface (BCI); convolutional neural network (CNN); four-class motor
imagery; gated recurrent unit (GRU)

1. Introduction

Brain-computer interface (BCI) technology establishes an information interaction
channel between brain and computer, which does not depend on normal peripheral nerves
and muscle tissues [1]. It can directly convert the information sent by the brain into
commands to drive external devices and replace human limbs or language organs to
communicate with the outside world and control external devices. There are three types of
BCI according to the position of sensors in the brain. Among them, invasive and partially
invasive BCI requires the neurosurgical implantation of collecting electrodes into the
cerebral cortex. Although this invasive implantation can obtain a high signal-to-noise ratio
(SNR) and high-spatial-resolution signals through the operation of implanted electrodes,
it has certain infection risks and safety problems. Non-invasive BCI monitors electrical
changes in brain neurons on the scalp via a wearable device attached to the scalp. An
EEG cap is the most used non-invasive sensor, which can collect brain signals in the form
of electroencephalography (EEG). Since non-invasive BCI requires no surgery, it is safe,
non-invasive, easy to operate, and low in cost, and EEG signals have a high temporal
resolution. Because of its advantages, non-invasive BCI based on EEG has become a
research hotspot [2].

EEG-based BCI paradigms mainly include motor imagery (MI), steady-state visual
evoked potential (SSVEP), and event-related potential (ERP). The MI paradigm is a mental
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process that imagines limb movements but does not perform real actions [3]. Compared
with SSVEP and ERP paradigms, the MI paradigm does not need external stimulation
and belongs to spontaneous EEG. Relevant studies have proven that during the process of
motor imagery, the cerebral cortex will produce two types of significantly changed rhythm
signals, namely the 8–13 Hz α rhythm and 17–30 Hz β rhythm. When subjects imagine
the movement of one limb, the EEG rhythm energy in the contralateral motor perception
region of the cerebral cortex decreases significantly, while that in the ipsilateral motor
perception region increases. This phenomenon is called event-related desynchronization
(ERD) and event-related synchronization (ERS) [4]. Based on this relationship, BCI is
widely used in the rehabilitation of neuromotor disorders [5], the treatment of stroke
patients [6], and the assistance of limb amputations [7]. BCI contributes to the independent
living of disabled patients and improves the lifestyles of healthy users. Currently, there is
an increasing number of BCI systems that can operate more complex devices, including
auxiliary robots [8], autonomous driving [9], and robotic arms [10].

In general, a typical non-invasive BCI consists of five main processing stages [11]: EEG
data acquisition, data preprocessing, feature extraction, pattern recognition, and control of
external devices. In these stages, feature extraction and pattern recognition are the keys
to ensuring the operation of the whole BCI system. Although EEG-based non-invasive
BCI technology has made great progress, its application in practice is constrained by many
factors. One factor is the inherent characteristics of the EEG, including low SNR, non-
stationary characteristics over time, and artifacts from other brain regions [12]. The other
factor is the difficulty in obtaining large-scale EEG data in many practical application
scenarios. Small-scale datasets make it difficult to achieve strong robustness and high
decoding accuracy in the decoding model.

To solve these problems, many researchers have studied feature extraction and clas-
sification methods in MI-EEG recognition. The traditional power spectral density (PSD)
analysis method does not consider the spatial correlation of EEG, and its resolution is
limited, so it cannot represent the nonlinear characteristics of EEG signals. Common spatial
pattern (CSP) is a spatial feature extraction algorithm for two classes of MI-EEG [13]. It
extracts spatial distribution components of each class from multi-channel EEG data. Based
on CSP, Kai et al. [14] proposed the filter bank common spatial pattern (FBCSP). They
use filter banks to decompose EEG into nine bands in the frequency range of 4–40 Hz at
a bandwidth of 4 Hz. Then, the CSP algorithm is applied to each sub-band to obtain highly
separable features. In addition, improved algorithms based on CSP have been proposed,
such as the common spatio-spectral pattern (CSSP) [15], common sparse spectral spatial
pattern (CSSSP) [16], and sub-band common spatial pattern (SBCSP) [17]. A large number
of studies have proven that this series of CSP-based spatial feature extraction algorithms
can achieve good performance in many MI recognition tasks. Gaur et al. [18] used sliding
windows to capture multi-segment EEG signals and used CSP and linear discriminant
analysis (LDA) to extract and classify the features of the signals in each time window.
Ko et al. [19] extracted the features of MI-EEG by fast Fourier transform (FFT) and CSP
and then input the features into a multi-modal fuzzy fusion framework to decode EEG
signals. Zhang et al. [20] designed a temporally constrained sparse group spatial pattern
(TSGSP), which can simultaneously optimize the filtering band and time window in CSP
and improve the classification accuracy of MI-EEG. Jin et al. [21] extracted multi-channel
EEG features using regularized CSP (RCSP) and then decoded MI-EEG using a support
vector machine (SVM) with a radial basis function (RBF) kernel. Ang et al. [22] verified
the performance of FBCSP on the BCI Competition IV Datasets 2a and 2b, and they pro-
posed one-versus-rest (OVR), divide-and-conquer (DC), and pair-wise (PW) approaches
for decoding four classes of MI-EEG data.

In recent years, deep learning (DL) has made great progress in the fields of computer
vision, speech recognition, natural language processing, and data generation. When
decoding EEG data using machine learning (ML) methods, some prior knowledge and
experience is required to extract features, which leads to limited accuracy in EEG decoding
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and is costly and time-consuming [23]. The neural network is the main architecture of deep
learning. Because of its end-to-end structure, it can greatly reduce the need to manually
extract EEG features. Meanwhile, it can overcome the limitation of prior knowledge
and effectively learn potential features from EEG data. By using neural networks, non-
neuromedical researchers can conduct EEG data analysis. Tabar et al. [24] sequentially
combined convolution neural network (CNN) and stacked autoencoder (SAE) models to
decode MI-EEG. The network can automatically extract the time, frequency, and channel
information from EEG time-frequency images. Dai et al. [25] explored the influence of
convolution kernels of different sizes on MI-EEG decoding performance. Lawhern et al. [26]
designed the EEGNet model, which encapsulates the concept of feature extraction in
EEG decoding. Liu et al. [27] reconstructed the raw EEG data into a three-dimensional
representation to better express the spatio-temporal features of EEG. Meanwhile, they
constructed a densely connected multi-branch 3D CNN to decode 3D representations of
MI-EEG data. Yang et al. [28] proposed a two-branch time-frequency convolution neural
network (TBTF-CNN) to extract multiple features of EEG synchronously. Hou et al. [29]
combined the EEG source imaging (ESI) method with joint time-frequency analysis to
classify MI tasks.

At present, great progress has been made in decoding two classes of MI tasks based
on deep learning methods. However, with the increasing number of MI tasks and EEG
channels, decoding research for four classes of MI tasks (left hand, right hand, tongue,
and foot) needs to be further explored. Most studies only extract single spatio-temporal
features, and few apply feature fusion methods from other fields to the four classes of MI-
EEG. In addition, most studies tend to adopt a serial structure when decoding four-class MI
tasks, stacking a CNN and recurrent neural network (RNN), to extract temporal, frequency,
and spatial features [30]. This ignores a large amount of valid information in the middle
layers of the neural network, resulting in poorer classification performance. Research has
shown that information hidden in the middle layer of the neural network can help to
improve the discrimination of the model [31]. More importantly, it is very difficult to collect
large-scale EEG data, and all publicly available MI-EEG datasets are small-scale datasets.
When the training data are limited, the neural networks tend to suffer from problems
such as overfitting and poor robustness. In this study, we propose a data augmentation
method for MI-EEG. As EEG is a temporal signal, it has high temporal resolution. Thus,
we slide the raw EEG horizontally along the time axis and recombine it to generate more
data. The new data preserve the temporal and spatial distribution of the original data
and effectively expand the original dataset. In addition, we design a parallel-structured
feature fusion model using neural network tools. The model is composed of a GRU and
CNN in parallel, which avoids the mutual interference of spatio-temporal features and
does not lose the feature information of the middle layer. The advantages of using GRU
and CNN in parallel are as follows. First, the original EEG has a clear representation of
temporal features and a poor representation of spatial and frequency features. Due to its
directional cycle mechanism, the GRU network can effectively extract the temporal features
of time series [32]. Therefore, for the GRU part of the model, we input the time-series
representation of EEG signals. Secondly, we input the spectrum representation of EEG into
the CNN part. An EEG signal is similar to a speech signal, which contains key information
in the frequency domain. A spectrogram can better represent the spatial and frequency
features of EEG. The CNN network has powerful spatial feature extraction ability for
two-dimensional data, especially in image form [33]. Therefore, the network can effectively
extract the detailed spectral features of space and frequency by inputting the spectrogram
into the CNN. In Section 3.2 of this paper, we describe ablation experiments to further
explore the influence of different input forms on decoding performance.

The main contributions of this paper are summarized as follows. (a) A data augmenta-
tion method for MI-EEG is designed based on the temporal features of the original EEG.
The method preserves the temporal and spatial features of the original EEG. This effectively
expands the original dataset and improves the robustness of the decoding model. (b) The
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influence of parallel-structured neural networks on decoding performance is explored
for multichannel, four-class motion imagery data. We combine GRU and CNN to design
a parallel-structured feature fusion network (GCFN) and set up ablation experiments to
evaluate the influence of different inputs on the decoding performance. (c) Various perfor-
mance metrics and feature distributions are visualized for four classes of MI datasets. The
effectiveness of the proposed data augmentation method is verified by setting up machine
learning comparison experiments.

2. Methods
2.1. System Architecture

Figure 1 shows the system architecture of the proposed method. When the subjects
perform the MI task, the corresponding potential changes will occur in the motor perception
area of the brain. This is manifested in the increase and decrease in energy in the α band
(8–13 Hz) and the β band (17–30 Hz). The BCI system records the EEG signals of the subjects
through wearable devices and saves the data in the two-dimensional form of electrode
× sampling points. In this paper, data augmentation is first performed on raw EEG data
to ensure the robustness of the deep learning model. In the data preprocessing stage,
a fifth-order Butterworth bandpass filter is designed to filter MI-EEG data, and the target
frequency band of 8–30 Hz is obtained. Subsequently, a continuous wavelet transform
(CWT) is applied to the MI-EEG data from 8 to 30 Hz to obtain the time-frequency image of
each channel. Then, the filtered EEG data are normalized using the z-score method. The
spectral data are then divided by 255 for each pixel value. This eliminates the negative
impact of outliers on the model training and speeds up the convergence of the neural
network. In the decoding model, the time-series data and time-frequency image data of
MI-EEG are simultaneously input into the two branches of the model. The CWT-CNN
branch extracts frequency and spatial features from the 2D time-frequency image, while
the EEG-GRU branch extracts temporal features from MI-EEG. Afterward, the extracted
features are concatenated into a 1D vector by the GCFN model. Finally, the fusion features
are input into a classifier composed of a full connection layer, and the prediction labels are
output, thus completing the decoding of MI-EEG.
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2.2. Data Augmentation Method

In recent years, deep learning has made great progress in image, speech, and natural
language processing, mainly attributed to the vast datasets available in these fields. Massive
training data can ensure the robustness and classification accuracy of the neural network.
However, in many practical application scenarios, it is very difficult to obtain large-scale
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EEG data. Small-scale datasets can easily lead to the overfitting of neural networks, which
affects the robustness and decoding accuracy of the model.

In this study, a data augmentation method is proposed for MI-EEG to alleviate the
overfitting problem of the model. Data augmentation has been proven to be effective in
many fields, such as computer vision. More training data can be generated by rotation,
translation, and cropping to alleviate the overfitting problem and improve the accuracy
and robustness of the model [34]. It can be seen from Figure 2 that raw MI-EEG data are
usually composed of a 2D matrix in the form of C × T. The rows of the matrix store the data
in the channels, and the columns store the data recorded at each sampling point. This 2D
representation gives the EEG data a high temporal resolution while preserving the spatial
features of the electrode positions. The proposed data augmentation method consists of two
phases. (1) Sliding along the time axis. The original EEG data of C × T slide horizontally
along the time axis at a step of S. At this point, the data are divided into two segments,
namely 0—(T-S) and (T-S)—T. (2) Time series recombination. Exchange the sequence of
two pieces of data and slide (T-S)—T pieces of data to the starting point. Phases (1) and (2)
are repeated k times until kS ≥ T. At this time, the newly generated data overlap with the
original data and stop sliding. Compared with the sliding window method, the new data
generated by this method preserve the temporal and spatial information of the original
EEG. Meanwhile, by setting an appropriate step size S, new data with certain differences
from the original data can be generated, which helps the model to learn more temporal and
spatial features and reduce overfitting effectively.
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2.3. MI-EEG Feature Representation

Reasonable EEG feature representation is conducive to improving the accuracy and
efficiency of the whole decoding process. Some researchers use topological maps to repre-
sent MI-EEG to improve the spatial resolution between different channels [35]. However,
this method will increase the computational complexity of model decoding. According to
a literature survey [36], around 30% of studies use EEG in a 2D matrix format as input, and
around 30% of studies use spectral images as input. This paper uses the filtered raw signal
values and time-frequency images as the input of the deep learning model, and this is the
most used EEG representation.
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Figure 3 shows the time-frequency feature expression method of MI-EEG. The time-
frequency image of raw EEG can be obtained according to Equations (1)–(3):

ψ(t) = eiωt × e−
t2
2 , (1)

ψα,τ(t) = 1√
α

eiω (t−τ)
α × e−

(t−τ)2

2α2 , (2)

Ψ(α, τ) = 1√
α

∫ +∞
−∞ f (t)ψα,τ(t)dt. (3)

where ω is the wavelet center frequency, α is the scale coefficient, and τ is the translation
coefficient. This paper uses the “morlet” wavelet as the mother wavelet, and each channel
only retains the signal in the frequency band of 8–30 Hz. Then, the time-frequency diagram
of each channel is combined into a 2D image according to the electrode order.
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2.4. Proposed GCFN Architecture

CNN is a feedforward neural network with convolution calculation and depth struc-
ture. It can learn representations and is very suitable for processing image data [33]. The
convolution operation performs inner products on the input data and the convolution
kernel, and the feature map output can be expressed as:

hk
ij = f (a) = f

((
Wk × x

)
ij
+ bk

)
(4)

where x is the input data, Wk is the weight matrix, bk is the bias vector, ∗ represents the
convolution operation, and f (·) represents the activation function.

RNN has memory ability and has certain advantages in learning the nonlinear features
of sequence data. The gated recurrent unit (GRU) is a variant of RNN that can effectively
alleviate the gradient disappearance and gradient explosion problem in the traditional RNN
during training. GRU simplifies the long short-term memory (LSTM) network structure
and has fewer parameters [32]. The GRU model considers both historical information
ht−1 and new information xt when calculating the current state value ht, as shown in
Equations (5)–(8):

rt = σ(Wr·[ht−1, xt]) (5)

zt = σ(Wz·[ht−1, xt]) (6)

h̃t = tanh
(
Wh̃·[rt × ht−1, xt]

)
(7)

ht = (1− zt)× ht−1 + zt × h̃t (8)

where rt denotes a reset gate; zt denotes an update gate; Wr, Wz, and Wh̃ denote the weight
parameters of the GRU network; σ(·) denotes a sigmoid function.

Figure 4 shows the architecture of the proposed GRU-CNN feature fusion network. In
the input part of CWT-CNN, a 2D time-frequency image is reconstructed into a 3D tensor
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form of 224 × 93 × 1, representing a gray-scale graph with a size of 224 × 93. The features
of time-frequency image data are learned by a CNN, which consists of a convolution
layer, an activation function layer, a max-pooling layer, and a flattened layer. Inspired by
Tarbar et al. [24], this paper uses 1D filters to extract features. Since the temporal, frequency,
and electrode position information are used together in the time-frequency image, the 1D
convolution kernel sliding along the time axis can extract the three features better. The size
of the 1D filter is 224 × 1, and the convolution step is 1. After the convolution calculation,
an activation function, “ReLU”, is used to output the convolution result, and its expression
is as follows:

f (a) = ReLU(a) =
{

a,
0,

i f a ≥ 0
i f a < 0

(9)

where a is defined in Formula (4). Then, the max-pooling layer performs down-sampling
processing on the output feature map to extract the identification features. The pooling size
and step are set to 1 × 3. The flatten layer converts the output feature map into a 1D vector.
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In the input part of EEG-GRU, this paper reorganizes the EEG data into the expression
of T× C for input into the GRU network, where T corresponds to the time step of GRU, and
C represents the feature number of each time step, i.e., the channel for temporal EEG data.
The GRU branch is used to extract the temporal features as the supplementary information
of CWT-CNN. The branch consists of two stacked GRU layers, with 25 units in the first
layer and 50 units in the second layer. Through Equations (5)–(8), the GRU extracts the
temporal features of EEG data and outputs a 1D vector.

The feature fusion layer fuses the feature vectors into a 1D vector and then inputs the
vector to the classifier. The classifier consists of several stacked, fully connected layers (FC).
The neurons in different layers are fully connected, and the neurons in the same layer are
independent. The data passing through the FC layer can be represented as:

y = f
(
Wyx + by

)
(10)
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where Wy is the weight matrix, by is the bias vector, and f (·) is the activation function.
The first fully connected layer has a total of 128 neurons and uses the “ReLU” activation
function. The second fully connected layer has 4 neurons as outputs, and the output y of
the “softmax” activation function is mapped to the prediction probability yp,m, which is
expressed as follows:

yp,m =
eym

∑T
m eym

(11)

where m is the index of y, and T represents the total number of classes. Moreover, the
cross-entropy loss function is used to measure the prediction results and true values, and it
is calculated as follows:

L
(
yp, yl

)
= −∑

m
yp,mlo log yl,m (12)

where yp represents the predicted label and yl represents the true label.
In the input stage, the time-frequency image and EEG data are normalized to enhance

the data concentration and accelerate the convergence of the neural network. In this step,
the z-score standardization method is used for the time-series EEG data and is calculated
as follows:

zi =
xi − µ

σ
(13)

where µ is the mean of the samples for a trial and σ is the standard deviation of the
samples. For the spectrogram data, each pixel value was divided by 255 and the formula
was calculated as follows:

xni =
xpi

255
(14)

where xpi denotes the spectrogram of one trial with a maximum pixel value of 255. xni
denotes the normalized spectrogram data. Meanwhile, the “Dropout” probability of the
fully connected layer is set to 0.3 to alleviate the overfitting problem of the model. Moreover,
this paper uses the Adam optimizer to update the parameters, thus minimizing the cross-
entropy loss function. The detailed parameters of the network are presented in Table 1.

Table 1. Implementation details for proposed GCFN architecture.

Layer Type
(EEG/Image) Units Kernel Size Stride Output Parameters

CNN Input 224 × 93 × 1
Conv2D 64 224 × 1 1 × 1 1 × 93 × 64 14,400

ReLU
Max-pooling 1 × 3 1 × 3 1 × 31 × 64
Flatten layer 1984

GRU Input 875 × 22
GRU1 25 875 × 25 3675
Tanh

GRU2 50 50 11,550
Tanh

Fusion Concatenation 2034

Classifier FC layer 128 260,480
ReLU

Dropout layer p = 0.3
FC layer 4 516
Softmax

3. Dataset and Results
3.1. Experimental Dataset

The BCI Competition IV 2a public dataset provided by the Graz University of Technol-
ogy was used in this paper to evaluate the performance of the proposed method [37]. This
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dataset contains EEG data from nine healthy subjects. The EEG data were recorded with
22 Ag/AgCl electrodes under the sampling frequency of 250 Hz, and bandpass filtering
was performed from 0.5 Hz to 100 Hz. Figure 5 shows the electrode montage correspond-
ing to the international 10–20 system. The whole EEG data collection process is easy
and comfortable, and there are no ethical issues. Each subject performed the MI task on
two different days, so the EEG data were recorded in two different sessions. Each session
involves routine MI tasks that are composed of four classes: left hand, right hand, foot,
and tongue. There are 288 motor imagery trials in each session, with 72 trials in each class.
Figure 6 shows the timing scheme for each trial. At the beginning of the experiment, a fixed
cross “+” and a short sound stimulus were used as cues. When t = 2 s, a prompt appeared
on the screen in the form of an arrow pointing to the left, right, below, or above, and it
lasted for 1.25 s on the screen. Then, the subjects were asked to perform the corresponding
motor imagery task within 4 s. When t = 6 s, the experiment of motor imagery ended, and
the subjects rested for 1.5 s. After the data were collected, experts evaluated the influence
of artifacts on the data and marked the trial containing artifacts as a “1023” event. The
details of the dataset are shown in Table 2.
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3.2. Performance of the Proposed GCFN

In this paper, 10-fold cross-validation is adopted to validate the decoding performance
of the proposed model. The dataset is divided into 10 equal subsets, and 90% of them
are randomly selected as training data and the remaining 10% as validation data. Ac-
cording to the MI-EEG acquisition paradigm introduced in Section 3.1, this paper selects
0.5–4 s EEG data after the MI task starts. Meanwhile, the raw data are expanded by the
data augmentation method described in Section 2.2, and the sliding step S is set to 80. Thus,
the dataset of each subject can be represented as 6336 × 22 × 875, where 6336 denotes
the number of trials, 22 denotes the number of electrodes, and 875 corresponds to the
sampling point of 3.5 s. The whole experimental platform is implemented with the famous
DL architecture of TensorFlow 2.0, and the NVIDIA RTX 3080 GPU (NVIDIA, Santa Clara,
CA, USA) is employed to accelerate the model training process.

In this paper, ablation experiments are described to evaluate the effect of different
branches on decoding performance. The model structure under three different conditions is
shown in Figure 7. The implementation details include the following: (a) EEG-GRU—only
EEG data are input, and the time series features of the EEG data are extracted by two stacked
GRU units and then input into the classifier; (b) CWT-CNN—only time-frequency images
are input, and the time, frequency, and spatial features of the EEG data are extracted by
a 1D convolution kernel with a size of 224× 1; the features are processed by the max-pooling
layer and flatten layer and then input to the classifier; (c) full model—the GRU-CNN feature
fusion network is constructed following the method described in Section 2.4. Specifically,
the EEG and time-frequency images are used as inputs to fuse the features of different
branches, and then the fused 1D feature vectors are input to the classifier.
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Figure 8 illustrates the ablation experiment results of nine subjects. It can be seen that
the global accuracy of the EEG-GRU model is 62.9%. Except for subjects 6 and 9, the average
classification accuracy of EEG-GRU for a single subject is lower than that of CWT-CNN.
The results show that the EEG-GRU model obtains poor performance due to only learning
temporal features. The average classification accuracy of the CWT-CNN model is 72.7%.
Compared with EEG-GRU, CWT-CNN has improved the classification accuracy in most
subjects. The experimental results show that the CNN model is effective in decoding EEG.
As a representation of EEG, a time-frequency image contains time, frequency, and spatial
information, which is conducive to improving the decoding performance. The GCFN
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model achieves an average classification accuracy of 80.7%, which is the best among the
three models, and the test results on a single subject are greatly improved. The experimental
results verify the effectiveness of the proposed model. According to the results of ablation
experiments, the CNN can extract the features of time-frequency images better, which helps
to improve EEG decoding. This paper visualizes the time-frequency image and feature
maps of subjects 3 and 8, as shown in Figure 9. It can be seen that the time-frequency image
reflects the relationship between the channel, time, and frequency of the EEG signal, so
most studies using spectrograms to decode EEG have achieved good performance. By
comparing the time-frequency image before and after convolution, only some areas of the
feature map are highlighted. In addition, this paper maps the MI-EEG features of nine
subjects after the GCFN model to a 2D plane to observe the feature distribution. As shown
in Figure 10, the red, blue, green, and orange colors represent the MI-EEG features of the
left hand, right hand, foot, and tongue, respectively. It can be seen from the scatter diagram
of feature distribution that the four classes of MI feature distribution of subjects 1, 3, 7, 8,
and 9 have certain discrimination. Meanwhile, the four classes of MI feature of subjects 2,
4, 5, and 6 are not distinguished significantly, and their average classification accuracy is
lower than 80%. This may be due to the distraction caused by external interferences when
performing MI tasks, which caused these subjects to fail to perform the MI tasks effectively.
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As shown in Figure 11, the confusion matrices of different models are used for evalua-
tion. In the figure, the diagonal lines represent the global classification accuracy of various
tasks, and precision and recall rate are included. As shown in the figure, the recall rate of
the left hand, right hand, foot, and tongue in the GCFN model is 82.2%, 77.6%, 83.0%, and
80.0%, respectively. The recall rate of the four classes of MI tasks in the proposed model is
higher than those of the other two models. In addition, the precision of the GCFN model
is 79.3% for the left hand, 80.2% for the right hand, 80.9% for the foot, and 82.8% for the
tongue. In terms of precision, GCFN also performs better than the other two models.
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In addition to the average classification accuracy and confusion matrix, the Kappa
coefficients of nine subjects under different models are calculated, as shown in Figure 12.
The Kappa coefficient is an index to measure consistency in statistics [38], and it can be
calculated by the following formula:

k =
p0 − pe

1− pe
(15)

where p0 represents the classification accuracy and pe is the chance coincidence rate. Be-
cause the dataset contains four classes of MI tasks, the pe value is set to 0.25. As shown in
Figure 12, the EEG-GUR model obtains the lowest Kappa value on most subjects, with an
average Kappa value of 0.51. The Kappa value of CWT-CNN is 0.13 higher than that of
EEG-GRU. The Kappa value of the proposed GCFN model is 0.74, which is significantly
higher than that of other models. This indicates that the decoding results of the GCFN
model are highly consistent with the actual results.
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In addition, a machine learning contrast experiment is conducted to evaluate the
performance of the proposed model. CSP is a commonly used feature extraction algo-
rithm in two classes of MI tasks, and it can extract the spatial distribution components of
each class from multi-channel EEG data. According to the “OVR” strategy proposed by
Ang et al. [22], this paper fine-tunes the CSP algorithm to enable spatial feature ex-
traction for four classes of MI-EEG data. CSP-LDA is the most used MI-EEG decod-
ing model and has achieved good performance in previous experiments. In this pa-
per, the decoding performance of CSP-LDA was evaluated using the EEG data after
data augmentation with 10-fold cross-validation. The experimental results are shown in
Figures 8, 11 and 12. The average accuracy of the CSP-LDA model is 73.1%, and the Kappa
value is 0.64. From the confusion matrix, the precision of the four classes of MI tasks is
71.8%, 72.7%, 73.1%, and 74.6%, respectively. Compared with the GRU-EEG model, the
average classification accuracy of the CSP-LDA model is improved by 10.2%. The proposed
GCFN model achieves the best accuracy, which is 7.6% higher than that of the CSP-LDA
model. Figure 13 shows the MI-EEG features after CSP. It can be seen that the manual
features still have some limitations, especially for different individuals.

3.3. Comparison with Other Published Results

In this section, the performance of the proposed method is compared with several other
methods. Table 3 presents the classification accuracy of nine subjects in the Competition IV
2a dataset under different methods. Meanwhile, the experimental results of the CSP-LDA
model are summarized in the table as a baseline. The “*” symbol in the table indicates the
classification accuracy calculated according to the Kappa value. It can be seen from the
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table that the proposed method achieves the highest average classification accuracy and the
best performance on most subjects. Specifically, a significant improvement in accuracy is
obtained for subjects 4 and 6, which is 7.5% and 13.6% higher than the sub-optimal results,
respectively.
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Table 3. Comparison table of the proposed method with other methods.

CSP-LDA
(Baseline)

Ang
et al. * [22]

Xie
et al. [39]

Mahamune
et al. [40]

Sakhavi
et al. [41]

Qiao
et al. [30] Our Method

Dataset 2a (DA) 2a 2a 2a 2a 2a 2a (DA)

S1 78.2 76.0 81.8 87.1 87.5 89.1 88.3
S2 74.1 56.5 62.5 56.2 65.3 69.2 72.8
S3 88.5 81.3 88.8 93.0 90.3 89.5 93.7
S4 64.3 61.0 63.7 68.7 66.7 71.6 76.2
S5 50.2 55.0 62.9 39.8 62.5 64.1 60.2
S6 57.5 42.3 58.5 52.0 45.5 50.7 71.1
S7 85.8 82.8 86.6 89.9 89.8 89.2 84.1
S8 87.5 81.3 85.1 72.1 83.3 84.1 96.4
S9 71.7 70.8 90.0 82.6 79.5 82.1 83.7

AVG 73.1 67.8 75.5 71.2 74.5 76.6 80.7

4. Discussion

It can be seen from the average classification accuracy (Figure 8) that GRU obtains
the worst performance among all models. Although EEG data have a high temporal
resolution, they also contain a lot of potential information about MI, such as electrode
distribution and frequency information. Because of the particularity of its structure, the
RNN has great advantages in processing sequence data. However, the RNN only extracts
the temporal information of EEG and ignores the spatial and frequency information related
to electrodes. By contrast, some studies use CNN to learn the features of the original EEG.
Moreover, the spatio-temporal features of the EEG data can be effectively learned by using
a 1D filter with different sizes. The average classification accuracy of the CNN model
and baseline CSP-LDA model is not significantly different. However, for some subjects
(2, 5, 7), the decoding performance using the CSP algorithm is better than that when
using the CWT-CNN model. This shows that the machine learning method of manually
extracting features is effective for different subjects. Secondly, as a representative form
of EEG, the time-frequency image can clearly express various features of EEG. Therefore,



Brain Sci. 2022, 12, 1233 15 of 18

most MI-EEG decoding methods based on time-frequency images and CNN perform well.
In addition, the end-to-end deep learning model simplifies the decoding of MI-EEG, which
provides a basis for online BCI implementation. The proposed GCFN model achieves
the highest average classification accuracy in all comparative experiments, which proves
the effectiveness of the parallel model and feature fusion. The feature distribution scatter
diagram (Figures 10 and 13) indicates that the subjects with a higher classification accuracy
have significant discrimination in the four classes of MI features. For subject 1, regardless
of whether the CSP algorithm or neural network is used, a few features of the foot and
tongue still cannot be well distinguished. Similarly, this phenomenon can be observed
for subject 7 on the left hand and right hand. For subjects 4, 5, and 6, with a poor feature
distribution, the proposed GCFN model can distinguish the four classes of MI features to
a certain extent, while CSP cannot distinguish them well. The results show that, attributed
to the ability to automatically learn the potential features of data, the deep learning model
is very suitable for processing complex EEG signals. According to the statistical results
of the confusion matrix (Figure 11), the recall rate and precision of the four classes of MI
tasks in different models are relatively average. All the indexes of the proposed GCFN
model are better than those of other models, and the precision distribution is uniform.
Moreover, the GCFN model achieves a higher Kappa value (i.e., 0.74) than other models
(Figure 12). The experimental results further prove the robustness of the GCFN model.
Compared with other published results (Table 3), Ang et al. [22] and Xie et al. [39] designed
a complex manual feature calculation method to decode four classes of MI-EEG, and the
results were 67.8% and 75.5%, respectively. Mahamune et al. [40] and Sakhavi et al. [41]
developed a deep learning decoding model, which achieved a classification accuracy of
71.2% and 74.5%, respectively. Qiao et al. [30] designed a serial neural network model that
stacked CNN and GRU to extract spatio-temporal features of EEG. On the same dataset,
they achieved an average classification accuracy of 76.6%. However, the serial structure
ignores the effective information in the middle layer and may easily cause spatio-temporal
features to interfere with each other. Although the MI-EEG decoding performance of the
machine learning method and deep learning method is not significantly different, the
machine learning method requires complex feature extraction calculations, and the quality
of manual features will affect the decoding performance. Deep learning improves the
decoding efficiency of MI-EEG with its end-to-end structure. The results of the baseline
model and GCFN model show that the proposed data augmentation method can improve
the decoding performance of MI-EEG.

5. Conclusions

The lack of large-scale EEG datasets limits the application of deep learning in medical
rehabilitation. This paper proposes a data augmentation method for EEG to alleviate the
overfitting problem of the deep learning model during training. Meanwhile, this paper
explores the decoding performance of a parallel deep learning model for MI-EEG and com-
pares the machine learning method of manual features with the end-to-end deep learning
method. The experimental results indicate that the proposed GCFN model achieves a better
average accuracy of 80.7%. The proposed method not only expands the data scale of EEG
but also provides a new approach for improving BCI performance. In future work, with the
improvement of hardware, we will apply the proposed GCFN model to online BCI systems
to verify its effectiveness and robustness.

6. Future Work

In future work, with the improvement of hardware, we will apply the proposed GCFN
model to online BCI systems to verify its effectiveness and robustness. Inspired by the
literature [42], in subsequent work, we will combine signal decomposition methods and
deep learning models to further explore the decoding of four-class MI tasks. In addition,
we will design an experimental paradigm to acquire MI datasets from multiple volunteers
using EEG caps to ensure the generalization performance of BCI decoding.
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MI Motor Imagery
EEG Electroencephalography
BCI Brain-Computer Interface
GRU Gated Recurrent Unit
CNN Convolution Neural Network
SNR Signal-to-Noise Ratio
SSVEP Steady-State Visual Evoked Potential
ERP Event-Related Potential
ERD Event-Related Desynchronization
ERS Event-Related Synchronization
PSD Power Spectral Density
CSP Common Spatial Pattern
FBSCSP Filter Bank Common Spatial Pattern
CSSP Common Spatio-Spectral Pattern
CSSSP Common Sparse Spectral Spatial Pattern
SBCSP Sub-Band Common Spatial Pattern
LDA Linear Discriminant Analysis
FFT Fast Fourier Transform
TSGSP Temporally Constrained Sparse Group Spatial Pattern
RCSP Regularized Common Spatial Pattern
SVM Support Vector Machine
RBF Radial Basis Function
OVR One-Versus-Rest
DC Divide-and-Conquer
PW Pair-Wise
DL Deep Learning
ML Machine Learning
SAE Stacked Autoencoder
TBTF-CNN Two-Branch Time-Frequency Convolution Neural Network
ESI EEG Source Imaging
RNN Recurrent Neural Network
GCFN GRU-CNN Feature Fusion Network
CWT Continuous Wavelet Transform
LSTM Long Short-Term Memory
FC Fully Connected Layer
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