
biomolecules

Article

Production, Characterization, and Bioactivity of Fish
Protein Hydrolysates from Aquaculture Turbot
(Scophthalmus maximus) Wastes

José Antonio Vázquez 1,2,* , Isabel Rodríguez-Amado 3, Carmen G. Sotelo 1,4 , Noelia Sanz 1,4,
Ricardo I. Pérez-Martín 1,4 and Jesus Valcárcel 1,2

1 Grupo de Biotecnología y Bioprocesos Marinos, Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo
Cabello, 6, CP 36208 Vigo, Galicia, Spain; carmen@iim.csic.es (C.G.S.); nsanz@iim.csic.es (N.S.);
ricardo@iim.csic.es (R.I.P.-M.); jvalcarcel@iim.csic.es (J.V.)

2 Laboratorio de Reciclado y Valorización de Materiales Residuales (REVAL), Instituto de Investigaciones
Marinas (IIM-CSIC), C/Eduardo Cabello, 6, 36208 Vigo, Galicia, Spain

3 Department of Life Sciences of the International Iberian Nanotechnology Laboratory (INL), Avenida Mestre
José Veiga, 4715-330 Braga, Portugal; isabel.rodriguez@inl.int

4 Laboratorio de Bioquímica de Alimentos, Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo
Cabello, 6, 36208 Vigo, Galicia, Spain

* Correspondence: jvazquez@iim.csic.es; Tel.: +34-986-231930

Received: 27 January 2020; Accepted: 12 February 2020; Published: 15 February 2020
����������
�������

Abstract: The valorization of wastes generated in the processing of farmed fish is currently an issue of
extreme relevance for the industry, aiming to accomplish the objectives of circular bioeconomy. In the
present report, turbot (Scophthalmus maximus) by-products were subjected to Alcalase hydrolysis
under the optimal conditions initially defined by response surface methodology. All the fish protein
hydrolysates (FPHs) showed a high yield of digestion (>83%), very remarkable degrees of hydrolysis
(30–37%), high content of soluble protein (>62 g/L), an excellent profile of amino acids, and almost total
in vitro digestibility (higher than 92%). Antioxidant and antihypertensive activities were analyzed in
all cases, viscera hydrolysates being the most active. The range of average molecular weights (Mw)
of turbot hydrolysates varied from 1200 to 1669 Da, and peptide size distribution showed that the
hydrolysate of viscera had the highest content of peptides above 1000 Da and below 200 Da.

Keywords: aquaculture by-products; turbot waste; valorization; fish protein hydrolysates; bioactive;
circular bioeconomy

1. Introduction

One of the most critical challenges that humanity currently faces is the production of enough
food for an expected population of 9.6 billion people by 2050. Regarding aquatic food, the world
fish production reached 170 million tons in 2016, with around 48% obtained from aquaculture [1].
As traditional fishing stocks approach their maximum level of exploitation (in many cases, even
overexploited), aquaculture arises as a natural evolution of fisheries for fish supply, showing great
potential since the resources required to produce a kilogram of food suitable for consumption are less
in the water than on the land [2]. Among the different cultivated species, turbot (Scophthalmus maximus)
farming is remarkable from the economic, hedonistic, and health perspectives due to turbot market
price and organoleptic and nutritive properties. China is the largest producer with an estimated 60,000
t per year, followed by Europe with 11,000 t in 2017 [1]. European production is concentrated in
Galicia (northwest of Spain) and north of Portugal, monopolizing 75% and 21% of the continental
output, respectively.
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Although turbot is conventionally marketed as a whole fish, fillet presentations are growing
year after year in Europe, recently achieving around 10%–15% of the total turbot sold. As a result,
by-products generated in the filleting process (heads, trimmings, frames, and viscera) represent a new
source of waste in aquaculture plants. This residual biomass accounts for about 60% of the total turbot
weight and must be managed to avoid environmental health problems, ideally through valorization
processes within the scope of circular bioeconomy principles [3]. The only previous study dealing
with the valorization of turbot waste by Fang et al. [4] proposed turbot skin as a substrate for the
fermentation of microorganisms, such as Aspergillus oryzae, to produce extracts rich in antioxidants.
However, one the most valuable processes to achieve high protein recovery, including bioactive
peptides, is by application of proteases under controlled conditions of operation, to digest fish waste
and generate fish protein hydrolysates (FPHs) [5].

The enzymatic proteolysis of fish by-products using exogenous proteases is a fast, reproducible, and
controllable way to separate the material into bones, oil, and an aqueous phase. This phase habitually
presents a high content of different soluble proteins and peptides (of different sizes) as well as free amino
acids [5,6]. Additionally, FPHs have demonstrated in many cases remarkable in vitro biological activities
(antioxidant, antiproliferative, antihypertensive, etc.) and technological properties (emulsifying activity,
foaming capacity, etc.) [7–9]. All these benefits make fish hydrolysates a valuable and easily digestible
protein supplement, with high nutritional properties and interesting applications as an ingredient for
human and animal functional foods [5,10,11]. From the 1940s, the number of fish species, types of fishery
wastes, and proteolytic enzymes (both endo- and exogenous) studied for FPHs production has been
extensive [11–13]. However, the application of this process to turbot waste remains unexplored.

The aim of this study was, initially, to optimize enzymatic proteolysis conditions to produce
protein hydrolysates from a turbot farming processing by-product (heads). Subsequently, and based
on the obtained optimal conditions, FPHs from other turbot wastes (viscera, trimmings + frames) were
extensively produced at 5L-pH-stat scale evaluating hydrolysis kinetics and performing an exhaustive
chemical characterization of the hydrolysates, including molecular weight and peptide size distribution
along with antioxidant and antihypertensive properties. To the best of our knowledge, this is the first
article studying the valorization of turbot waste by the production of enzymatic hydrolysates and
associated functional responses.

2. Materials and Methods

2.1. Turbot by-Products

By-products of turbot (Scophthalmus maximus) generated from fish filleting were kindly supplied
by Prodemar (Stolt Sea Farm S.A., Carnota, A Coruña, Spain). These materials (20–25 kg of each
by-product) were frozen and kept at −18 ◦C until processing (Figure S1, Supplementary Materials).
The three types of substrates were heads of turbot (Tu_H), trimmings and frames of turbot (Tu_TF),
and viscera of turbot (Tu_V). Initially, they were ground in a meat mincer (Figure S1, Supplementary
Materials) before hydrolysis.

2.2. Optimization of Protease Hydrolysis of Turbot by-Products

In order to know the best conditions of enzyme digestion, rotatable second order designs (with 5
replicates in the center of the experimental domain) were conducted studying the impact of temperature
(T) and pH on the Alcalase 2.4L (2.4 AnsonUnit/g, AU/g enzyme, Nordisk, Bagsvaerd, Denmark)
hydrolysis of Tu_H. Natural and codified values for factorial experiments jointly with the constant
conditions applied for the agitation, enzyme concentration, and solid:liquid ratio (S:L) are shown in
Table S1 (Supplementary Materials). The responses (dependent variables, Y) were the concentration of
soluble protein (Prs), the maximum hydrolysis (Hm), and the yield of digestion (Vdig). Orthogonal
least-squares calculation on factorial design data was used to obtain empirical equations describing
the different responses assessed (Y) in function of the independent variables:
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Y = b0 +
n∑

i=1

biXi +
n−1∑
i=1
j>i

n∑
j=2

bi jXiX j +
n∑

i=1

biiX2
i (1)

where Y is the dependent variable evaluated, b0 is the constant coefficient, bi is the coefficient of linear
effect, bij is the coefficient of combined effect, bii is the coefficient of quadratic effect, n is the number of
variables, and Xi and Xj are the independent variables studied in each case.

Student’s t-test (α = 0.05) was employed to determine the statistical significance of coefficients.
Coefficient of determination (R2) and adjusted coefficients of determination (R2

adj) were used to establish
goodness-of-fit, and the following mean squares ratios from Fisher F test (α = 0.05) were calculated
to define model consistency: F1 = Model/Total error, being the model acceptable when F1 ≥ Fnum

den ;
F2 = (Model + Lack of fitting)/Model, being the model acceptable when F2 ≤ Fnum

den ; and F3 = Total
error/Experimental error, being the model acceptable when F3 ≤ Fnum

den . Fnum
den are the theoretical values

to α = 0.05 with corresponding degrees of freedom for numerator (num) and denominator (den). These
experiments were carried out in a pH-Stat system equipped with a 100 mL enzyme reactor including
temperature and agitation control.

Based on the optimal values of T and pH obtained in the above factorial plan, individual effects of
enzyme concentration and (S:L) ratio on turbot heads hydrolysis were separately studied using the
same equipment. In all optimization experiments, after hydrolysis (3 h) the content from mini reactors
were centrifuged (15,000× g/20 min), the sediments (mainly bones) and supernatants were quantified,
and FPHs were quickly heated (90 ◦C/15 min) for enzyme inactivation.

2.3. Production of Fish Protein Hydrolysates (FPHs) of Turbot by-Products

Hydrolysis of turbot wastes was scaled-up and performed (ten independent batches for each
substrate) in a controlled pH-Stat system with a 5 L glass-reactor using the optimal conditions defined
for Tu_H. The alkaline reagent for pH-control was 5 M NaOH. Two kilograms of milled substrates
were mixed with 2 L of distilled water and 0.2% (v/w) of Alcalase, and hydrolyzed for 3 h at 60 ◦C
and pH 8.5. At the end of the hydrolysis, the content of the reactors was filtered (100 µm) to remove
bones, the liquid hydrolysates were centrifuged (15,000× g/20 min) to recover oils (adding a step of
decantation for 15 min), and protease deactivation was achieved by heating (90 ◦C/15 min) of FPHs
(Figure 1). Solid FPH were obtained by freeze-drying. The time-course of hydrolysis was recorded
by means of the degree of hydrolysis (H, as %) using the pH-Stat method [14] and modeled by the
following Weibull equation [13]:

H = Hm

{
1− exp

[
− ln 2

( t
τ

)β]}
with vm =

βHm ln 2
2τ

(2)

where H is the degree of hydrolysis (%), t is the time of hydrolysis (min), Hm is the maximum
degree of hydrolysis (%), β is a parameter related with the maximum slope of muscle hydrolysis
(dimensionless), vm is the maximum rate of hydrolysis (% min−1), and τ is the time required to achieve
the semi-maximum degree of hydrolysis (min). The yields of digestion/liquefaction (Vdig) of raw
material to the liquid phase were also determined [13].
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Figure 1. Schematic flowchart of turbot by-products processed through enzymatic hydrolysis.

2.4. Chemical and Biological Determinations

The chemical composition of by-products was determined as (1) water, ash, and organic matter
content [15]; (2) total nitrogen [15] and total protein as total nitrogen ×6.25; and (3) total lipids [16].
The profile of fatty acids from turbot oil was analyzed by gas chromatography after chemical
methylation [17]. The basic analyses of FPHs were: (1) total soluble protein [18]; (2) total sugars [19];
(3) total protein as total nitrogen × 6.25 [15]; (4) amino acids content following the method of Moore
et al. [20], employing an Amino Acid Analyser (Biochrom 30 series, Biochrom Ltd., Cambridge,
UK); and (5) in vitro digestibility (pepsin method: AOAC Official Method 971.09) according to the
modifications reported by Miller et al. [21].

Molecular weights of FPHs (>1 kDa) were determined by gel permeation chromatography
(GPC). The system used was an Agilent 1260 HPLC consisting of quaternary pump (G1311B), injector
(G1329B), column oven (G1316A), refractive index (G1362A), diode array (G1315C), and dual-angle
static light scattering (G7800A) detectors. Standard and samples were eluted with a 0.15 M ammonium
acetate/0.2 M acetic acid buffer at pH 4.5 pumped at 1 mL/min through four columns (PSS, Germany):
Proteema precolumn (5 µm, 8 × 50 mm), Proteema 30 Å (5 µm, 8 × 300 mm), Proteema 100 Å (5 µm,
8 × 300 mm), and Proteema 1000 Å (5 µm, 8 × 300 mm) after a 100 µL injection. Column oven and
light scattering detector were kept at 30 ◦C, and refractive index detector was maintained at 40 ◦C.
Detectors were calibrated with a polyethylene oxide standard (PSS, Germany) of 106 kDa (Mw) and
polydispersity index 1.05. Absolute molecular weights were estimated with refractive index increments
(dn/dc) of 0.185. In the case of molecular weight of peptides from FPHs (<10 kDa), the samples of FPHs,
after processing by centrifugation on Amicon-1 kDa (MerckMillipore, Darmstadt, Germany), were
quantified by HPLC (220 nm UV-detection) using Superdex peptide 10/300 GL column (GE Healthcare
Life Sciences, Little Chalfont, UK) with 0.1% trifluoroacetic acid in 30% of acetonitrile as mobile phase
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(flow rate of 0.4 mL/min) at 25 ◦C. The standards used were Blue Dextran (2 MDa), Cytochrome c
(12.4 kDa), Aprotinin (6.5 kDa), Angiotensin II (1046 Da), Leucine encephalin (555 Da), Val-Tyr-Val
(379 Da), and Gly-Gln (221 Da).

Biological activities as antihypertensive and antioxidant (AO) values were quantified in FPHs
samples as (a) in vitro Angiotensin I-converting enzyme (ACE) inhibitory activity (IACE) according
to the protocol of Amado et al. [22] calculating IC50 values (protein-hydrolysate concentration
that generates a 50% IACE) by dose-response modeling; (b) 1,1-diphenyl-2-picrylhydrazyl (DPPH)
radical-scavenging ability following a microplate protocol [23]; (c) ABTS (2,2′-azinobis-(3-ethyl-
benzothiazoline-6-sulphonic acid) bleaching method at microplate scale [23]; (d) crocin bleaching assay
also employing an optimized microplate protocol [24]. All antihypertensive and AO determinations
were done in triplicate using FPHs samples at a concentration of 1 g/L of soluble protein.

2.5. Numerical and Statistical Analyses

Data fitting procedures and parametric estimations were conducted by minimization of the sum of
quadratic differences between observed and model-predicted values, using the non-linear least-squares
(quasi-Newton) method provided by the macro ‘Solver’ of the Microsoft Excel spreadsheet. Confidence
intervals from the parametric estimates (Student’s t-test) and consistency of mathematical models
(Fisher’s F test) were evaluated by “SolverAid” macro. The significance of comparisons between
samples was analyzed by ANOVA with a significance level of p < 0.05.

3. Results and Discussion

The chemical composition of turbot by-products is listed in Table S2. The moisture of these
materials varied from 64% to 73%, reaching 27% of organic matter in Tu_V and 9% of ash in Tu_TF.
Higher contents of total lipids and total proteins were found in viscera and head, respectively. After
defatting, viscera showed the greater level of proteins.

3.1. Optimization of Enzyme Hydrolysis of Turbot by-Products

In the first step, the experimental conditions of Alcalase hydrolysis on turbot heads were optimized
by response surface methodology according to a two-variable factorial design for pH and temperature
(Table S1, Supplementary Materials) combined with subsequent one-variable optimizations for the
other independent variables: enzyme concentration and (S:L) ratio. The graphical description of the
results for both approaches is displayed in Figure 2. Response surfaces including experimental data of
Prs, Vdig, and Hm together with values predicted by polynomial equations (Table 1) are shown in A, D,
and G plots. The agreements between simulated and experimental data were remarkable, with values
of R2

adj> 0.832. Fisher test (F1, F2 and F3) results were acceptable in all cases (data not shown). From
values of Table 1, the average data of pHopt and Topt were calculated as 8.82 and 60.3 ◦C, respectively.
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individual effect of Alcalase concentration on Hm; (E) individual effect of S:L ratio on Prs; (F) 
individual effect of Alcalase concentration on Prs; (H) individual effect of S:L ratio on Vdig; (I) 
individual effect of Alcalase concentration on Vdig. Error bars are the intervals of confidence for n = 2 
(replicates of different hydrolysates) and α = 0.05. 

Taking into account these optimal values of pH and T, the effects of S:L ratio on numerical 
responses were individually studied (Figure 2B,E,H plots). The results were similar at all ratios 
tested without significant variations among them (p > 0.05). In order to reduce the use of water, a 
1:1 ratio was hence chosen. Next, enzyme concentration effect was also evaluated (Figure 2C,F,I 
plots), obtaining significant best responses of Prs, Vdig, and Hm for concentrations higher than 0.1% 
v/w (p < 0.05). Based on all these outcomes, the optimal conditions found for Tu_H were finally: 
Alcalase 0.2% (v/w), ratio of (1:1), pH = 8.82, T = 60.3 °C, 200 rpm, 3 h of hydrolysis. These 
experimental conditions were applied to the rest of turbot by-products and the scaling of the FPHs. 

Table 1. Polynomial equations describing the combined effect of temperature (T) and pH on 
Alcalase hydrolysis of Tu_H. The coefficient of determination and adjusted determination (R2 
and 2

a d jR ) and F-values are also shown. NS: non-significant. Optima values of the two variables (Topt, 

pHopt) to achieve the theoretical maximum responses (Ymax) from the empirical equations were also 
calculated. S: significant; NS: not significant. 

Parameters Hm (%) Vdig (%) Prs (g/L) 
b0 (intercept) 28.36 ± 1.57 88.59 ± 2.13 58.69 ± 2.27 

b1 (T) 3.12 ± 1.25 3.70 ± 1.69 5.28 ± 1.80 
b2 (pH) 4.74 ± 1.24 5.05 ± 1.69 10.0 ± 1.80 

b12 (TxpH) 2.07 ± 1.76 NS 3.25 ± 2.54 
b11 (T2) −5.81 ± 1.34 −10.26 ± 1.82 −9.19 ± 1.94 

b22 (pH2) −6.27 ± 1.34 −3.05 ± 1.82 −11.8 ± 1.94 
2R  0.879 0.888 0.904 

2
adjR  0.803 0.832 0.835 

Figure 2. Optimization studies of heads-of-turbot (Tu_H) hydrolysis by Alcalase. Experimental data
and predicted response surfaces describing the joint effect of pH and T on Hm response (A), Prs response
(D), and Vdig response (G) as defined in Table 1. (B) Individual effect of S:L ratio on Hm; (C) individual
effect of Alcalase concentration on Hm; (E) individual effect of S:L ratio on Prs; (F) individual effect
of Alcalase concentration on Prs; (H) individual effect of S:L ratio on Vdig; (I) individual effect of
Alcalase concentration on Vdig. Error bars are the intervals of confidence for n = 2 (replicates of different
hydrolysates) and α = 0.05.

Taking into account these optimal values of pH and T, the effects of S:L ratio on numerical
responses were individually studied (Figure 2B,E,H plots). The results were similar at all ratios tested
without significant variations among them (p > 0.05). In order to reduce the use of water, a 1:1 ratio was
hence chosen. Next, enzyme concentration effect was also evaluated (Figure 2C,F,I plots), obtaining
significant best responses of Prs, Vdig, and Hm for concentrations higher than 0.1% v/w (p < 0.05). Based
on all these outcomes, the optimal conditions found for Tu_H were finally: Alcalase 0.2% (v/w), ratio of
(1:1), pH = 8.82, T = 60.3 ◦C, 200 rpm, 3 h of hydrolysis. These experimental conditions were applied to
the rest of turbot by-products and the scaling of the FPHs.

Table 1. Polynomial equations describing the combined effect of temperature (T) and pH on Alcalase
hydrolysis of Tu_H. The coefficient of determination and adjusted determination (R2 and R2

adj) and
F-values are also shown. NS: non-significant. Optima values of the two variables (Topt, pHopt) to
achieve the theoretical maximum responses (Ymax) from the empirical equations were also calculated.
S: significant; NS: not significant.

Parameters Hm (%) Vdig (%) Prs (g/L)

b0 (intercept) 28.36 ± 1.57 88.59 ± 2.13 58.69 ± 2.27
b1 (T) 3.12 ± 1.25 3.70 ± 1.69 5.28 ± 1.80

b2 (pH) 4.74 ± 1.24 5.05 ± 1.69 10.0 ± 1.80
b12 (TxpH) 2.07 ± 1.76 NS 3.25 ± 2.54

b11 (T2) −5.81 ± 1.34 −10.26 ± 1.82 −9.19 ± 1.94
b22 (pH2) −6.27 ± 1.34 −3.05 ± 1.82 −11.8 ± 1.94

R2 0.879 0.888 0.904
R2

adj 0.803 0.832 0.835
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Table 1. Cont.

Parameters Hm (%) Vdig (%) Prs (g/L)

F1
10.19

[F5
7 = 3.97]⇒ S

15.85
[F5

7 = 3.97]⇒ S
13.13

[F5
7 = 3.97]⇒ S

F2
0.705

[F8
5 = 4.82]⇒ S

0.558
[F8

5 = 4.82]⇒ S
0.688

[F8
5 = 4.82]⇒ S

F3
6.012

[F8
5 = 4.82]⇒ S

5.669
[F8

5 = 4.82]⇒ S
5.998

[F8
5 = 4.82]⇒ S

Topt (◦C) 61.1 58.2 61.6
pHopt 8.62 9.17 8.68
Ymax 29.9% 91.0% 62.1 g/L

In the last decade, Alcalase has shown an excellent capacity to hydrolyze several fish wastes
such as salmon by-products [25], yellowfin tuna heads [26], and Atlantic cod, having being also
applied to cattle viscera [12,27]. Other marine materials, e.g., cartilage and squid pens, have also been
successfully digested by Alcalase [28,29], reducing operational costs and increasing effectiveness in the
production of the biopolymers chondroitin sulfate and chitosan. The production of valuable FPHs
from whole and by-products of fish discards using Alcalase has also been demonstrated [13,30]. Using
a similar experimental approach, the optimized conditions for the hydrolysis of blue whiting were
stablized as Alcalase 1% (v/w), ratio of (1:2), pH = 8.65, 60 ◦C, 200 rpm, 4 h of hydrolysis. Recently,
enzymatic hydrolysates of salmonid by-products were produced by a procedure similar to the turbot
ones: Alcalase 0.1% (v/w), ratio of (1:1), pH = 8.27, 56.2 ◦C, 200 rpm, th =3 h and Alcalase 0.2% (v/w),
ratio of (1:1), pH = 8.98, 64.2 ◦C, 200 rpm, th = 3 h for salmon and rainbow trout heads, respectively [31].

3.2. Production and Chemical Composition of Turbot FPHs

Hydrolysates of turbot wastes were produced in 5L-pH-stat reactors under the conditions defined
in the previous section. Kinetics of hydrolysis degree showed hyperbolic trends (Figure 3) perfectly
modeled by equation (2). In this regard, the concordance among experimental and theoretical data
was almost complete (R2 > 0.998) and the robustness of the equation was in all cases validated
(p < 0.005) (Table S3, Supplementary Materials). The values of Hm and τ were higher in Tu_H and
Tu_TF hydrolysis, whereas the maximum rate was higher in Tu_V. No comparison can be made with
literature results since this is the first report dealing with the production of FPHs from turbot from the
aquaculture industry. Regarding other fish by-products, our outcomes of Hm are in range (similar or
slightly lower) with the values observed for hydrolysates from whole fish discards as megrim, blue
whiting, red scorpionfish, and grenadier [30], but higher than those obtained for FPHs of boardfish,
and pouting and by-products from salmon and trout [6,13,32,33].
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frames of turbot, and Tu_V: viscera of turbot. Experimental data of kinetics (symbols) were fitted to
the Weibull equation (continuous line). Error bars are the confidence intervals for n = 10 (replicates of
different hydrolysates) and α = 0.05.
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Figure S2 (Supplementary Materials) shows different pictures related to the production of FPHs
and the concomitant bones and oil recovered using the scheme reported in Figure 1. The amount of
bone separated achieved 10% and 17% (w/w of the initial substrate) in Tu_TF and Tu_H, respectively,
and no inorganic fraction was released from viscera (Table 2). The volume of oil extracted from turbot
wastes was lower than expected, maybe due to the presence of oils as emulsions in FPH phases, which
centrifugation was incapable of breaking. Oleic acid (around 34% v/w of the initial substrate) and
palmitic acid (around 20% v/w) were the primary fatty acids present in oils. Still, the percentage of DHA
and EPA was lower than 6% v/w (Table S4, Supplementary Materials). Regarding the omega-3/omega-6
ratio, values were slightly greater than 0.5, the figure set as threshold level to define the relevance of
oils to be included in nutraceutical products [34].

The yields of digestion achieved by Alcalase on turbot wastes were very promising (95% on viscera
in the best case) and similar to the outcomes obtained using fish discards as substrates [13,30]. In all
cases, protein contents were higher than 61, 63, and 61 g/L when Prs, Pr-tN, and Σaa were determined
in the final FPHs (Tables 2 and 3), with significant differences between viscera and the two other
materials (p < 0.05). The data of digestibilities were superb and identical for the three hydrolysates
(higher than 92%). Glycine, glutamic acid, aspartic acid, and alanine were the predominant amino
acids in turbot FPHs with remarkable content in the essential ones: TEAA/TAA values were higher
than 28% (Table 3). Considering the concentrations of total and soluble proteins and the profile of
amino acids along with the values of digestibility, valuable applications of turbot hydrolysates can be
envisaged such as an ingredient in human food supplements and animal feed [10,35]. Further trials
should be conducted to assess these potentialities. In fact, one of the main motivations to carry out
the present production of turbot FPHs is for the subsequent application of these hydrolysates in the
formulation of specific diets for the growth of culture fish as trout, salmon, and seabream.

Table 2. Mass balances and proximal analysis of the products obtained from Alcalase hydrolysates of
turbot by-products.

FPHs mb (%) Voil (%) Vdig (%) Prs (g/L) Pr-tN (g/L) TS (g/L) Dig (%)

Tu_H 16.8 ± 1.4 a 0.25 ± 0.19 a 86.9 ± 1.2 a 73.5 ± 4.9 a 73.9 ± 4.5 a 1.26 ± 0.14 a 92.1 ± 4.1 a

Tu_TF 9.7 ± 1.4 b 4.25 ± 1.09 b 82.5 ± 1.2 b 73.9 ± 3.8 a 72.7 ± 3.9 a 1.34 ± 0.17 a 93.8 ± 2.4 a

Tu_V - 0.46 ± 0.10 a 95.3 ± 1.0 c 61.6 ± 2.8 b 63.6 ± 2.9 b 1.39 ± 0.25 a 92.4 ± 1.9 a

Shown errors are the confidence intervals for n = 10 (replicates of different hydrolysates) andα= 0.05. mb: percentage
of the bones recovered; Voil: percentage of oil recovered; Vdig: yield of digestion process; Prs: total soluble protein
determined by Lowry; Pr-tN: total protein determined as total nitrogen ×6.25; TS: total sugars; Dig: digestibility.
Different letters in each column means significant difference between fish discards (p < 0.05).

Table 3. Amino acids content of fish protein hydrolysates (FPHs) (% or g/100 g total amino acids) from
turbot by-products. OHPro: hydroxyproline. Pr: protein concentration calculated in g/L as the total sum
of amino acids present in FPH. TEAA/TAA: ratio total essential amino acids for human/total amino acids.
Errors are the confidence intervals for n = 10 (replicates of independent hydrolysates) and α = 0.05.

Amino Acids Tu_H Tu_TF Tu_V

Asp 8.81 ± 0.16 9.63 ± 0.10 9.26 ± 0.42
Thr 3.64 ± 0.16 3.90 ± 0.06 3.85 ± 0.18
Ser 5.67 ± 0.14 5.37 ± 0.18 5.39 ± 0.36
Glu 12.86 ± 0.18 13.55 ± 0.08 13.12 ± 0.32
Gly 14.50 ± 0.32 12.57 ± 0.15 13.00 ± 0.50
Ala 8.38 ± 0.24 8.06 ± 0.05 7.83 ± 0.22
Cys 0.62 ± 0.05 0.77 ± 0.10 0.71 ± 0.11
Val 2.96 ± 0.09 3.21 ± 0.11 3.23 ± 0.12
Met 2.76 ± 0.15 2.90 ± 0.04 2.84 ± 0.17
Ile 1.97 ± 0.11 2.19 ± 0.08 2.29 ± 0.12
Leu 5.37 ± 0.11 5.93 ± 0.11 5.86 ± 0.17
Tyr 2.90 ± 0.16 3.18 ± 0.08 3.11 ± 0.20
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Table 3. Cont.

Amino Acids Tu_H Tu_TF Tu_V

Phe 4.16 ± 0.18 4.51 ± 0.17 4.31 ± 0.37
His 1.61 ± 0.07 1.75 ± 0.04 1.85 ± 0.11
Lys 5.57 ± 0.14 6.15 ± 0.11 6.18 ± 0.23
Arg 6.53 ± 0.24 6.34 ± 0.08 6.59 ± 0.36

OHPro 4.00 ± 0.19 3.14 ± 0.18 3.42 ± 0.35
Pro 7.67 ± 0.25 6.86 ± 0.13 7.14 ± 0.37

Pr (Σaa) (g/L) 68.62 ± 5.05 69.72 ± 4.39 61.94 ± 2.84
TEAA/TAA (%) 28.04 30.54 30.41

Regarding the size of the peptides present in the hydrolysates (Table 4), the average molecular
weights (Mw) were 1622 ± 146 Da (PDI: 1.53), 1200 ± 53 Da (PDI: 1.45), and 2146 ± 144 Da (PDI: 2.44)
for Tu_H, Tu_TF, and Tu_V, respectively. The most repeated peptide sizes for each FPHs (expressed as
the number average molecular weight, Mn) were 1062 ± 102 Da for Tu_H, 826 ± 42 Da for Tu_TF, and
878 ± 64 Da for Tu_V. Combining the two chromatographic protocols described in the Materials and
Methods Section, the distribution of peptide sizes are compiled in Table 4, and the graphical profiles
of low peptides are also represented in Figure 4. In Tu_V, the content of peptides above 1 kDa was
higher (65%) than those present in Tu_H and Tu_TF (54% and 45%, respectively). A concordance was
observed between the molecular weight profiles and maximum degree of hydrolysis, supporting lower
values of Hm for bigger peptide size. Nevertheless, the largest fraction of peptides ranging 0–200 Da
was found in hydrolysates of viscera.
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Table 4. Average molecular weights (as Mn and Mw) and associated confidence intervals for n = 5
(samples from different hydrolysates) and α = 0.05. Percentage of peptides distribution between
molecular weight ranges was also determined. PDI: polydispersity index.

FPHs Mn (Da) Mw (Da) PDI 0–0.2 kDa
(%)

0.2–0.5 kDa
(%)

0.5–1 kDa
(%)

1–3 kDa
(%)

>3 kDa
(%)

Tu_H 1062 ±
102 1622 ± 146 1.527 8.1 ± 0.6 14.9 ± 0.0 23.1 ± 0.5 46.0 8.0 ± 1.4

Tu_TF 826 ± 42 1200 ± 53 1.453 7.0 ± 0.9 14.1 ± 0.2 34.1 ± 1.2 40.3 4.4 ± 0.9
Tu_V 878 ± 64 2146 ± 144 2.444 12.3 ± 3.9 6.6 ± 0.5 16.0 ± 1.2 52.9 12.21

3.3. Antioxidant and Antihypertensive Properties of Turbot Hydrolysates

The hydrolysis of turbot by-products yielded FPHs with bioactive properties. All studied FPH
showed potential in vitro antioxidant and antihypertensive activities in the form of DPPH and ABTS
scavenging abilities, Crocin bleaching effect, and ACE-inhibitory capacity (Table 5). The hydrolysates
of viscera showed higher numerical antioxidant effect than Tu_TF and Tu_H, but in the case of ABTS
and DPPH, the differences between samples were not significant (p > 0.05). Because this work is
the first reference studying the production of FPHs from turbot materials, comparisons with other
published reports cannot be made. However, the antioxidant capacity of turbot hydrolysates was not
especially remarkable in comparison with hydrolysates of salmon, trout, or herring [36–38].

Table 5. Bioactivities of FPHs from turbot by-products. Errors shown are the confidence intervals for
n = 3–5 (samples from independent hydrolysates) and α = 0.05. Different letters in each column means
significant difference between fish discards (p < 0.05).

Antioxidant Antihypertensive

FPHs DPPH (%) ABTS
(µg BHT/mL)

Crocin
(µg Trolox/mL) IACE (%) IC50

(µg protein/mL)

Tu_H 36.12 ± 2.81 a 10.01 ± 0.98 a 7.30 ± 0.92 a 60.4 ± 5.8 a 1273.6 ± 74.5 a

Tu_TF 41.09 ± 0.98 b 11.47 ± 2.14 a 7.99 ± 0.51 a 52.6 ± 24.1 a 1063.4
Tu_V 65.15 ± 4.08 c 12.81 ± 1.92 a 8.03 ± 0.78 a 81.9 ± 8.9 a,b 212.7 ± 63.7 b

The ACE-inhibitory activity depended on the substrate hydrolyzed and the corresponding
molecular weight profiles of FPHs. The inhibition data (as IACE) varied from 53% to 82% with maximum
response in Tu_V. In agreement with these values, FPHs from several by-products of fish discards
(boardfish, red scorpionfish, and blue whiting) led to percentages of IACE ranging 45%–70% [32,39,40].
Concerning the IC50 results, the strongest antihypertensive activity was observed in Tu_V (212.7 µg/mL)
while in samples of head and trimmings these dose-response parameters were five-times higher.
Hydrolysates from the muscle of hake (165 µg/mL), skins of gurnard (152 µg/mL), pouting (211 µg/mL),
and red scorpionfish (226 µg/mL) revealed similar properties than our Tu_V [13,41]. In summary, FPHs
from turbot viscera showed the highest bioactivity, both antioxidant and antihypertensive, which could
probably be related to the presence of highest percentage of largest peptides (>1 kDa) (Table 4). Similar
findings were also described for other fish enzyme hydrolysates: peptides obtained from substrates
of cod, tuna, tilapia, Alaska pollock, and hoki and ranging from 1300 to 1800 Da revealed bioactive
properties including those studied here [42–46].

4. Conclusions

In the present work, the valorization of by-products generated from aquaculture turbot filleting
(heads, viscera, and trimmings + frames) has been reported for the first time. Thus, the hydrolysis
of those substrates by Alcalase 2.4L on previously optimized conditions (0.2% (v/w), pH = 8.82, T =

60.3 ◦C, S:L = 1:1, th = 3 h and 200 rpm) led to the recovery of fish oils, clean bones, and the production
of fish protein hydrolysates. The characterization of these FPHs indicated excellent chemical properties



Biomolecules 2020, 10, 310 11 of 13

in terms of a high degree of hydrolysis, valuable concentration of soluble protein, adequate balance of
amino acids for nutritional applications (relevant TEAA/TAA ratios), and almost complete in vitro
digestibilities. Moreover, the in vitro antioxidant and antihypertensive ability of turbot hydrolysates,
mainly from viscera, was remarkable. Bearing in mind these outcomes, FPHs from turbot could have
useful applications as an ingredient in the formulation of human protein concentrates, pet food diets,
and aquaculture feeds as a substitute of fish meals. Finally, the process developed here complies
with the aims of the circular bioeconomy; however, these studies should be completed with further
determinations of life cycle assessment (LCA) and CO2 footprint for the production of turbot FPHs.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/10/2/310/s1,
Figure S1: Pictures of the turbot by-products (raw materials), Figure S2: Pictures describing the production
of turbot hydrolysates, Table S1: Experimental design for the optimization of the FPHs, Table S2: Proximate
composition of turbot by-products, Table S3: Kinetic parameters from Weibull equation modeling the time course
of the hydrolysis degree, Table S4: Fatty acids content from fish oils recovered from different wastes of turbot.
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