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Understanding the dynamics of milling bodies is key to optimize the mixing and the
transfer of mechanical energy in mechanochemical processing. In this work, we
present a comparative study of mechanochemical reactors driven by harmonic
pendular forcing and characterized by different geometries of the lateral borders.
We show that the shape of the reactor bases, either flat or curved, along with the size of
the milling body and the elasticity of the collisions, represents relevant parameters that
govern the dynamical regimes within the system and can control the transition from
periodic to chaotic behaviors. We single out possible criteria to preserve target
dynamical scenarios when the size of the milling body is changed, by adapting the
relative extent of the spatial domain. This allows us to modulate the average energy of
the collisions while maintaining the same dynamics and paves the way for a unifying
framework to control the dynamical response in different experimental conditions. We
finally explore the dynamical and energetic impact of an increasingly asymmetric
mechanical force.

Keywords: transition to chaos, forced-damped oscillators, modeling of mechanochemical systems,
mechanochemistry, ball-mill grinding

1 INTRODUCTION

Mechanochemistry is emerging with increasing strength as a powerful approach to the synthesis of
fine chemical compounds (Friscic, 2012; James et al., 2012; Balaz et al., 2013; Boldyreva, 2013;
Wang, 2013; Rightmire and Hanusa, 2016; Do and Friščić, 2017; Tan and García, 2019; Friscic
et al., 2020; Porcheddu et al., 2020). In contrast with conventional chemistry in solution, which
makes use of heat and light to activate and drive the chemical reaction, mechanochemical
transformations are caused by the application of mechanical forces to solid phases (Thiessen et al.,
1967; Butyagin, 1971; Thiessen, 1979; Boldyrev, 1983; Avvakumov, 1986; Heinicke, 1986;
Michalchuck et al., 2020).

In light of the common use of manual and mechanical grinding throughout human history, and
starting from the XIX century in particular (Takacs, 2013), the mechanical activation of chemistry
does not represent a novelty in itself. However, the possibility to carry out chemical reactions
under solventless conditions, or with a significant reduction of solvent phase, is extremely
appealing now that attention to green chemistry issues is unavoidable and impossible to
procrastinate (Galant et al., 2022). The evidence that mechanical processing can also open
synthetic routes to chemicals and materials that cannot be prepared by more conventional
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methods further explains why mechanochemistry is currently
experiencing vigorous growth (Gomollon-Bel, 2019;1).

Amongst the mechanical processing methods, ball milling is a
popular choice. Contrary to the mechanochemistry of individual
molecules, which requires extremely refined manipulation
methods (Boldyreva, 2013), ball milling is an easy method for
mechanical processing of granular materials (Thiessen et al.,
1967; Tan and García, 2019; Friscic et al., 2020; Porcheddu
et al., 2020). Widely available in a variety of sizes and designs,
ball milling devices are equipped with one or more reactors that
contain one or more balls. The balls collide with each other and
with the reactor walls as the vessel is shaken in mono-axial,
pendular or rotational modes, crushing and deforming at
relatively high strain rates the powder particles trapped
between the colliding surfaces (Tan and García, 2019; Friscic
et al., 2020). The local non-hydrostatic mechanical stresses
generated during the impact can finally result in the activation
of chemical reactions depending on the intensity of mechanical
forces and the physical and chemical properties of the processed
material (Thiessen et al., 1967; Tan and García, 2019; Friscic et al.,
2020; Porcheddu et al., 2020).

Despite the interest attracted by mechanical processing in the
past 50 years, the understanding of how the mechanical energy
translates into chemical reactivity is still unsatisfactory.
Accordingly, new theoretical tools to understand how to
design, control, and predict the development of these
processes are needed (Carta et al., 2020; Carta et al., 2021).

As the activation and the progress of a givenmechanochemical
transformation crucially depend on the conditions experienced
by powder particles at collisions and by their effective mixing, one
informative approach relies on the study of the dynamics of the
milling bodies responsible for dragging the powder and driving
collisions.

In the past, various attempts have been made in this direction
for the most widespread ball milling devices (Burgio et al., 1991;
Abdellaoui and Gaffet, 1995; Courtney, 1996; Magini et al., 1996;
Feng et al., 2004; Cleary et al., 2006; Sinnott et al., 2006; Boschetto
et al., 2013; Broseghini et al., 2016; Zhao and Shaw, 2017). The
dynamics of milling balls in the SPEX Mixer/Mill 8,000 device
have also been studied in detail within a deterministic framework
(Watanabe et al., 1995; Delogu et al., 1998; Concas et al., 2006). In
agreement with experimental results, numerical simulations
showed how balls’ trajectories and collisions at the reactor
walls are sensitive to the collision elasticity degree (Rustici
et al., 1996; Delogu et al., 1998; Delogu et al., 2000), which
can control the transition from periodic to chaotic behaviors
in the temporal displacement of the ball (Caravati et al., 1999;
Manai et al., 2002). From the spatial viewpoint, these chaotic
regimes showed a fingerprinting multifractal topology in the
location and recurrence of collisions on the reactor walls
(Budroni et al., 2014; Budroni et al., 2017).

The onset of chaotic behaviors can greatly favor an effective
mixing of the granular medium inside the medium (King, 1998;

Aref et al., 2017), and it is, indeed, useful for isolating parametric
conditions where these regimes can occur. In this context, we
propose a comparative study and classification of mill body
dynamics inside reactors driven by harmonic pendular
motion, which represents one class of commonly used
mechanochemical devices. We focus on two different
geometries of reactors characterized either by flat or curved
lateral borders (the latter system has never been explored in
this perspective). Moreover, two possible designs of the reactors
are considered, either with the mechanical arm driving the
periodic motion allocated at the center of the reactor
(symmetric forcing) or at different distances from it
(asymmetric forcing). Symmetric and asymmetric forcing can
induce different transfer and dissipation of the energy within the
reactor as well as impact spatio-temporal dynamics of the milling
body, which has never been deepened. We first explore the onset
of dynamical scenarios of the two geometries driven by a
symmetric forcing in response to the variation of the collision
elasticity and the milling body size. The latter critically impacts
mechanochemical processing and is mostly chosen in
experiments by following empirical methods and trial-error
procedures, hence without any theoretical reference. On the
basis of these first results, we check the existence of a guiding
criterion to predict the typology of dynamical regimes on the
basis of the relative size of the reactor and the milling body. This
represents a contribution on the way towards a unifying
parametrization of mechanochemical devices, which could
help the reproducibility and the scaling-up of the results of
mechanical processing, which are carried out in a plethora of
different experimental conditions (Gil-González et al., 2021). We
finally investigate systematically the effect of an asymmetric
forcing on the milling body dynamics.

2 MECHANOCHEMICAL DEVICES DRIVEN
BY PENDULAR FORCING: MODELS

We analyzed systems where the mechanical forcing is transferred
to a milling body via a harmonic pendular motion of the reactor.
Since in a previous paper we verified that the main dynamical
features of these milling body dynamics are preserved in a 2-
dimensional description, we focused our attention on this
reduced framework. We considered the most common
geometries for these classes of devices, as illustrated
schematically in Figure 1. The first presents a rectangular shape
with flat bases, defining a spatial domainΩf =wf × 2h, wherewf and
h are the reactor width and semi-height, respectively. The other
geometry is characterized by semicircular lateral borders (bases) of
radius h, such that the related spatial domain writes Ωc = lc × 2h +
πh2. The milling disc has a radius rd. The reactor is driven by the
displacement of a mechanical arm of length R, which can be
mounted at a variable distance from the reactor center as controlled
by parameters ll and lr, giving the right and left border distance
from the reactor center, respectively. In the flat-base model, the
system width is thus wf = ll + lr, while wc = ll + lr + 2h holds for the
curved-base case (i.e., lc = ll + lf). When ll ≠ lr the milling disc
experiences an asymmetric force.

1https://www.cost.eu/stories/mechanochemistry-pushes-more-sustainable-
processes.
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The periodic angular motion of the reactor on the vertical
plane follows θ = θ0 cos (ωt), where θ0 is the maximal angular
amplitude and ω = 2π] gives the oscillation frequency. Two
Cartesian reference frames can be used to reconstruct the reactor

motion and the disc dynamics: the inertial system of coordinates
(X, Z), which is centered at the lower end of the mechanical arm,
and the non-inertial reference of coordinates (x, z), whose origin
coincides with the geometrical center of the reactor, where the x
axis is orthogonal to the mechanical arm. This non-inertial
reference frame undergoes rigid displacement with the reactor.

The motion of each point in the system can be described and
transformed from the non-inertial to the inertial coordinate
system through the following systems of equations:

X � x cos θ + z + R( )sin θ, (1)
Z � −x sin θ + z + R( )cos θ (2)

and

x � X cos θ + Z sin θ, (3)
z � X sin θ + Z cos θ − R. (4)

In the absence of external forces, the disc follows a rectilinear
motion started by the impact with a reactor wall.

Xb t + ht( ) � Xb t( ) + Vb
x t( ) ht, (5)

Zb t + ht( ) � Zb t( ) + Vb
z t( ) ht, (6)

where Vb(t) � (Vb
x(t), Vb

z(t)) is the disc velocity in the inertial
reference frame at time t, which can be obtained by differentiation
ofEqs 1 and 2, and ht is the integration time step. The integration is
performed by using the Euler algorithm. At each step, the inertial
reference frame coordinates of the disc (Xb(t), Zb(t)) are updated by
applying Eq. 5, and, from that, the disc coordinates in the non-
inertial reference frame (xb(t) zb(t)) can also be calculated.

Whenever xb = (xb, zb)∉Ω (i.e., the distance of the disc from the
reactor walls is smaller than rd), a collision occurs and the non-
inertial component of the disc velocity normal to the impacted
surface is instantaneously reversed, modulated by the restitution

FIGURE 1 | Sketches of two 2-dimensional ball-milling devices driven by harmonic pendular motion (X, Z) and (x, z) represent the inertial and non-inertial reference
frames, respectively. Panel (A) illustrates a reactor with flat bases (in red) of width lf = ll + lr and height 2h, sustained by a mechanical arm of length R. ll and lr regulate the
distance of the arm from the reactor center, and when the left and right sides of the reactor are different, ll ≠ lr, the system experiences an asymmetric forcing. The
mechanical treatment is performed by a rigid disc of radius rd. The oscillatory motion is described by the angle θ, with maximal amplitude θ0 = π/12, and frequency
] = 18 Hz. Panel (B) shows a reactor characterized by curved bases of curvature radius h, width lc = ll + lr + 2h and height 2h.

FIGURE 2 | Classification in the parameter spaces spanning the
restitution coefficient, f, and the disc radius, rd, of the main scenarios
characterizing the milling body dynamics in flat-base (A) and curved-base (B)
geometries. P1, P2, P8 and C identify period-1, period-2, period-8 and
chaotic regimes, respectively.
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coefficient f. f ranges between 0 and 1, giving the inelastic and elastic
limits, respectively. This mimics the effect of the powder undergoing
a transformation inside themechanochemical device on the collision
efficiency. The term “collision” here identifies any event where the
milling disc is at the reactor walls, including slipping phenomena.

As a whole, the dynamics of the milling body describes a
forced-damped oscillator, where the impacts with the periodically
moving reactor and friction at the walls feature the forcing and
the damping contributions to the disc dynamics, respectively. In a
sense, our problem features a complicated variant of the classical
bouncing ball system (Tufillaro and Albano, 1986).

The duration of any given collision is limited to a single time
step. Coherently with this aspect, the integration time step is set
smaller than 10–5 s (we used ht = 10–7 s), which is also consistent
with experimental data (Delogu et al., 1998) and the Hertzian
theory of impacts (Love, 1944; Timoshenko and Goodier, 1970).

It is finally worth noticing that the acceleration experienced by the
disc with the oscillation frequency at use is one order of magnitude
larger than the gravitational acceleration, and this, together with the
shortness of the disc’smean free path, allows us to consider negligible
the gravitational contribution to the disc motion.

3 RESULTS AND DISCUSSION

3.1 Flat vs. Curved Bases
We first investigate the influence of the different shapes of the
reactor lateral borders (either flat or curved) on the disc

dynamics. To make the comparison between the two
geometries as homogeneous as possible, we fixed the
reactors’ height to 2h and adapted their width in order to get
the same spatial domainΩf =Ωc. As a reference, we assumed the
values of typical devices with semicircular bases (wc + 2h =
57 mm and h = 9.4 mm), which are smaller than common Spex-
mill apparatuses characterized by flat borders and already
characterized in previous work (Caravati et al., 1999; Manai
et al., 2002; Budroni et al., 2014). Equivalent areas of the spatial
domains Ωf and Ωc are thus obtained via the relation wf = (2lc +
πh)/2.

To facilitate the comparison of the two systems, we classified
the possible behaviors in the parameter spaces spanning the
restitution coefficient, f, and the disc radius, rd. From previous
studies and preliminary simulations, these parameters remained
the most relevant from the dynamical viewpoint, and a numerical
benchmark on the effect of these parameters could be useful for
practical purposes. The other parameters governing the
mechanics of the system were fixed to typical values for these
devices θ0 = π/12, ] = 18.6 Hz, R = 0.122 m. Simulations were run
for 50 s and the resulting trajectories were analyzed from a
dynamical viewpoint.

To get an integrated dynamical and energetic view, we also
evaluated the average number of collisions on the reactor lateral
borders (bases), 〈Collisions〉 � N(d)

b /t (where N(d)
b is the

number of collisions on the bases and t the total simulation
time) as well as the mean energy, 〈E〉rel, averaged over the total
number of collisions, N(d)

t .

FIGURE 3 | Characterization of the milling body dynamics in a flat-base geometry as a function of (A) the restitution coefficient f (rd = 3 mm) and (B) the milling disc
radius rd (f = 0.5). For each regime, we report the trajectory (bottom) and the FFT of the related series describing the vertical displacement of the milling disc in time (top).
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〈E〉 � md

2N d( )
t

∑
N d( )

t

i�1
v d( )
i( )2, (7)

wheremd is the disc mass and v(d)i is the related velocity at the ith
collision. In our numerical framework, the disc is a material point
with an effective size given by rd, which can influence the
dynamics and velocity profile of the disc, while its mass is not
explicitly controlled by a parameter. However, we can define the
mean collision energy in relation to that of a reference disc with
radius rf (we used rf = 1 mm) and the same density, ρ (such that
md � πρr2d and mf � πρr2f):

〈E〉rel � 〈E〉d
〈E〉f

� N
f( )

t r2d
N d( )

t r2f

∑Nt
i�1 v d( )

i( )2

∑Nt
i�1 v

f( )
i( )

2, (8)

whereN(f)
t and v(f)i are the total number of collisions and the ith

collision velocity of the reference disc, respectively. Each
simulation was started by locating the milling disc in the
center of the non-inertial reference system. Changes in the
initial position of the disc do not affect the asymptotic
dynamical regime unless the system is marginally close to
chaotic conditions.

Figure 2 gives a global overview of the typical scenarios
pertaining to the two systems, which clearly differ both in
qualitative and quantitative terms.

Periodic regimes dominate the dynamics of the reactor with
flat bases in inelastic conditions (low f). For this geometry,
transitions from periodic to aperiodic behaviors can be
observed by increasing the restitution coefficient (see for
example, the back and forth scenario framed in Figure 2A for
rd = 3 mm). This route to chaos (and back to regular periodicity)
is illustrated in Figure 3, where we report the trajectories of the
disc in the reactor along with the Fast Fourier Transforms (FFTs)
of the vertical displacement of the disc in time (2). The transition
is characterized by the alternation of periodic and aperiodic
regimes which occurs in narrow windows of the control
parameters (insignificant changes from the experimental
viewpoint). Although a period-doubling scenario seems to
regulate the transition, it was difficult to refine the whole
sequence of bifurcations. Coarsely, by increasing f from 0.1 to

FIGURE 4 | Characterization of the milling body dynamics in a curved-base geometry as a function of (A) the restitution coefficient f (rd = 5 mm) and (B) the milling
disc radius rd (f = 0.5). For each regime, we report the trajectory (bottom) and the FFT of the time series describing the vertical displacement of the milling disc (top).

2While the horizontal component of the disc displacement is essentially Imposed
by the working frequency of the devise, the vertical Displacement confers emergent
features to the global dynamics (see Figure 1 of the Supplementary Material).
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0.3, the system switches from a period-1 (P1) behavior
(characterized by a main frequency twice the working
frequency of the device) to a chaotic regime. The last regime
shows the fingerprinting broad-band FFT profile of chaotic
scenarios, with the same dominant frequency as the preceding
periodic regime. We further analyzed the aperiodic dynamics by
calculating the progressive divergence of two disc trajectories
starting from infinitesimally distant initial positions, ‖δ0‖ ~
10–7 mm, with the formula ‖δ(t)‖ ≃‖δ0‖eλt for t ≫ 1. Although
not calculated from the true phase-space, λ can give a rough
estimation of the maximal Lyapunov exponent of the system
(Strogatz, 1994; Kantz and Schreiber, 1997), whose positive values
are a signature of chaotic regimes. Approaching chaos, λ goes
from small negative values to positive values as reported in
Figure 5A.

In the inelastic range f ∈ (0.1, 0.3), the milling disc spends most
of the time in the upper part of the reactor. The related
trajectories show a symmetric pattern with respect to the
central x = 0 axis in the periodic regime, which transmutes
into an asymmetric shape in the chaotic one.

The system undergoes a bifurcation to period-8 (P8) dynamics
by further increasing f to 0.5 (see the frequency-halving in the
related FFT), which preludes a new chaotic regime at f = 0.7.
Elastic conditions (f = 0.9) bring the system back to a
P1 periodicity compatible with the forcing frequency.

The dynamics of the disc is also very sensitive to the disc
radius, and a transition from periodicity to chaos can be observed
when rd is increased from 2 to 4 mm (with f = 0.5). Here also a

period-doubling scenario can be inferred, though not all
progressive regimes were isolated.

The asymmetric patterns drawn by the disc motion within the
spatial domain can be reflected with respect to the axis x = 0 by
reversing the initial direction of the external angular forcing.

In the system with curved bases, aperiodic dynamics are found
not only in the elastic domain but also for low values of f (see also
Figure 2 of the Supplementary Material). Again, the system can
evolve from periodicity to chaotic regimes following a period-
doubling-like pathway when f or rd are varied as framed in
Figure 2B, explicitly illustrated in Figure 4 and characterized
by computing the exponent λ in Figure 5B.

For both kinds of reactors, periodic regimes correspond to
highly ordered trajectories where the milling disc explores a very
restricted portion of the available area. However, while in flat-
base reactors impacts take place in a few points of the reactor
walls, curved-base geometries favor a displacement along the
reactor borders dragged by the reactor motion.

This explains why the number of collisions experienced by the
disc in the curved-base systems is, in general, much larger than
that observed in flat-base reactors. In Figures 6A,B we report the
dependence upon f and rd of the average number of collisions on
the reactor bases, 〈Collisions〉 (in gray-black), and the relative
energy, 〈E〉rel (in blue). In flat-base reactors (circles), 〈Collisions〉
shows a sharp drop-down as f is increased beyond the strongly
inelastic condition 0.1 (rd = 5 mm), while a smoother decreasing

FIGURE 5 | Exponential divergence, λ, characterizing milling body
trajectories in the flat- and curved-base geometries when changing (A) the
restitution coefficient f (rd = 5 mm) and (B) the milling disc radius rd (f = 0.5). λ
was obtained through the formula ‖δ(t)‖ ≃‖δ0‖eλt, by calculating the
distance ‖δ(t)‖ at any time t between two trajectories starting from
infinitesimally distant conditions ‖δ0‖→ 0 (here ‖δ0‖ ~ 10–7 mm) for t≫ 1 (here
after 50 s) (Kantz and Schreiber, 1997).

FIGURE 6 | Analysis of the average number of collisions on the reactor
bases, 〈Collisions〉 (in gray-black), and relative energy per collision, 〈E〉rel (in
blue). 〈E〉relwas evaluated in relation to a disc of radius rd = 5mm, to which we
attributed unitary mass. 〈Collisions〉 and 〈E〉rel are characterized as a
function of f (rd = 3 mm) in panel A and rd (f = 0.9) in panel B. Squares and
circles refer to flat- and curved-base reactors, respectively.
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trend pertains to curved-base reactors (Figure 6A). For both
reactor types, 〈Collisions〉 is less sensitive to a variation of rd and
the corresponding trends are essentially constant. The trends for
〈E〉rel of the two geometries are comparable both in qualitative
and quantitative terms. The increasing trend with rd is described
by Eq. 8 and is related to the disc mass, which increases
correspondingly.

In practical terms, curved-base reactors provide a more
efficient mixing, showing wider regions of the parameter space
where chaotic dynamics can be accessed and a larger number of
collisions, which corresponds to a higher probability of inducing
a transformation, but there is a negligible gain in energetic terms
as compared to flat-base reactors.

3.2 Scaling the Reactor Size
The reactors with different shapes of the lateral borders show
divergent dynamics even if the sizes of the milling body and the
reactor, as well as all the other mechanical parameters, are the
same. However, given the dependence of the dynamics of the two
reactors on the size of the milling body, we checked whether
systems with the same basis type and the same ratio of the reactor
size to that of the milling body converge to analogous regimes.
The rationale is that discs with an analogous free space to move,
under the same mechanical forcing, could give a similar
dynamical response. If this is the case, the dimensionless ratio

Q � Ωf/(π(rd)2) � Ωc/(π(rd)2) can feature a simplified and
unifying parameter to control the dynamics.

We thus explored separately the dynamics of symmetrically
forced reactors with either flat or curved bases, keeping fixed Q.
Specifically, we compared the behaviors of systems where a
constant Q is obtained by varying the reactor dimensions (i)
without keeping the reactor aspect ratio (i.e., changing at will the
width and the height of the reactor with the length of the
mechanical arm, R, fixed) (case 1), (ii) preserving the aspect
ratio of the reactor by scaling its dimensions by the same factor
(with R fixed) (case 2), and (iii) scaling the whole system
proportionally, including the length of the mechanical arm
(case 3).

We first comment on the general case 1. Figure 7A shows a
representative parallel between the dynamical regimes of two
systems with flat bases, one being 2.25 times larger than the other,
including the disc area. In particular, there are superimposed the
FFTs of the temporal series describing the disc displacement
along the vertical axis, z. An analogous comparison is reported for
reactors with curved bases in Figure 7D (related trajectories can
be found in Figure 3 of the Supplementary Material). In both
cases, preserving Q does not translate into analogous regimes. In
the example with flat base reactors, the regular periodicity
characterizing the “small” reactor changes into an aperiodic
scenario in the scaled reactor. Viceversa, a transition from

FIGURE 7 | Comparison between the milling disc dynamics obtained by changing the reactor size with the milling disc radius in flat-base (left) and curved-base
(right) geometries, keeping fixed the ratio Q � Ωc/(π(rd)2) � Ωc/(π(rd)2) (f = 0.5). The reference systems, in blue, are characterized by r1d � 3 mm, Ω1

f � 53 mm ×
18.8 mm = Ω1

c �38.2 mm × 18.8 mm + π (9.4 mm)2 while the scaled reactors, in black, have r2d � 1.5r1d �4.5 mm, Ω2
f � Ω2

c � 2.25Ω1
f � 2.25Ω1

c . The comparison
between the reference and scaled systems is performed by using the Fast Fourier Transforms of the z-displacement of the milling disc over time. The change of the
reactor size is operated in three different ways: (A–D) Case 1: scaling the dimensions without preserving the reactor aspect ratio keeping R = 122 mm (Ω2

f � 53 mm ×
42.3 mm;Ω2

c � 104.4 mm× 18.8 mm+ π(9.4 mm)2); (B–E) case 2: scaling the dimensions by the same factor of the disc radius, preserving the aspect ratio of the reactor
and keeping R = 122 mm (Ω2

f � 79.45 mm × 28.2 mm; Ω2
c �57.3 mm × 28.2 mm + π(14.1 mm)2); (C-F) case 3: scaling the whole system proportionally, including the

mechanical arm (Ω2
f � 78.45 mm × 28.2 mm; Ω2

c �57.3 mm × 28.2 mm + π(14.1 mm)2; R = 183 mm).
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strongly aperiodic to period-1 behavior is observed in the curved-
base system. In general, we found that the discrepancy between
the dynamics of reference and scaled systems holds from both
qualitative and quantitative viewpoints for different
combinations of f and rd (becoming much more prominent
when approaching elastic conditions, see Figure 2 of the
Supplementary Material), and also by increasing the
horizontal instead of the vertical dimension.

A similar comparison between systems where the reactor
dimensions are scaled proportionally while maintaining the
aspect ratio does not indicate any dynamical matching (see an
example in Figures 7B,E), unless the mechanical arm is also
scaled by the same scale factor, which is shown in Figures 7C,F.
In this last case, the trajectory described by the disc within the two
scaled reactors follows the same scaled path (see Figure 4 of
Supplementary Material) and, as a consequence, the Fourier
analysis leads to overlapping results.

In Figure 8 we can observe that both in flat- and curved-base
reactors, the average number of collisions on the bases
〈Collisions〉 is maximal for the reference reactor (case
3 coincides with this). By contrast, the average energy per
collision will be larger in scaled systems not only because of
the increment in the mass of the milling body but also because of
an increment in the mean squared velocity of the disc, 〈v2〉. In
particular, in flat reactors, apart from case 1, 〈v2〉 is larger in the
scaled reactors than in the smaller reference system, with
〈v2〉case 2 < 〈v2〉case 3 while in curved-base geometries 〈v2〉

FIGURE 8 | Comparison of the average number of collisions on the
basis, 〈Collisions〉, and mean squared velocity per collision, 〈v2〉, for different
scaling (cases 1, 2, and 3) of the system size. Panel A and B describe results
for flat- and curved-base geometries.

FIGURE 9 |Comparison between themilling disc dynamics obtained with rd = 1 mm (A) and rd = 4 mm (B) (i.e., ϵ = 3 mm), by adapting the spatial domain fromΩf =
20, ×, 40 mm toΩf = 26 × 46 mm, according toEqs 9, 10. f is fixed to 0.5. (C)Comparison between the FFTs of the x-displacement of themilling disc in time. (D) Average
number of collisions on the bases, 〈Collisions〉, and average relative energy per collision, 〈E〉rel, with respect to the reference energy of a milling disc with radius
rf = 1 mm.
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follows the order
〈v2〉case 1 > 〈v2〉case 2 > 〈v2〉case 3 > 〈v2〉reference case.

Another way to relate the dynamics of the milling body to the
spatial domain available relies on simple geometrical arguments. Since
the conditions for collisions are based on the distance rd of the disc
center from the borders, when rd increases by, ϵ, collision conditions

remain unaltered if the dimensions of the reactor are increased by the
same quantity ϵ at each side in the flat-base and if the reactor half-
height increases to h + ϵ in the curved-base systems. In other words,
the dynamics of a disc with a radius r1d will be the same of a milling
disc with r2d, if the reactor dimensions change from (w1 × 2h1) to

w2 � w1 + 2ϵ, (9)
2h2 � 2h1 + 2ϵ, (10)
with ϵ � r2d − r1d( ), ,

in flat-base geometry, and to

h2 � h1 + 2ϵ, (11)
in geometries with curved bases. These equivalence criteria, allowing
to adapt the system size to a change in the disc radius in order to get
the same dynamics, are applied to the representative systems shown
in Figure 9. There are reported small portions of the spatial
trajectories of a milling disc moving in a flat-base symmetrically-
forced reactor when rd changes from 1mm (panel (a)) to 4mm
(panel (b)) and, consequently, Ωf = 20, ×, 40 mm is varied to Ωf =
26 × 46mm (f = 0.5). The resulting dynamics are identical and show
overlapping FFTs of the temporal x-displacement in Figure 9C.
Analogous results were also found for curved-base reactors (see
Figure 5 of the Supplementary Material).

FIGURE 10 | Characterization of the milling body dynamics in (A) flat- and (B) curved-base geometries as a function of the mechanical arm location, ll. For each
regime, we report the trajectory (bottom) and the FFT of the time series describing the vertical displacement of the milling disc (top).

FIGURE 11 | Dependence of 〈Collisions〉 and 〈E〉rel on the forcing
asymmetry as controlled by the mechanical arm location, ll.
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If, in this way, the dynamical regime of the milling body is
preserved, things vary from the energetic viewpoint due to the
increase of the disc mass. Assuming a constant density of the disc
and verified that the velocity distribution does not change while
adapting the reactor size, the average energy per collision will only
depend upon rd. In particular, 〈E〉rel, measuring the average energy
per collision of a disc with radius rdwith respect to that of a reference
radius rf, follows 〈E〉rel ~ (rd)2/(rf)2 as shown in Figure 9D, where
rf= 1mm.Notice how the total number of collisions remains constant
while varying rd. This picture introduces a degree of freedom in the
control of the system by which a desired regime can be modulated in
intensity while maintaining unaltered the dynamical features.

3.3 Symmetrical vs. Asymmetrical Forcing
We finally explored the impact of an asymmetric forcing imposed
on the disc when the mechanical arm is placed at different
distances from the reactor center, for instance, decreasing ll in
favor of lr. The results for the two reactor geometries under
consideration are summarized in Figure 10, where we report
different dynamics observed by progressively decreasing ll
(increasing lr) by steps of 5 mm from the centered allocation,
which is ll = 26 mm (the case f = 0.5 and rd = 3 mm is considered).

In the flat-base system (Figure 10A), the system firstly
undergoes a transition from a P8 (ll = 26 mm) to a P4 (ll =
21 mm) periodicity, and then a chaotic regime for ll = 16 mm
occurs. Pushing further the geometrical asymmetry (ll = 6 mm)
the dynamics recovers a P1 behavior characterized by a main
frequency which is half of the device forcing frequency.

In reactors with curved bases (Figure 10B), the asymmetry
shows a “simplifying” effect in dynamical terms, inducing a
transition from an initial chaotic regime for the centered arm
to different kinds of periodicity: P1 (with the same devise working
frequency) for ll = 21 mm, P2 for ll = 16 mm and P4 for ll = 6 mm.

As shown in Figure 11, in both geometries the average
number of collisions on the bases is not substantially affected
by the asymmetric position of the mechanical arm. However, the
two reactor types follow opposite trends in energetic terms, with
the average relative energy of the collisions decreasing with the
asymmetry of the forcing (i.e., decreasing ll) in flat-base reactors.
The opposite is true in curved-base reactors. A correlation
between the typology of the dynamical regimes and collision
energy can hardly be established. We can just point out that
chaotic regimes correspond to a decrement of 〈E〉rel.

4 CONCLUDING REMARKS

The geometry of the reactor used in ball-milling approaches can
profoundly impact the outcome of a mechanical process by
affecting the dynamics of the milling body, which rules the
powder dragging, mixing, and concretely transfers the
mechanical energy to induce physico-chemical transformations
at collision with other milling bodies or with the reactor walls.

In this work we have focused our attention on the dynamics of
one milling body driven by a harmonic pendular force within two
different geometries, namely reactors with flat and curved bases,
which are among the most common devices in use. By using a 2-

dimensional description of these systems, we have probed the
dynamical response of a milling body to the variation of relevant
parameters such as the milling body size and the restitution
coefficient. These parameters present experimental interest and
turn out to critically control the transition from periodic to
chaotic behaviors in both the geometries considered, following
period-doubling-like routes. Parametric regions where the systems
show chaotic behaviors and, hence, potentially more efficient
mixing, are observed in curved-base reactors, where aperiodic
dynamics dominate in the presence of nearly elastic conditions
and are also found in inelastic conditions. Although the energetic
profiles of the two geometries as a function of the control parameters
considered are essentially overlapping, curved-base reactors are
characterized by a larger number of collisions, which could
translate into a higher probability of inducing a transformation.
A direct correspondence between the dynamic type and the
energetics of the system cannot be established. In both systems,
the number of collisions is larger in periodic inelastic conditions as
these favor the slipping of the milling body on the reactor walls.

A more general criterion for controlling the dynamics within
the systems relies on a suitably small change in the relative size of
the reactor and that of the milling body. Here we identified two
possible ways to maintain a given dynamic when the milling body
size is varied: i) scaling the reactor size, including the length of the
mechanical arm, of the same factor of the milling body size
variation; ii) augmenting the reactor width and height by the
same increment (or decrement) of the milling body radius. In
both cases, a desired regime can be modulated in intensity
(i.e., the collision energy can be either increased or decreased)
while maintaining unaltered the dynamical features.

An asymmetric force on the milling body, which can be
imposed by changing the position of the mechanical arm with
respect to the reactor center, can also play a critical role in
controlling the transition from periodic to chaotic regimes.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusion of this article will be
made available by the authors without undue reservation.

AUTHOR CONTRIBUTIONS

FD and MB conceived this work. AP, MC, and MB ran
simulations and analyzed and interpreted data. All the authors
contributed to the editing of the manuscript.

FUNDING

This work was supported by Attrazione e mobilità dei ricercatori,
Linea 2 (Attrazione dei Ricercatori), and funding by University of
Sassari (Fondo di Ateneo per la ricerca 2020). MC performed her
activity within the framework of the International PhD in
Innovation Sciences and Technologies at the Università degli
Studi di Cagliari, Italy.

Frontiers in Chemistry | www.frontiersin.org August 2022 | Volume 10 | Article 91521710

Polo et al. Controlling Dynamics of Mechanochemical Devices

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


ACKNOWLEDGMENTS

MB gratefully acknowledges funding from Programma Operativo
Nazionale (PON) Ricerca e Innovazione 2014–2020, Asse I
Capitale Umano, Azione I.2 A.I.M.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fchem.2022.915217/
full#supplementary-material

REFERENCES

Abdellaoui, M., and Gaffet, E. (1995). The Physics of Mechanical Alloying in a
Planetary Ball Mill: Mathematical Treatment. Acta Metallurgica Materialia 43,
1087–1098. doi:10.1016/0956-7151(95)92625-7

Aref, H., Blake, J. R., Budišić, M., Cardoso, S. S. S., Cartwright, J. H. E., Clercx, H.
J. H., et al. (2017). Frontiers of chaotic advection. Rev. Mod. Phys. 89, 025007.
doi:10.1103/RevModPhys.89.025007

Avvakumov, E. G. (1986). Mechanical Methods for Activation of Chemical
Processes. Novosibirsk: Nauka.

Balaz, P., Achimovicova, M., Balaz, M., Billik, P., Cherkezova-Zheleva, Z., Manuel
Criado, J., et al. (2013). Chem. Soc. Rev. 42, 7571.

Boldyrev, V. V. (1983). Experimental Methods in the Mechanochemistry of Solid
Inorganic Materials. Novosibirsk: Nauka.

Boldyreva, E. (2013). Mechanochemistry of Inorganic and Organic Systems: what
Is Similar, what Is Different? Chem. Soc. Rev. 42, 7719. doi:10.1039/c3cs60052a

Boschetto, A., Bellusci, M., La Barbera, A., Padella, F., and Veniali, F. (2013).
Kinematic Observations and Energy Modeling of a Zoz Simoloyer High-Energy
Ball Milling Device. Int. J. Adv. Manuf. Technol. 69, 2423–2435. doi:10.1007/
s00170-013-5201-9

Broseghini, M., Gelisio, L., D’Incau, M., Azanza Ricardo, C. L., Pugno, N. M., and
Scardi, P. (2016). Modeling of the Planetary Ball-Milling Process: The Case
Study of Ceramic Powders. J. Eur. Ceram. Soc. 36, 2205–2212. doi:10.1016/j.
jeurceramsoc.2015.09.032

Budroni, M. A., Baronchelli, A., and Pastor-Satorras, R. (2017). Phys. Rev. E 95 (5),
052311. doi:10.1103/physreve.95.052311

Budroni, M. A., Pilosu, V., Delogu, F., and Rustici, M. (2014). Multifractal
Properties of Ball Milling Dynamics. CHAOS 24 (2), 023117. doi:10.1063/1.
4875259

Burgio, N., Iasonna, A., Magini, M., Martelli, S., Padella, F., Burgio, N., et al. (1991).
Mechanical Alloying of the Fe−Zr System. Correlation between Input Energy
and End Products. Il Nuovo Cimento D. 13, 459–476. doi:10.1007/bf02452130

Butyagin, P. Y. (1971). Kinetics and Nature of Mechanochemical Reactions.
Usp. Khim. 40, 1935. doi:10.1070/rc1971v040n11abeh001982

Caravati, C., Delogu, F., Cocco, G., and Rustici, M. (1999). Hyperchaotic Qualities
of the Ball Motion in a Ball Milling Device. CHAOS 9, 219–226. doi:10.1063/1.
166393

Carta, M., Colacino, E., Delogu, F., and Porcheddu, A. (2020). Kinetics of
Mechanochemical Transformations. Phys. Chem. Chem. Phys. 22,
14489–14502. doi:10.1039/d0cp01658f

Carta, M., Delogu, F., and Porcheddu, A. (2021). A Phenomenological Kinetic
Equation for Mechanochemical Reactions Involving Highly Deformable
Molecular Solids. Phys. Chem. Chem. Phys. 23, 14178–14194. doi:10.1039/
d1cp01361k

Cleary, P. W., Sinnott, M., and Morrison, R. (2006). Analysis of Stirred Mill
Performance Using DEM Simulation: Part 2 - Coherent Flow Structures, Liner
Stress and Wear, Mixing and Transport. Miner. Eng. 19, 1551–1572. doi:10.
1016/j.mineng.2006.08.013

Concas, A., Lai, N., Pisu, M., and Cao, G. (2006). Modelling of Comminution
Processes in Spex Mixer/Mill. Chem. Eng. Sci. 61, 3746–3760. doi:10.1016/j.ces.
2006.01.007

Courtney, T. H. (1996). Mat. Trans. JIM 36, 119.
Delogu, F., Monagheddu, M., Mulas, G., Schiffini, L., and Cocco, G. (2000). Int.

J. Non-Equilib. Process. 11, 235.
Delogu, F., Mulas, G., Monagheddu, M., Schiffini, L., and Cocco, G. (1998). Int.

J. Non-Eq. Proc. (IJNEP) 11, 235.
Do, J.-L., and Friščić, T. (2017). Mechanochemistry: A Force of Synthesis. ACS

Cent. Sci. 3, 13–19. doi:10.1021/acscentsci.6b00277

Feng, Y. T., Han, K., and Owen, D. R. J. (2004). Discrete Element Simulation of the
Dynamics of High Energy Planetary Ball Milling Processes. Mater. Sci. Eng. A
375-377, 815–819. doi:10.1016/j.msea.2003.10.162

Friscic, T., Mottillo, C., and Titi, H. M. (2020). Mechanochemistry for Synthesis.
Angew. Chem. Int. Ed. 59, 1018. doi:10.1002/anie.201906755

Friscic, T. (2012). Supramolecular Concepts and New Techniques in
Mechanochemistry: Cocrystals, Cages, Rotaxanes, Open Metal–Organic
Frameworks. Chem. Soc. Rev. 41, 3493. doi:10.1039/C2CS15332G

Galant, O., Cerfeda, G., McCalmont, A. S., James, S. L., Porcheddu, A., Delogu, F.,
et al. (2022). ACS Sust. Chem. Eng. 10, 1430–1439.

Gil-González, E., Rodríguez-Laguna, M. d. R., Sánchez-Jiménez, P. E., Perejón, A.,
and Pérez-Maqueda, L. A. (2021). Unveiling Mechanochemistry: Kinematic-
Kinetic Approach for the Prediction of Mechanically Induced Reactions.
J. Alloys Compd. 866, 158925. doi:10.1016/j.jallcom.2021.158925

Gomollon-Bel, F. (2019). Chem. Int. 49, 12.
Heinicke, G. (1986). Tribochemistry. Berlin: Akademie Verlag.
James, S. L., Adams, C. J., Bolm, C., Braga, D., Collier, P., Friščić, T., et al. (2012).

Mechanochemistry: Opportunities for New and Cleaner Synthesis. Chem. Soc.
Rev. 41, 413–447. doi:10.1039/c1cs15171a

Kantz, H., and Schreiber, T. (1997). Nonlinear Time Series Analysis. Cambridge:
Cambridge University Press.

King, G. (1998). Towards a Science of Mixing. Phys. World 11 (11), 23–24. doi:10.
1088/2058-7058/11/11/24

Love, E. H. (1944). A Treatise on the Mathematical Theory of Elasticity. 4th ed. New
York: Dover.

Magini, M., Iasonna, A., and Padella, F. (1996). Ball Milling: an Experimental
Support to the Energy Transfer Evaluated by the Collision Model. Scr. Mater.
34, 139. doi:10.1016/1359-6462(95)00465-3

Manai, G., Delogu, F., and Rustici, M. (2002). Onset of Chaotic Dynamics in a Ball
Mill: Attractors Merging and Crisis Induced Intermittency. CHAOS 12,
601–609. doi:10.1063/1.1484016

Michalchuck, A. A. L., Boldyreva, E. V., Belenguer, A. M., Emmerling, F., and
Boldyrev, V. V. (2020). Front. Chem. 9, 685789.

Porcheddu, A., Colacino, E., De Luca, L., and Delogu, F. (2020). Metal-Mediated
and Metal-Catalyzed Reactions under Mechanochemical Conditions. ACS
Catal. 10, 8344–8394. doi:10.1021/acscatal.0c00142

Rightmire, N. R., and Hanusa, T. P. (2016). Advances in Organometallic Synthesis
with Mechanochemical Methods. Dalton Trans. 45, 2352–2362. doi:10.1039/
c5dt03866a

Rustici, M., Mulas, G., and Cocco, G. (1996). Detecting Chaotic Attractors in a Ball
Milling Process. Msf 225-227, 243–248. doi:10.4028/www.scientific.net/msf.
225-227.243

Sinnott, M., Cleary, P. W., and Morrison, R. (2006). Analysis of Stirred Mill
Performance Using DEM Simulation: Part 1- Media Motion, Energy
Consumption and Collisional Environment. Miner. Eng. 19, 1537–1550.
doi:10.1016/j.mineng.2006.08.012

Strogatz, S. H. (1994). Nonlinear Dynamics and Chaos: With Applications to
Physics, Biology, Chemistry, and Engineering. Boulder, Colorado, USA:
Westview Press.

Takacs, L. (2013). The Historical Development of Mechanochemistry. Chem. Soc.
Rev. 2013. doi:10.1039/C2CS35442J

Tan, D., and García, F. (2019). Main Group Mechanochemistry: from Curiosity
to Established Protocols. Chem. Soc. Rev. 48, 2274–2292. doi:10.1039/
c7cs00813a

Thiessen, K. P. (1979). Z. Phys. Chem. Leipz. 260, 403. doi:10.1515/zpch-1979-0159
Thiessen, P. A., Meyer, K., and Heinicke, G. (1967). Grundlagen der Tribochemie.

Berlin: Akademie Verlag.
Timoshenko, S. P., and Goodier, J. N. (1970). Theory of Elasticity. New York:

McGraw-Hill.

Frontiers in Chemistry | www.frontiersin.org August 2022 | Volume 10 | Article 91521711

Polo et al. Controlling Dynamics of Mechanochemical Devices

https://www.frontiersin.org/articles/10.3389/fchem.2022.915217/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fchem.2022.915217/full#supplementary-material
https://doi.org/10.1016/0956-7151(95)92625-7
https://doi.org/10.1103/RevModPhys.89.025007
https://doi.org/10.1039/c3cs60052a
https://doi.org/10.1007/s00170-013-5201-9
https://doi.org/10.1007/s00170-013-5201-9
https://doi.org/10.1016/j.jeurceramsoc.2015.09.032
https://doi.org/10.1016/j.jeurceramsoc.2015.09.032
https://doi.org/10.1103/physreve.95.052311
https://doi.org/10.1063/1.4875259
https://doi.org/10.1063/1.4875259
https://doi.org/10.1007/bf02452130
https://doi.org/10.1070/rc1971v040n11abeh001982
https://doi.org/10.1063/1.166393
https://doi.org/10.1063/1.166393
https://doi.org/10.1039/d0cp01658f
https://doi.org/10.1039/d1cp01361k
https://doi.org/10.1039/d1cp01361k
https://doi.org/10.1016/j.mineng.2006.08.013
https://doi.org/10.1016/j.mineng.2006.08.013
https://doi.org/10.1016/j.ces.2006.01.007
https://doi.org/10.1016/j.ces.2006.01.007
https://doi.org/10.1021/acscentsci.6b00277
https://doi.org/10.1016/j.msea.2003.10.162
https://doi.org/10.1002/anie.201906755
https://doi.org/10.1039/C2CS15332G
https://doi.org/10.1016/j.jallcom.2021.158925
https://doi.org/10.1039/c1cs15171a
https://doi.org/10.1088/2058-7058/11/11/24
https://doi.org/10.1088/2058-7058/11/11/24
https://doi.org/10.1016/1359-6462(95)00465-3
https://doi.org/10.1063/1.1484016
https://doi.org/10.1021/acscatal.0c00142
https://doi.org/10.1039/c5dt03866a
https://doi.org/10.1039/c5dt03866a
https://doi.org/10.4028/www.scientific.net/msf.225-227.243
https://doi.org/10.4028/www.scientific.net/msf.225-227.243
https://doi.org/10.1016/j.mineng.2006.08.012
https://doi.org/10.1039/C2CS35442J
https://doi.org/10.1039/c7cs00813a
https://doi.org/10.1039/c7cs00813a
https://doi.org/10.1515/zpch-1979-0159
https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Tufillaro, N. B., and Albano, A. M. (1986). Chaotic Dynamics of a Bouncing Ball.
Am. J. Phys. 54, 939–944. doi:10.1119/1.14796

Wang, G.-W. (2013). Mechanochemical Organic Synthesis. Chem. Soc. Rev. 42,
7668. doi:10.1039/c3cs35526h

Watanabe, R., Hashimoto, H., and Geun Lee, G. (1995). Mater. Trans. JIM 36, 2.
doi:10.2320/matertrans1989.36.102

Zhao, X., and Shaw, L. (2017). Modeling and Analysis of High-Energy Ball Milling
through Attritors.Metall Mat Trans A 48, 4324–4333. doi:10.1007/s11661-017-
4195-6

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Polo, Carta, Delogu, Rustici and Budroni. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Chemistry | www.frontiersin.org August 2022 | Volume 10 | Article 91521712

Polo et al. Controlling Dynamics of Mechanochemical Devices

https://doi.org/10.1119/1.14796
https://doi.org/10.1039/c3cs35526h
https://doi.org/10.2320/matertrans1989.36.102
https://doi.org/10.1007/s11661-017-4195-6
https://doi.org/10.1007/s11661-017-4195-6
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles

	Controlling Nonlinear Dynamics of Milling Bodies in Mechanochemical Devices Driven by Pendular Forcing
	1 Introduction
	2 Mechanochemical Devices Driven by Pendular Forcing: Models
	3 Results and Discussion
	3.1 Flat vs. Curved Bases
	3.2 Scaling the Reactor Size
	3.3 Symmetrical vs. Asymmetrical Forcing

	4 Concluding Remarks
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


